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A fundamental challenge for personalized medicine is to capture enough of the
complexity of an individual patient to determine an optimal way to keep them
healthy or restore their health. This will require personalized computational
models of sufficient resolution and with enough mechanistic information to
provide actionable information to the clinician. Such personalized models are
increasingly referred to as medical digital twins. Digital twin technology for
health applications is still in its infancy, and extensive research and
development is required. This article focuses on several projects in different
stages of development that can lead to specific—and practical–medical digital
twins or digital twin modeling platforms. It emerged from a two-day forum on
problems related to medical digital twins, particularly those involving an
immune system component. Open access video recordings of the forum
discussions are available.
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Introduction

The vision at the heart of personalized medicine is to design and implement

customized approaches to keep individuals healthy and how to restore their health

when it is compromised. This requires that we can quantify the differences between

individuals that account for their health status in relation to their biological makeup, as
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well as the cumulative influences they are subjected to in their

environment. Furthermore, we must also quantify their

individual response to any therapeutic interventions over time.

The only systematic way to accomplish this is to use

computational models that can be personalized to an individual

patient and can be dynamically recalibrated to reflect changes

over time. Such models have become known as medical digital

twins (MDTs). See Figure 1 for a workflow schematic of medical

digital twin development. If we want to predict the individual

response to treatment or develop novel drugs and other

interventions, then these models need to be able to capture

mechanisms and the effects of perturbing them. Given their use

in patient treatment, requirements for model validation are much

more stringent than for models used to discover new biology. See

(1) for a detailed discussion of these requirements in the context

of cancer modeling, but applicable more generally.

If we accept the hypothesis that the human body is a complex

system, in the technical sense that very small perturbations can lead

to very large effects on global system dynamics (the proverbial

“butterfly effect”), then these computational models might need

to be highly granular, depending on the nature of the

interventions. Available data and model complexity will impose a

lower limit on the resolution achievable. At the same time, many

currently available therapeutic interventions cannot make use of

highly granular patient-specific information. This puts limits on

the utility of resolution above a certain limit. Thus, the

construction of MDTs becomes a multi-objective optimization

process: build the lowest-resolution computational model of

human biology for which patient data are available and that is

sufficient to simulate available interventions.

The use of digital twins in industry, where the concept

originated [see (2) for a review of the concept’s origins], is quite
FIGURE 1

Workflow for development of medical digital twins.
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advanced, with broad applications for preventive maintenance,

control, and design. The models used to capture machinery,

physical plants, or production and management operations are

almost entirely mechanistic, and the “Internet of Things” has

made the data coupling of the physical part of a twin with the

underlying model, its digital part, almost routine in many

applications. In medicine, however, the state-of-the-art is

considerably less advanced. While the industrial application of

the digital twin concept is instructive, it differs from medical

digital twins in several key aspects. Most importantly, human

biology is not the result of a planned design, but the outcome of

an evolutionary process, with many emergent properties. We do

not have a complete theoretical understanding of biological

systems, providing a list of general principles that could form the

basis of computational models, as we do for physical systems.

Two other characteristic features of biological systems are

genotypic and phenotypic heterogeneity across individuals and

stochasticity in system dynamics. All these features present

massive challenges to mathematical modeling of individuals

and populations.

Biological mechanisms cross scales as do therapeutic

interventions. For instance, many drugs target intracellular

mechanisms but have tissue- or organ-level effects. Therefore,

many mechanistic MDTs will need to span multiple scales. This

raises the question of whether our current repertoire of modeling

paradigms is sufficient to form the basis of digital twins across

various health conditions and how to choose the right type of

model for each one. How can we effectively and credibly capture

key features of human biology in a manner suitable for a specific

clinical application while considering the diversity of patients and

their individual characteristics? For many applications today, we

have insufficient knowledge of the underlying human biology to
frontiersin.org
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contemplate building mechanistic MDTs and need to settle for

patient stratification algorithms based on machine learning. In

the relatively rare cases of sufficiently large patient data sets,

models based on artificial intelligence approaches can be used.

To discuss these issues in depth, an event was held in Lake

Nona, FL, February 23–24, 2023, the “Forum on Precision

Immunology: Immune Digital Twins” (3), supported by the ARO

Biomathematics Program. To focus the discussions, the topic was

limited to the immune system, a key player in many of the most

prevalent diseases humankind faces today, from infectious

diseases to diabetes, cancer, autoimmune and heart disease.

Furthermore, the discussion was limited largely to the

development and use of MDTs with underlying mathematical

models that incorporate known biological mechanisms and have

been calibrated and validated with experimental evidence. One

aim was to assess examples of ongoing modeling projects that are

part of MDT development related to immunity. The focus of this

article is to describe some of these projects, at different stages of

development toward viable MDT technology. Video recordings of

the presentations and discussions are available at (3)

(presentation titles on the webpage are hyperlinks). Parts of this

paper are included in the preprint (4) by the same set of authors.

