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Potsdam, Potsdam, Germany, 2Faculty of Health Sciences Brandenburg, University of Potsdam,
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Introduction: Heart rate variability biofeedback (HRVB) is awell-studied intervention
known for its positive effects on emotional, cognitive, and physiological well-being,
including relief from depressive symptoms. However, its practical use is hampered
by high costs and a lack of trained professionals. Smartphone-based HRVB, which
eliminates the need for external devices, offers a promising alternative, albeit with
limited research. Additionally, premenstrual symptoms are highly prevalent among
menstruating individuals, and there is a need for low-cost, accessible interventions
with minimal side effects. With this pilot study, we aim to test, for the first time, the
influence of smartphone-based HRVB on depressive and premenstrual symptoms,
as well as anxiety/stress symptoms and attentional control.
Methods: Twenty-sevenparticipantswithabove-averagepremenstrualordepressive
symptoms underwent a 4-week photoplethysmography smartphone-based HRVB
intervention using a waitlist-control design. Laboratory sessions were conducted
before and after the intervention, spaced exactly 4 weeks apart. Assessments
included resting vagally mediated heart rate variability (vmHRV), attentional control
via the revised attention network test (ANT-R), depressive symptoms assessed with
the BDI-II questionnaire, and stress/anxiety symptoms measured using the DASS
questionnaire. Premenstrual symptomatology was recorded through the PAF
questionnaire if applicable. Data analysis employed linearmixedmodels.
Results: We observed improvements in premenstrual, depressive, and anxiety/
stress symptoms, as well as the Executive Functioning Score of the ANT-R
during the intervention period but not during the waitlist phase. However, we
did not find significant changes in vmHRV or the Orienting Score of the ANT-R.
Discussion: These findings are promising, both in terms of the effectiveness of
smartphone-based HRVB and its potential to alleviate premenstrual symptoms.
Nevertheless, to provide a solid recommendation regarding the use of HRVB
for improving premenstrual symptoms, further research with a larger sample
size is needed to replicate these effects.
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1 Introduction

Heart rate variability biofeedback (HRVB) is a well-researched intervention that has

demonstrated effectiveness in a wide range of areas (1), including relieving anxiety and

stress (2), ameliorating depression (3), improving sleep (4), alleviating asthma

symptoms (5), and even enhancing sports performance (6). However, despite its
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potential, this user-friendly method has seen limited practical

implementation. This can be attributed, in part, to the high costs

associated with necessary stationary and mobile

electrocardiography (ECG) devices, as well as the required

training and expertise of staff members entrusted with its

administration, which further strains healthcare systems.

Encouragingly, smartphone apps capable of assessing heart rate

through the device’s camera, without additional equipment, are

promising to yield similar results (7). Nevertheless, empirical

validation of smartphone-based HRVB applications remains

limited (see below for elaboration). This study aims to validate

the effectiveness of an HRVB intervention applied through

smartphones, specifically targeting the alleviation of depressive

symptoms, a well-documented outcome of conventional HRVB.

Additionally, we explore a novel application of HRVB for

premenstrual symptoms.

HRVB is a method in which vagally mediated heart rate variability

(vmHRV), an indicator of parasympathetic activity (8, 9), is

systematically increased through slow, controlled breathing and

visual feedback of heart rate oscillations. The primary driving

mechanism involves slow-paced breathing at 0.1 Hz or an individual

resonance frequency (10). It is believed to exert its various beneficial

effects through bottom-up modulation of a neural network described

by Thayer and Lane (11) in their neurovisceral integration model.

This model delineates a network of interconnected structures

known as the central autonomic network (CAN), responsible for

integrating information and regulating appropriate responses. At

the core of this regulatory network, Thayer and Lane (12)

propose an inhibitory connectivity between the medial prefrontal

cortex (mPFC) and the amygdala. The stronger this connectivity,

the greater an individual’s capacity to downregulate a presumed

default stress response and deliver a precise and personalized

reaction to internal and environmental demands. vmHRV is

considered both a peripheral index for this capacity and a

reciprocal element within this network (13). This theory is

grounded in a substantial body of evidence linking low vmHRV

to psychopathology (14) and reduced performance in cognitive

self-control tasks (15, 16).

When practiced over several weeks, HRVB enhances the

capacity of the CAN through coherence phenomena involving

the synchronization of breathing rate, blood pressure, and heart

rate oscillations (17). These phenomena contribute to several

bottom-up routes. The most crucial of these routes involve input

into the CAN through baroreceptors via the nucleus of the

solitary tract, stretch receptors in the lungs, and a vagal afferent

pathway (17–19).

HRVB interventions have demonstrated the potential to

improve various affective and cognitive outcomes associated with

CAN capacity, including depression (3), anxiety (2), mind

wandering (20) and inhibitory control (21). Our study aims to

expand these effects in the context of a smartphone-based

intervention. While vmHRV is reliably associated with cognitive

outcomes, particularly executive functions, the impact of HRVB

on these variables is less clear (22). In a systematic review,

Tinello et al. (22) found that existing effects are primarily observed

in the domain of attentional control and are often found in patient
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populations or individuals experiencing high levels of stress. Given

that attention is strongly linked to vmHRV, we also investigated

the effect of HRVB on attentional control using the revised

Attention Network Test [ANT-R, (23, 24)].

Expanding on these replications, we further investigate HRVB

impact on premenstrual syndrome (PMS), a highly prevalent

condition characterized by a diverse collection of psychological

and physiological symptoms. These symptoms typically manifest

in individuals with active menstrual cycles during the week

leading up to menstruation and tend to subside shortly after. As

many as 90% of menstruating individuals regularly encounter at

least one symptom of PMS (25). Commonly reported symptoms

encompass heightened stress reactivity, anxiety, depressive mood,

breast tenderness, and abdominal pain (26, 27).

As a component of the gender data gap, premenstrual syndrome

(PMS) remains significantly under-researched (28). Even today,

treatment options remain limited, primarily centered on addressing

specific psychological or physiological symptoms through hormonal

cycle suppression or antidepressant medication in both clinical

practice and research (29). Both of these approaches are associated

with substantial adverse side effects (30–32).