There are many important issues that were not discussed at the

Forum and are not addressed in this article, due to lack of time and

required expertise among the participants. First, there are several

sources of uncertainty in MDT predictions, including uncertainty

about the model used, about the data used, patient heterogeneity,

to name the most important ones. Second, there is a plethora of

privacy, legal, and ethical issues involved. Who owns a patient’s

MDT and who should have access? What are the correct data

protection protocols for a technology that has the potential to

integrate a range of patient data and provide a comprehensive

view of their health? These are just some of the many issues that

will need to be resolved before this technology can enter the

mainstream of patient care.

Adler: Summary of conceptual, scientific, practical, and ethical

challenges and opportunities discussed by other participants in

developing medical digital twins.

An: Axioms of personalized precision medicine.

Castiglione: Constructing a computational representation of the

Immune System: necessities, constituents, and operational

aspects, along with proposed approaches for model

development.

Eubank: Lessons to be learned from other fields about data

assimilation.

Glazier: A theoretical framework for the construction of medical

digital twins.

Helikar: Towards a General Purpose Immune Digital Twin.

Jett-Tilton: Digital twins for PTSD.

Kirschner: Models and Tools for building beta versions of digital

partners.

Laubenbacher: Introduction to the Forum.

Macklin: Integration of standardized, reusable descriptions of cell

behaviors and interactions.

Mehrad: The application of MDTs to the intensive care unit.
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Moore: Immunologic considerations for building MDT.

Pasour: Funding opportunities.

Shmulevich: Patient Digital Twin for Acute Myeloid Leukemia.

Smith: Immune heterogeneity in the context of lung infection.

Yankeelov: Imaging-based digital twins for oncology.

Ziemssen: A digital twin for autoimmune diseases accessible to the

patient.

Before describing in detail some of the use cases, we briefly sketch

several forward-looking scenarios for the potential of MDTs in the

context of sepsis as a specific use case. First, it is worth stating

explicitly that MDT technology will likely follow the same path

as other new technologies. Initial prototypes will have a limited

range of capabilities and modest performance and serve perhaps

more as a proof-of-concept than fully functional products. The

minimum bar any MDT will have to clear, of course, is that it

needs to perform at least as well as the standard-of-care for a

given application, without any additional risks to patients. The

experience gained from initial development and data collected

from its use will then drive the development of increasingly more

sophisticated versions.

As an example, we present a cascading set of increasingly

powerful potential use cases of MDTs in the treatment of sepsis,

one of the largest sources of morbidity, mortality and health care

costs world-wide (WHO).

1. Early detection of sepsis is a health-monitoring, classification

task. This could employ an MDT trained on physiological

signals, electronic medical record data and standard

laboratory values to deliver an “early warning system”

for sepsis.

2. Predicting the trajectory of sepsis. This could be related to the

diagnosis task, as certain features might suggest a clinical

trajectory that leads to sepsis. It could also be applied to

patients already diagnosed with sepsis, to attempt to risk-

stratify patients to identify those at risk for clinical deterioration.

3. Optimization of existing therapies for sepsis. The mainstay of

current treatment of sepsis involves early administration of

antibiotics, source control of potential sources of infection,

and physiological support, which includes fluid resuscitation,

the use of vasopressors to support blood pressure, and

mechanical devices to support failing organs (i.e., ventilators

and dialysis machines). The combinations of applications,

both in time and in degree, could be guided by a sufficiently

trained MDT.

4. Discovery and deployment of new therapies. The unfortunate

fact of sepsis is that, to date, there is no generally accepted

means of interrupting the underlying inflammatory/immune

biology that drives sepsis and its subsequent organ failure.

Major contributing reasons for this are the overall

heterogeneity of the septic population (reflected in a gap

between the means of “diagnosing” sepsis and the degree of

knowledge regarding the cellular-molecular mechanisms that

drive the disease) and the complexity, both in terms of the

underlying biological mechanisms and their dynamics in

given different insults, of the disease course. In short,

effective treatment/control requires identifying the best match
frontiersin.org
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between a given patient at a given time with the appropriate set

of therapies, and the current means of doing these tasks for a

septic patient are woefully inadequate. It is here that MDTs

can play an invaluable role in personalizing the

characterization of a septic patient so that “right patient, right

time, right drug(s)” can be achieved.

Examples of ongoing mdt projects

We present a selection of ongoing projects by some of the

Forum participants. The selection illustrates several disparate

types of applications, methodologies, and uses. They are at

different stages of development and collectively illustrate the

issues we have raised in this meeting report/perspective. A

summary of the projects presented at the Forum can be seen in

Table 1. Generally, projects can be characterized as follows:

1. Whether the underlying computational model/specification is

generated using an existing modeling toolkit/format (which

would allow for potentially greater community level

expansion) or a “custom” model specific to a particular

research laboratory.