Premenstrual symptoms have been linked to cyclic fluctuations

in vmHRV (33). Individuals who experience more severe

symptoms tend to exhibit a pronounced reduction in vmHRV

during the luteal phase of their menstrual cycle, coinciding with

the experience of these symptoms (34). Matsumoto et al. (34)

have suggested a potential causal relationship in this regard.

One possible explanation for this phenomenon lies in a

metabolite of progesterone, one of the main fluctuating gonadal

steroids during the menstrual cycle. Sundström-Poromaa et al.

(35) have identified this metabolite, namely Allopregnanolone

(ALLO), an allosteric Gamma-Aminobutyric Acid (GABA)

receptor modulator as a likely cause of the experience of

premenstrual symptoms (27). As ALLO operates on the

GABAergic system, the proposed CAN in the neurovisceral

integration theory (11, 12) might also be affected. In this theory,

successful adaptation relies on inhibitory connectivity between

the mPFC and the amygdala. The strength of these connections,

which are part of the central nervous system’s inhibitory

GABAergic network, are influenced by GABA levels in the

mPFC (36). Compromised inhibition in this circuit due to ALLO

withdrawal and/or maladaptive ALLO responses may lead to a

compromised self-regulatory capacity of the organism on both

affective and physiological levels, as observed in PMS.

Following this line of reasoning, HRVB is a promising

candidate to counteract some of these effects through two

mechanisms. Firstly, the most pronounced effects of HRVB are

observed in stress management (2). If stress throughout the cycle

causes irregularities in the ALLO system during the premenstrual

phase, reducing stress throughout the cycle may prevent some of

the symptom development. Existing evidence already suggests

that various relaxation techniques can positively impact PMS

(37). Secondly, HRVB is assumed to increase the inhibitory

capacity of the mPFC over the amygdala and, as a result,

enhance the inhibition of the default stress response (38).

Although GABAergic transmission may be compromised during
frontiersin.org
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the premenstrual phase, boosting the baseline inhibitory strength

between these two brain structures could raise inhibition levels.

This might make it less likely for a sudden drop to cross the

threshold to trigger symptoms that cause significant distress.

Initial studies have already provided evidence of the effectiveness

of HRVB for mental health outcomes when administered through

smartphones. Previous studies that utilized smartphone-based

HRVB interventions to improve outcomes like depressive or

anxiety symptoms, however, have typically relied on external

devices connected to the smartphone via Bluetooth. These devices

include wearable ECG-measuring chest straps (38–42) or earlobe-

clip pulse measuring devices (43–45). Acquiring a wearable device

presents a significant obstacle for potential HRVB users.

Smartphone cameras can now measure heart rate when the user

places a finger on the camera. An application activates the camera

flash and analyzes the red-to-green ratio in the image at high

frequency, generating pulse curves. This process is known as

photoplethysmography (PPG) and closely resembles the process

behind the optical sensors that emit infrared or green light in

commonly used pulse measurement devices. Yuda et al. (7) suggest

that the heart rate variability indicator used in smartphone apps,

which they term “pulse rate variability” as measured through PPG,

may contain distinct information compared to its ECG-measured

counterpart. Nevertheless, recent research has demonstrated very

high Pearson correlations between HRV parameters measured

through ECG and PPG of r > .9 (46), even though the reliability is

somewhat dependent on sampling rate of the device (47).

Moreover, the associations with mental health outcomes are also

evident when assessing vmHRV via PPG using the smartphone

camera (48). This supports the use of PPG as a foundation forHRVB.

In this study, we investigated the novel application of a 4-week

smartphone-based HRVB intervention using PPG via smartphone

camera instead of an external device for alleviating depressive and

premenstrual symptoms. Our sample comprised young adults who

either exhibited above-average PMS or depressive symptoms.

Additionally, we examined the impact of the intervention on various

other outcomes, including anxiety and stress symptoms, attentional

control, and vmHRV. Our hypotheses were as follows: After a

4-week smartphone-based HRVB intervention using PPG,

premenstrual symptoms (H1), depressive symptoms (H2), and

anxiety/stress symptoms (H3) will be reduced, while no changes will

be observed during a 4-week waitlist period. Additionally, vmHRV

(H4) and attentional control (Orienting attention component H5a

and Executive Functioning attention component H5b) will improve

during a 4-week smartphone-based HRVB intervention using PPG,

while no changes will be observed during a 4-week waitlist period.
2 Methods

2.1 Participants

A G*Power analysis revealed that a sample size of 40 was

necessary to detect an effect size of.4, based on a meta-analytic

effect of HRVBFB on depressive symptoms reported by Pizzoli

et al. (3), with a power of .8 and a one-tailed alpha error
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probability of .05. However, due to recruitment difficulties and

resourcing issues by the company providing the app during the

extended recruitment period, we were unable to reach our target

of 40 participants.

Twenty-nine participants were recruited from the student

population of the University of Potsdam for this study.

Recruitment was carried out via the online recruiting platform for

study participants of the cognitive sciences (Sona Systems, https://

www.sona-systems.com) of University Potsdam as well as via flyers

on campus and advertisement in university mailing lists. Inclusion

criteria required participants to have either above-average

premenstrual symptomatology (short version Premenstrual

Assessment Form, PAF20≥ 50), depressive symptoms that indicate

at least minimal depression (Beck’s Depression Inventory, BDI-

II≥ 9), or both. Participants who exceeded a BDI-II score of 14

received a consultation with a clinical psychologist to discuss

possible necessary treatment prior to study participation.

Exclusion criteria included factors proposed by Laborde et al.

(49) such as pregnancy, heart rate-altering chronic diseases or

medication. We additionally excluded competitive athletes to

avoid ceiling effects, since this population has systematically

increased vmHRV (50). Participants currently in any treatment

or planning significant lifestyle changes during the period of

study participation were also excluded. In addition, participants

were required to be at least 18 years of age.

All participants provided informed consent prior to their

inclusion for a study protocol approved by the ethics committee

of the University of Potsdam (No. 30/2022). Participants who

met the inclusion criteria were eligible for study participation

and received either course credits or monetary compensation.
2.2 Procedure

The studyprotocolwas preregistered onOpen Science Framework

(osf.io/68fzq). The study procedure began with an online screening

questionnaire to determine eligibility based on inclusion and

exclusion criteria, as well as to assess sociodemographic factors such

as age, gender, study program, and BMI. Participants were also

required to provide information about their menstrual cycle to

ensure that the appropriate questionnaires were administered.

Additionally, participants were asked to provide their email address

for communication throughout the study.

All eligible participants took part in a 4-week biofeedback

intervention during which they practiced smartphone-based

HRVB for at least 5 min every day. After the first and second

week, participants additionally received an online coaching

session to improve their technique and address any technical or

other difficulty they encountered.

Before and after the 4-week intervention, participants completed

laboratory sessions that were scheduled at the same time, exactly 4

weeks apart (T1 and T5). During these sessions, various measures

were collected, including vagally mediated heart rate variability by

ECG, attentional control using the reaction time paradigm ANT-R

(24), and self-reported symptoms of depression, premenstrual

syndrome (PMS), and anxiety/stress via questionnaires.
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To ensure balanced allocation of participants to the waitlist

group, half of the participants within each group of inclusion

criteria (depression, PMS, or both) were pseudo-randomly

assigned to the waitlist group. For each inclusion criterion, blocks

of 8 group assignments (waitlist/intervention), counterbalanced

with the block order of the ANT-R, attached to a participant

code, were shuffled and then consecutively assigned to the

recruited participants. The creation of the allocation sequence

was conducted by the first author. The recruitment and

assignment of participant codes, and thus group assignment,

were carried out by the staff members conducting the

investigation. The waitlist group additionally completed a

laboratory session four weeks prior to study inclusion, during

which the same parameters were assessed (W1).

Throughout the study, participants completed short versions of

the depressive and premenstrual symptom questionnaires and

underwent a photoplethysmography based HRV measurement at

home using the biofeedback app, each week on the same day and

at the same time that they chose (W2-W4 and T2-T4).

Participants received automated email reminders and a link to

the respective questionnaire to ensure compliance. The results of

these measurements are not analysed and reported in this report

in order to maintain clarity and comprehensiveness in the

manuscript. Figure 1 provides an overview of the study procedure.

All participants received an introduction to smartphone-based

HRVB (app provided by Kenkou GmbH) followed by a training

period during T1. The waitlist group received a tutorial on
FIGURE 1

Study procedure. SocDem, sociodemographic information; PAF10, premens
form 20 item version; BDI-II, Beck’s depression inventory; BDI-FS, Beck’s de
DASS, Depression Anxiety Stress Scale; HRV ECG, heart rate variability meas
home on phone (photoplethysmography); W, week.
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conducting vmHRV measurements at home with the app during

W1, while the intervention-only group received this tutorial

during T1. Participants were blinded to the intervention allocation

during the first session until all measurements were taken.

Since PMS occurs only once during eachmenstrual cycle, and cycle

lengths can vary significantly both between and within individuals, we

included a follow-up measurement of the online questionnaire

4 weeks after T5. If a participant reported no new menstruation onset

during the last two weeks of the intervention, indicating no new

premenstrual phase, we used the PMS values reported in the follow-

up measurement as the post-intervention values, describing the next

premenstrual phase after completing the intervention.
2.3 Smartphone-based heart rate variability
biofeedback

The HRVB intervention used in this study was app-based and

built with the software development kit (SDK) provided by Kenkou

GmbH. The app measured HRV via photoplethysmography (PPG),

whereby participants placed their index finger on the camera lens

and a flash was used to illuminate the tissue. The camera

measured the intensity of blood flow, and a peak detection

algorithm was used to detect heartbeats.

Before each biofeedback session, participants underwent a

1-min baseline measurement to assess their current state, which

allowed the feedback to be adjusted accordingly. During all
trual assessment form 10 item version; PAF20, premenstrual assessment
pression inventory short version; ANT-R, attention network test-revised;
urement in lab (electrocardiography); HRV basic, measurement at rest at
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FIGURE 2

Screenshots of the HRVB application. For the biofeedback, the current respiratory sinus arrhythmia, measured through photoplethysmography using
the device’s integrated camera, was represented as a blue line. A dynamic expanding and contracting circle visually represented the paced breathing
rhythm at a frequency of 0.1 Hz. This frequency was further depicted by gray sinusoidal waves in the background, behind the measured heart rate
oscillations.
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measurements, automated quality assessment provided feedback

on the quality of the PPG signal. If measurement quality was

too low, the recording was paused and the participant received

instructions on how to improve the signal in the app. During

the biofeedback session, participants saw a growing and

shrinking circle indicating the breathing rhythm at 0.1 Hz. A

fixed sinus-like wave was also displayed at the frequency of the

paced breathing, and the pulse rate over time was mapped on

top of this. Participants were instructed that the two waves

would converge more as they relaxed. After the HRVB exercise,

the user was given feedback on HRV improvement during the

exercise to increase motivation. Screenshots of the app can be

seen in Figure 2.

The experimenter provided approximately 15 min of instructions

toparticipants onhow touse the appandhow the biofeedbackworked.

Participants were coached on how to engage in relaxed slow-paced

breathing. They were instructed to practice at least 5 min daily for

the next 4 weeks, with the option to practice for longer periods of

time if desired. Participants were also informed that more practice

would likely lead to greater benefits.

Three participants encountered technical difficulties while

running the application on their devices. To ensure their

participation in the intervention, they were provided with an
Frontiers in Digital Health 05
alternative mobile HRVB system (“Qiu” by Biosign®, D-85570,

Ottenhofen, Germany).
2.4 Outcome measures

2.4.1 Premenstrual assessment form (short form)
The short form of the Premenstrual Assessment Form (PAF20)

is a retrospective instrument that assesses PMS symptoms during

the last premenstrual phase (26). It was derived from the 20 most

endorsed items of the long form PAF, which includes almost 100

items (51). Each item represents one premenstrual symptom, for

which the participant must indicate how strongly they experienced it

during the last cycle on a 6-point Likert scale from 1 (not at all/no

change) to 6 (extreme change). The German translation of the PAF-

20 shows good internal consistency and reliability and loads on two

factors, indicating a psychological and physiological subscale (52).

The 10-itemversion (PAF-10)was constructed using the itemswith

the highest factor loadings and shows a very high correlation with the

PAF-20 (52). To assess the fluctuations of symptoms throughout the

cycle and approximate a prospective assessment, the participants

filled out the PAF-10 once a week with altered instructions, asking for

a report of the 10 symptoms during the last week.
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2.4.2 Becks depression inventory
The Beck Depression Inventory II (BDI-II) is a widely used

questionnaire that assesses the severity of depressive symptoms. It

consists of 21 items, each containing four statements about depressive

symptoms ranging from 0 (normal) to 3 (most severe). The total

maximum score is 63. The BDI-II has good psychometric properties,

including high internal consistency, test-retest reliability, and

concurrent and discriminant validity. Additionally, the questionnaire

has been translated into multiple languages and is widely used in

clinical and research settings to assess depression severity, monitor

treatment progress, and evaluate outcomes. Previous studies have also

shown that the BDI-II has good discrimination between patients with

varying degrees of depression and accurately reflects changes in

depression intensity over time (53, 54).

The Fast Screen Version of the Becks Depression Inventory

(BDI-FS) was developed as a short form to allow for

parsimonious screenings, e.g., in research settings. It includes

seven items and is based on the DSM-5 criteria for depression,

clinical importance, and factor loadings (55).
2.4.3 Depression Anxiety Stress Scale
The German version of the Depression Anxiety and Stress

Scale (DASS), developed by Henry and Crawford (56) and based

on the original version by Lovibond and Lovibond (57), was

employed for data collection. The DASS-21, a shortened version

of the scale, consists of 21 statements that assess three distinct

subscales: depression, anxiety, and stress.

Participants were asked to rate the extent to which each

statement applied to them during the designated period using

Likert scales ranging from 0 to 3. Higher scores on the DASS-21

indicate elevated levels of depressive symptoms, anxiety, and stress.

The internal consistency of the DASS-21 was found to be

satisfactory, with a Cronbach’s α coefficient of 0.89 (58). The

DASS-21 was selected as an outcome measure in this study

based on its consistent effects in biofeedback interventions, as

demonstrated in prior research (2).
2.4.4 Vagally mediated heart rate variability
Resting vmHRV was determined using the BioSign software

and hardware (“HRV-Scanner”; Biosign®, D-85570, Ottenhofen,

Germany). Participants had been sitting down for at least 15 min

before the measurement. The measurement was taken in a sitting

position. Participants were instructed to sit comfortably, place

their feet side by side on the floor, close their eyes, and were told

that they didn’t have to pay attention to anything in particular.

Following the recommendations by Laborde et al. (49), the

measurement had a duration of 5 min.

HRV was measured by a one-lead electrocardiogram (ECG)

through two surface sensors attached to the right and left wrists

of the participant. The device worked with a sampling rate of

500 Hz and a 16-bit resolution. Artifacts and abnormal beats

were filtered in a two-step process following the software

documentation (59). First, the HRV Scanner software

automatically marked areas of the heart rate curve that included

implausible changes in heart rate (through the division of the
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heart rate curve into small segments and a subsequent scan of

each segment). This process was based on an algorithm patented

by the BioSign company that identifies outliers in a Poincaré plot,

where each RR interval is plotted against the previous RR interval.

Working with these recognized areas of possible disturbances,

in the second step, the R-spike recognition was manually

assessed and corrected, and artifacts (e.g., due to movement)

were removed. After the two-step process, the data quality was

excellent, with less than 0.1% artifacts per measurement on average.

Participants additionally conducted short resting vmHRV

measurements through the app using PPG, as described above, once

a week. These measurements lasted one minute, and participants

were instructed to take these measurements each week on the same

day, at the same time, and in the same place, ensuring they would

not be disturbed. They were also instructed to sit comfortably and

close their eyes during the measurement, similar to the way they

were during the ECG measurement in the laboratory.

We used the root mean square of successive differences

(RMSSD) as a measure for vagally mediated heart rate variability.

This choice was due to its indication of parasympathetic output

and robustness to influences of breathing rate (60).

2.4.5 Attentional network test revised
We employed the ANT-R, developed by Fan et al. (24), as a

measure of attentional control. This task is reaction time task

and was designed as a combination of the Eriksen flanker task

(61) and the Posner cueing task (62).

During the ANT-R, participants were presented with a grey

background and a black horizontal arrow. Their task was to

indicate the direction of the arrow by pressing the corresponding

button with their left or right index finger.

The ANT-R task consists of a total of 288 trials, divided into

two identical runs of 144 trials each. The duration of the entire

test is approximately 30 min. Previous studies have demonstrated

good split-half reliability in the Executive (r = .74) and Orienting

network scores (r = .70) (63). To reduce participant burden, only

one run was completed per session.

The task was administered using the Presentation® software

(Neurobehavioral Systems, Inc.) on a 24-inch screen positioned

80 cm away from the participants. Before the main task,

participants completed 6 practice trials with feedback and 32

practice trials without feedback. Written and visual instructions

were provided prior to the practice trials.

During the main task, participants were required to achieve a

minimum accuracy of 80%. On average, participants reached an

accuracy rate of 95% in the main task block.
2.5 Statistical analysis

All analyses were conducted using R (version 4.2.2). A linear

mixed model was calculated for each target variable, with data

points clustered per participant by introducing participant

intercepts as random effects. When applicable, items were also

included as random effects. The fixed effects included in the model

were TIME point, TREATMENT, the TREATMENT * TIME
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TABLE 1 Sample description.

Group waitlist
(n = 13)

Group only
intervention (n = 14)

Mean ±
SD

Range Mean ±
SD

Range

Age 25.3 ± 7.0 18–37 22.6 ± 2.8 19–27

BMI in kg/m2 22.9 ± 4.5 18.3–32.2 22.9 ± 3.6 18.4–29.4

Gender 12f, 1m 14f

Active menstrual cycle 11 yes, 2 no 14 yes

HC usage 36.4% 42.9%

PAF sum 54.7 ± 13.4 23–70 57.4 ± 20.2 19–93

BDI-II sum 12.9 ± 7.2 0–27 13.4 ± 8.0 2–30

Inclusion criterium 4 BDI, 4 PAF, 5 both 4 BDI, 4 PAF, 6 both

DASS sum 34.1 ± 7,1 27–54 40.5 ± 8.3 25–50

RMSSD in ms 37.0 ± 10.9 19.6–51.5 41.9 ± 30.1 18.7–128.9

ANT-R executive in ms 148.1 ± 56.8 76.7–291.3 129.2 ± 39.1 80.8–194.9

ANT-R orienting in ms 85.0 ± 37.3 36.3–149.6 120.6 ± 35.1 46.7–183.8

The DASS, RMSSD, and ANT-R values were obtained during the first laboratory

session of each participant. All other values were assessed during the screening.

SD, standard deviation; BMI, body-mass-index; HC, hormonal contraceptives;

PAF, premenstrual assessment form; BDI-II, Becks Depression Inventory; DASS,

depression anxiety stress scales; RMSSD, root mean square of successive

differences; ANT-R, revised attention network test.
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interaction, and control variables (AGE, GENDER, BMI, RMSSD),

along with exploratory three-way interactions involving potential

mediators of the main TREATMENT * TIME effect.

A model selection process was applied to each analysis, with

predictors being consecutively added to the model. Likelihood Ratio

Testing compared the goodness of fit of each model to the next

simpler one, and predictors were retained if they improved the

model’s fit.

The main hypotheses were tested with TREATMENT * TIME

interactions in the respective model. The hypothesis was considered

accepted if the interaction term was included in the final model, a

significant predictor, and the effect aligned with the expected

direction. Post hoc comparisons and plots of the interaction effects

were used to verify the expected direction of the effects.

As this study was a randomized controlled trial (RCT) with a

waiting-list control group, the analyses included post-treatment

data from the control group. Therefore, the post-treatment data

points of the control group were classified into the post-

treatment intervention group.

The same procedure was applied for reaction time data,

involving three-way interactions instead of two-way interactions.

These three-way interactions included TREATMENT, TIME, and

FLANKER or CUE condition for the Executive and Orienting

Network performance, respectively.
3 Results

3.1 Descriptive statistics

Out of the 29 participants initially included in the study, 27

attended at least the first session and were included in the

analyses. However, an additional 3 participants dropped out after

the first and before the last session, resulting in 24 participants
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who completed the study entirely. Recruitment and testing were

carried out between December 2022 and October 2023. Table 1

provides a description of the groups that underwent only the

intervention and those who completed both the waitlist and

intervention protocols.

There were 8 participants who were included due to elevated

BDI measures, 8 due to elevated PAF20 measures, and 11

participants who fulfilled both inclusion criteria. Participants

included due to PAF20 and BDI did not differ significantly in

BDI values, t(14) = 1.32, p = .21, but did differ in PAF20 values,

t(11) = 3.5, p < .01. Because the overall sample size was fairly

small and because of the pilot nature of the study, we decided to

include all participants in all analyses.

Three participants had to use the alternative HRVB system

(“Qiu”) due to outdated OS versions on their phones. None of

the results changed effect directions or significance levels when

excluding these participants. A descriptive comparison of App

and Qiu user outcomes as well as the main analysis results

without the Qiu users can be found in the Supplementary S2.
3.2 Study compliance

Within the participants who completed the study, the mean

practice frequency was 23.7 times, with a median of 24.5. The

minimum practice frequency was 13 times, and the maximum

was 51, with one practice session including 5 min of biofeedback.
3.3 Premenstrual symptoms

Out of 21 PAF20 post values recorded for the T5 measurement,

9 were replaced with the follow-up measurements. This occurred

because there was either no premenstrual phase during the

intervention period or the premenstrual phase occurred during

the first two weeks of the intervention phase.

The final model for predicting premenstrual symptoms

incorporated the TREATMENT and TIME variables along with

their interaction. Furthermore, it included the SCALE of the

PAF20 questionnaire to which each symptom belonged

(psychological vs. physiological symptoms) and its interaction

with the TREATMENT * TIME interaction (see Table 2). The

final model was:

Value∼ treatment * time + scale + treatment:time:scale +

(1|vpn) + (1|item).

Post hoc Tukey testing of the two-way interaction

TREATMENT * TIME revealed a significant improvement in the

intervention group, d =−0.30, tratio (1,258) =−5.89, p < .001,

whereas there was no significant pre-post difference in the

waitlist group, d = 0.10, tratio (1,252) = 1.35, p = .18 (see Figure 3).

When SCALE was included in the interaction, it showed that the

improvement in the intervention group was larger for

psychological scale items (dpsych =−0.42) than for physiological

scale items (dphysio =−0.19), with both improvements being

significant. Detailed post hoc testing results for the TIME *

TREATMENT * SCALE interaction can be found in Table 3.
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TABLE 2 Results of a linear mixed model predicting premenstrual
symptoms.

Predictors Value PAF20 item

Estimates CI p
(Intercept) 2.92 2.44 to 3.40 <0.001

Group [W] −0.28 −0.50 to −0.07 0.010

Time −0.30 −0.54 to −0.07 0.012

Scale [psy] 1.08 0.61 to 1.56 <0.001

Group [W] * time 0.40 0.03 to 0.78 0.034

[Group (I) * time] * scale [psy] −0.36 −0.65 to −0.06 0.017

[Group (W) * time]* scale [psy] 0.13 −0.26 to 0.51 0.520

Random effects
σ2 1.40

τ00 participant 0.58

τ00 item 0.24

ICC 0.37

Nparticipant 24

Nitem 20

Observations 1,300

Marginal R2/Conditional R2 0.116/0.442

P-values printed in bold indicate significant effects.

The random effect structure includes participant intercepts and item intercepts.

PAF20 – premenstrual assessment form short version; group – treatment

(biofeedback vs. waitlist); W – waitlist; I – intervention (biofeedback); psy –

psychological symptoms.

TABLE 3 Post hoc tukey effects of time*treatment*scale interaction term
predicting premenstrual symptoms.

Scale Diff p
Waitlist Physio 0.06 .54

Psych 0.14 .11

Intervention Physio −0.19 .012

Psych −0.42 <.0001

P-values printed in bold indicate significant effects.

Diff – standardized pre-post treatment difference; psych – psychological

symptoms; physio – physiological symptoms.
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3.4 Depressive symptoms

The final model predicting depressive symptoms included only

TREATMENT and TIME, as well as their interaction as fixed

effects (see Table 4). The model was the following:

Value∼ treatment*time + (1|vpn) + (1|item).
FIGURE 3

Course of premenstrual symptoms. Colored lines indicate individual
participants. Black lines indicate the predicted interaction effect based
on the mixed effect model depicted in Table 2. The waitlist period
occurred between sessions W1 and T1, while the heart rate variability
biofeedback intervention period took place between T1 and T5. PAF,
premenstrual assessment form; ***, p < .001; ns, not significant.
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A post hoc Tukey test of the interaction showed that symptom

scores significantly improved in the intervention period, d =−0.25,
tratio (1,576) =−4.71, p < .001, but not in the wait-list period,

d = 0.05, tratio (1,567) = 0.73, p = .46 (see Figure 4).
3.5 Stress and anxiety

The best model predicting DASS values included the RMSSD

and the DASS SCALE (anxiety, stress or depression) on top of

TREATMENT, TIME and their interaction (see Table 5). There

was no three-way interaction of TREATMENT * TIME * SCALE.

The model was:

Value∼ treatment*time + scale + RMSSD + (1|vpn) + (1|item).

Post hoc Tukey testing of the TREATMENT * TIME interactions

showed a significant improvement in the intervention period,

d =−0.19, tratio (1,573) =−3.88, p < .001, but not in the waitlist

period, d = 0.09, tratio (1,567) = 1.37, p = .17 (see Figure 5).
3.6 Heart rate variability

The RMSSD was log-transformed to approximate a normal

distribution, aligning it with the methodology used in other vmHRV

research studies. Two participants had to be excluded from the post

measurement, as they had acute respiratory tract infections.
TABLE 4 Results of a linear mixed model predicting depressive symptoms.

Predictors Value BDI item

Estimates CI p
(Intercept) 1.69 0.54 to 0.83 <0.001

Group [W] −0.09 −0.18 to 0.00 0.054

Time −0.17 −0.24 to −0.10 <0.001

Group [W] * time 0.21 0.09 to 0.33 0.001

Random effects
σ2 0.34

τ00 participant 0.10

τ00 item 0.03

ICC 0.27

Nparticipant 27

Nitem 21

Observations 1,617

Marginal R2/Conditional R2 0.010/0.281

P-values printed in bold indicate significant effects.

The random effect structure includes participant intercepts and item intercepts.

BDI – Beck’s Depression Inventory II; group – treatment (biofeedback vs.

waitlist); W – waitlist.
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FIGURE 4

Course of depressive symptoms. Colored lines indicate individual
participants. Black lines indicate the predicted interaction effect
based on the mixed effect model depicted in Table 4. The waitlist
period occurred between sessions W1 and T1, while the heart rate
variability biofeedback intervention period took place between T1 and
T5. BDI, Beck’s Depression Inventory II; ***, p < .001; ns, not significant.

FIGURE 5

Course of anxiety/stress symptoms. Colored lines indicate individual
participants. Black lines indicate the predicted interaction effect
based on the mixed effect model depicted in Table 5. The waitlist
period occurred between sessions W1 and T1, while the heart rate
variability biofeedback intervention period took place between T1
and T5. DASS, Depression Anxiety and Stress Scales; ***, p < .001;
ns, not significant.
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The final model predicting the log(RMSSD) included only

TREATMENT, TIME and the TREATMENT * TIME interaction

as fixed effects (see Table 6).

Value∼ treatment*time + (1|vpn) + (1|item).

None of the fixed effects were significant predictors. A post hoc

Tukey test of the interaction confirmed no significant improvement
TABLE 5 Results of a linear mixed model predicting stress/anxiety
symptoms.

Predictors Value DASS item

Estimates CI p
(Intercept) 1.12 0.64 to 1.60 <0.001

Time −0.14 −0.22 to −0.07 <0.001

Group [W] −0.11 −0.20 to −0.01 0.023

Scale [D] 0.11 −0.19 to 0.40 0.466

Scale [S] 0.44 0.15 to 0.74 0.003

rmssd 0.14 0.03 to 0.26 0.015

Time * group [W] 0.21 0.09 to 0.34 0.001

Random effects
σ2 0.35

τ00 participant 0.14

τ00 item 0.07

ICC 0.39

Nparticipant 27

Nitem 21

Observations 1,617

Marginal R2/Conditional R2 0.074/0.432

P-values printed in bold indicate significant effects.

The random effect structure includes participant intercepts and item intercepts.

DASS – Depression Anxiety and Stress Scale; group – treatment (biofeedback vs.

waitlist); W – waitlist; D – depression scale; S – stress scale; RMSSD – root

mean square of successive differences.
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in the intervention group, d = 0.11, tratio (44) = 0.66, p = .51, and no

significant pre-post difference in the waitlist group, d =−0.14, tratio
(43) = 0.61, p = .55 (see Figure 6).
3.7 Attentional control

The reaction time prediction model included main effects for

TIME, TREATMENT, CUE, and FLANKER. Additionally, two

three-way interactions were included—TREATMENT * TIME *

CUE and TREATMENT * TIME * FLANKER. Both of these
TABLE 6 Results of a linear mixed model predicting vagally mediated
heart rate variability.

Predictors log(RMSSD in ms)

Estimates CI p
(Intercept) 3.53 3.32 to 3.75 <0.001

group [W] 0.07 −0.15 to 0.29 0.546

time 0.06 −0.12 to 0.23 0.509

group [W] * time −0.13 −0.42 to 0.16 0.381

Random effects
σ2 0.08

τ00 participant 0.21

ICC 0.71

Nparticipant 25

Observations 71

Marginal R2/Conditional R2 0.003/0.711

P-values printed in bold indicate significant effects.

The random effect structure includes participant intercepts. RMSSD – root mean

square of successive differences; group – treatment (biofeedback vs. waitlist); W

– waitlist.
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FIGURE 6

Course of vagally mediated heart rate variability. Colored lines
indicate individual participants. Black lines indicate the predicted
interaction effect based on the mixed effect model depicted in
Table 6. The waitlist period occurred between sessions W1 and T1,
while the heart rate variability biofeedback intervention period took
place between T1 and T5. RMSSD, root mean square of successive
differences; ns, not significant.
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three-way interactions revealed significant terms in the model

(see Table 7).

Reaction Time∼ treatment:time:cue + treatment:time:flanker

+ time + treatment + cue + flanker + (1|vpn)

+ (1|item).
TABLE 7 Results of a linear mixed model predicting attentional control.

Predictors Reaction time

Estimates CI p
(Intercept) 600.31 574.20 to 626.41 <0.001

Time −37.63 −49.22 to −26.05 <0.001

Group [W] 39.00 31.02 to 46.99 <0.001

Flanker [incongruent] 130.14 123.20 to 137.08 <0.001

Cue [valid] −98.44 −106.51 to −90.37 <0.001

Time × group [I] × cue [invalid] 45.56 28.15 to 62.97 <0.001

Time × group [W] ×cue [invalid] −0.22 −16.33 to 15.89 0.978

Time × group [I] × cue [valid] 41.09 27.57 to 54.61 <0.001

Time × group [I] × flanker
[incongruent]

−26.57 −37.90 to −15.25 <0.001

Time × group [W] × flanker
[incongruent]

−9.44 −23.31 to 4.43 0.182

Random effects
σ2 11,369.21

τ00 participant 4,325.41

ICC 0.28

Nparticipant 27

Observations 7,040

Marginal R2/Conditional R2 0.267/0.469

P-values printed in bold indicate significant effects.

The model predicts trial-based prediction times of the revised attention network

test. The random effect structure includes participant intercepts. Group –

treatment (biofeedback vs. waitlist); W – waitlist; I – intervention (biofeedback).
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We used linear trend estimates from the emmeans package

(v1.8.8) to compare valid vs. invalid (cue) and congruent vs.

incongruent (flanker) slopes in each pre-post comparison. This

approximated the original score calculations. Significant

differences in slopes indicate changes in the Orienting Score

(invalid vs. valid cue trials) or Executive Score (incongruent vs.

congruent flanker trials) between pre and post-assessment.

In the TIME * TREATMENT * CUE interaction, there were no

significant differences in pre-post slopes between valid and invalid

trials during both the intervention period, d =−0.03, zratio =−0.67,
p = .91, and the waitlist period, d = 0.00, zratio = 0.03, p = 1,

(see Figure 7A).

In the TIME * TREATMENT * FLANKER interaction, there

was a significant difference in pre-post slopes between congruent

and incongruent trials during the intervention period, d =−0.18,
zratio =−4.60, p < .001, but no difference in the waitlist period, d

=−0.06, zratio =−1.34, p = .54. The effect in the intervention

period indicated less difference between valid and invalid trials

post-treatment compared to pre-treatment, equivalent to better

Executive Scores (see Figure 7B).
4 Discussion

In this study, we investigated the impact of a 4-week

photoplethysmography smartphone-based HRVB intervention on

premenstrual and depressive symptoms using a waitlist-control

design. Additionally, we assessed its effects on stress symptoms,

vmHRV, and attentional control. Our findings revealed

improvements in premenstrual, depressive, and stress symptoms

following the intervention, with no significant changes observed

during the waitlist period. These results confirmed our first three

hypotheses (H1-H3). However, we did not observe any effects on

vmHRV, and the results for attentional control were mixed. We

therefore had to reject hypothesis H4 (no improvements in

vmHRV) and H5a (no improvements in Orienting attentional

control) in this current sample, while accepting H5b

(immprovements in Executive Functioning attentional control).

The positive effects on premenstrual, depressive, anxiety, and

stress symptoms found in our study highlight the feasibility and

effectiveness of a smartphone-based HRVB intervention without

the need for external devices. Laborde et al. (64) reported similar

effects of a slow-paced breathing intervention, whether or not

visual feedback on current HRV was provided. This suggests that

slow-paced breathing is the primary driver of the intervention’s

effectiveness. However, learning the technique of abdominal

slow-paced breathing, which allows for a relaxed resonance

frequency activation, can be challenging. The drastically slowed-

down breathing can be uncomfortable and may even lead to

hyperventilation (65). Providing visual feedback on respiratory

sinus arrhythmia can assist users in correctly employing the

method at home without extensive training. Moreover, this

biofeedback feature can enhance user engagement with the app,

as it offers immediate visual results of the breathing intervention,

providing a sense of immediate gratification. Essentially, this

form of feedback incorporates a simplified version of
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FIGURE 7

Course of attentional control. Colored lines indicate individual participants. Black lines indicate the predicted interaction effect based on the mixed
effect model depicted in Table 5. The waitlist period occurred between sessions W1 and T1, while the heart rate variability biofeedback
intervention period took place between T1 and T5. (A) Orienting Score—(reaction time incongruent spatial cues—reaction time congruent spatial cues); (B)
Executive Score—(reaction time invalid flankers—reaction time valid flankers). ***, p < .001; ns, not significant.
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gamification into the intervention, which can increase motivation

and engagement (66).

Our primary objective was to investigate whether HRVB could

help alleviate PMS symptoms. We observed a significant

improvement in the premenstrual phase following 2–4 weeks of

HRVB practice compared to the preceding cycle in which no

HRVB was practiced. The effect size we observed is

approximately 0.3, with a slightly larger effect of 0.4 in the

psychological symptom scale. In this context, the effect size is

similar to the moderate effect size found in meta-analyses of

depressive symptoms (3). This finding supports the notion that

PMS may result from an altered reactivity within the ALLO/

GABA system (27), affecting the CAN as proposed by Thayer

and Lane (11). Consequently, interventions designed to target the

interconnectivity and functional capacity of the CAN may hold

promise in improving PMS symptoms.

However, further studies with expanded paradigms are needed

to determine whether this effect is mediated by a reduction in stress

throughout the menstrual cycle or by an increase in the capacity of

the CAN, which may buffer modulatory fluctuations throughout

the cycle. It also remains unclear whether there is a critical phase

in the menstrual cycle when HRVB has a more significant

impact on subsequent premenstrual symptoms. It is possible that

practicing HRVB throughout the preceding follicular phase

reduces chronic stress (2) and, consequently, chronic ALLO

exposure. This prolonged exposure has been suggested to

contribute to atypical GABA receptor reactivity to ALLO
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fluctuations later in the cycle, which is assumed to cause PMS

(27). Another possibility is that during the premenstrual phase,

the acute stress-relieving effects [see e.g., (67, 68)] of HRVB

directly alleviate the symptom burden.

Independently of mechanisms of action, HRVB is an easily

learned intervention with minimal to no side effects, offering

PMS sufferers an opportunity to enhance their symptom

management self-efficacy. Furthermore, it can lower the

threshold for receiving treatment. When delivered through a

smartphone application, it becomes even more accessible and, if

its effectiveness is established, can be seamlessly integrated into

widely used menstrual cycle-related health apps.

Our results also demonstrated improvements in depressive

symptoms, as well as anxiety and stress symptoms, through the

smartphone-based HRVB intervention. This aligns with prior

research using other HRVB intervention methods (2, 3),

although the effects we observed are somewhat smaller than the

meta-analytic effects on depression and anxiety/stress. This

discrepancy may be due to ceiling effects. The majority of studies

investigating HRVB effects typically focus on clinical populations

with very high values in the respective outcome measures. Our

inclusion criteria, on the other hand, involved individuals with

above-average PMS symptoms or slightly elevated depressive

symptoms. 30% of the participants were included in our study

due to only PMS symptoms. While clinically significant affective

premenstrual symptoms (premenstrual dysphoric disorder) are

often comorbid with anxiety and depression (69), our subclinical
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sample likely had lower baseline scores in both BDI-II and DASS

values compared to the samples in most studies included in the

meta-analysis. This could account for the slightly smaller effect

sizes observed in our study.

We did not observe improvements in vmHRV (RMSSD)

following the HRVB intervention. Contrary to our findings,

Laborde et al. (10) reported consistent elevations in vmHRV

parameters after HRVB and slow-paced breathing interventions

in their meta-analysis. The effect size for this improvement was

approximately Hedges’ g = 0.3. Notably, this effect size is smaller

than the meta-analytic effect sizes for depressive symptoms

[g = 0.4; (3)] or anxiety/stress [g = 0.8; (2)]. These findings

suggest that improvements in vmHRV alone do not fully account

for the observed affective and cognitive effects. This is consistent

with other findings that demonstrate physiological and clinical

outcomes do not always change simultaneously in HRVB (70).

Critically, our study may not have detected this effect due to its

relatively small sample size. A G*Power analysis indicates that a

sample size of more than 70 would be required to replicate the

effect of 0.3 with a power of.8. Our sample size was significantly

below this threshold. The reason why effects were found in other

outcome measures lies in the advantage of mixed model analysis,

which allows us to include each item/trial individually without

the need to condense the information into a composite score.

This significantly increases the number of data points included,

by 20 to 144 times, depending on the measurement. However, in

the case of vmHRV, it is necessary compute a single value per

measurement, which drastically reduces statistical power. This

suggests the possibility that HRVB may have had a beneficial

impact on vmHRV, but our study may have been underpowered

to detect this effect.

The influence of the HRVB on the attentional control domains

yielded mixed results. We chose to employ the Executive and

Orienting Scores of the ANT-R as outcome measures, given their

documented correlations with vmHRV (23, 71–73). Interestingly,

despite previous studies (71, 73) indicating a stronger association

between the Orienting Score and vmHRV (compared to the

Executive Score vmHRV association), we did not observe any

improvements in this measure. However, we did find

enhancements in the Executive Score following the intervention

period. These varying outcomes align with the findings of a

meta-analysis conducted by Tinello et al. (22), who reported

positive effects of HRVB on Executive Functions in

approximately half of the studies they reviewed, with a slightly

higher likelihood of effects in the attention domain. This

highlights the need for further research to elucidate the specific

impact of HRVB on cognitive outcomes.

Although we found significant beneficial effects of smartphone-

based HRVB on several mental health and some cognitive

outcomes, our study has several limitations that need to be

considered. Firstly, the most notable limitation is our small

sample size. Although linear mixed model analyses help to

overcome the limited statistical power due to small samples by

including individual items/trials in the analysis, it is important to

interpret the results and their applicability to larger populations

with caution. This is a major weakness of the study, and
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therefore it is crucial that the results are replicated in a larger

sample to confirm the effects. Additionally, a part of the sample

(3 participants) had to use alternative HRVB systems due to

outdated OS versions. Although the significance and direction of

the effects did not change when excluding those data points (see

Supplementary S2), this further reduces the interpretability of the

effects concerning PPG and smartphone-based HRVB

effectiveness. Another limitation is related to the passive control

group, which has methodological weaknesses. In future studies, it

would be beneficial to implement active control groups to better

distinguish the intervention’s effects from any potential placebo

effects. Additionally, we did not conduct clinical assessments of

PMS or depression. However, it is essential to note that our

study was not aimed at identifying treatments for a clinically

relevant premenstrual dysphoric disorder. Instead, our primary

focus was on investigating a user-friendly intervention to help

individuals self-manage premenstrual symptoms, regardless of

their severity levels. Furthermore, our study included participants

regardless of their use of hormonal contraceptives and

their current menstrual cycle phase. For future studies, it is

advisable to standardize these criteria to ensure a more

consistent assessment.
5 Conclusion

In summary, smartphone-based HRVB has proven to be

effective in enhancing both emotional and cognitive well-being,

without the need for external devices. This intervention holds

promise as a novel approach for self-managing premenstrual

symptoms and provides a more accessible solution for harnessing

the known benefits of HRVB for depressive, stress, and anxiety

symptoms, as well as certain aspects of attention.
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