2. The disease process addressed by the nascent MDT project.

3. The data types and sources that are available for the data

interface between the patient and the digital twin. This ranges

from demographic and clinical descriptive data, as found in

electronic medical records, the results of medical imaging and

tests, and more specific assays that are currently mostly

available in the research context (i.e., gene expression,

multiplexed mediator assays or highly granular cell type

characterization).

4. Whether such a data interface currently exists for the nascent

MDT at its current level of development.

5. The modeling method used for the current computational

model/specification of the MDT. This includes whether a

mechanism-based dynamic model is used, whether a machine

learning/artificial intelligence component is part of that

dynamic model, or whether the specification is in its early

development stages.

6. The approach by which the MDT computational model/

specification is personalized (i.e., the “twinning” process) to

an individual patient in the real world. A precursor to the

actual personalization would be the generation of virtual

populations, which represents a theoretical distribution of

real-world individuals, but have not yet reached a point of

development where there can be a direct mapping/connection

to an individual patient in the real world.

7. The ostensible clinical goal of the MDT. This could range from

diagnosis/surveillance, prognosis/disease trajectory forecasting,

optimization and personalization of existing therapies, or the

discovery of novel therapies, be they new therapeutic agents,

new combinations of existing drugs, or the repurposing of

existing drugs into new disease contexts.

8. Whether the MDT project has a patient-facing/engaging

interface. This step informs whether, based on the context of

its use, such a patient-engagement capability would increase
Frontiers in Digital Health 04
the willingness of potential patients to participate in the

MDT project, and helps establish a context for dealing with

ethical issues such as patient privacy, data ownership/

stewardship and participatory medical decision-making.
A host model for tuberculosis that
spans the molecular to the whole host
scale (D. Kirschner)

Tuberculosis (TB) imposes a major disease burden on the

world, even compared to the COVID pandemic. As much as

25% of the world population is infected with pulmonary

Mycobacterium tuberculosis (Mtb); however, most patients are

classified as having latent tuberculosis (∼90%) with only a small

percentage with clinically active disease (∼10%) (WHO). Recent

research on both humans and non-human primates has shown

that the disease manifests as a range of outcomes (5–8).

Individuals with a latent infection sometimes exhibit repeated

activation of the pathogen, thus serving as a persistent source of

future transmission (9, 10). Key aspects of the human biology

underlying the different disease states is still unknown.

Understanding what drives different infection outcomes is

important as it will inform development and approaches for

treatment and prevention.

Pulmonary tuberculosis is characterized by the formation of

granulomas, formed as part of the immune response to infection

that encapsulate the pathogen. These develop in the lungs of

infected hosts after inhalation of mycobacteria (5). It has been

shown that a single bacterium can trigger granuloma formation,

and there is great diversity among their subsequent development.

The structures include bacteria, macrophages, T cells, and other

immune cells. While T cells are known to carry out critical

functions against Mtb (11), their recruitment to the lungs from

the lymph nodes is delayed by as much as several weeks

after infection.

We published an organism-scale modeling platform,

HostSim, of the immune response to Mycobacterium

tuberculosis consisting of a lymph node compartments, as well

as blood and lung compartments (12, 13). With it, one can

simulate infection dynamics over long periods of time The

model was parameterized and validated with datasets from the

literature, including human and non-human primate data.

The HostSim platform provides the capability to study a

range of problems related to the infection and possible

intervention strategies.

Recently, we have generated hundreds to thousands of HostSim

“virtual patients” that are infected with TB at different times and

have slightly unique immune characteristics. We refer to this

collection of virtual hosts as a “virtual cohort”. This virtual

cohort can serve as a bank of digital “partners” that can be

closely associated with an actual patient. Initially, a large group

of partners (i.e., a “digital family”) would be assigned to that

patient. Then, as more data become available, the family of

partners that are associated with this patient would narrow until

a single digital twin remains.
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Virtual patient cohorts for virus infections
(A.M. Smith)

Respiratory viral pathogens cause many infections each year,

with considerable health and economic burden. Infections with

viruses like influenza or SARS-CoV-2 yield a variety of

outcomes that range from asymptomatic to fatal. Numerous

viral and host factors in addition to complications from other

pathogens and underlying diseases can result in heterogeneity

in the severity of infection, but their contribution or those

from other, hidden mechanisms is unknown. This makes

predicting a patient’s disease trajectory and the potential for

efficacious vaccination or antiviral therapy challenging. The

goal of this project is to build virtual patient cohorts (VPCs),

with each patient having a personalized immune trajectory (14)

to define immunologic processes that initiate diverse outcomes.

We construct mechanistic and experimentally validated

computational models of the host response and define immune

correlates of disease. A focus is on establishing the

nonlinearities that drive many immune processes and their

connections to disease (15, 16). Within this approach, models

are iteratively updated with new data, as immunological

knowledge evolves, and as smaller models are validated with

targeted experimentation alongside generating diverse VPCs to

evaluate underlying comorbidities.
The digital twin innovation hub (T. Helikar)

The Digital Twin Innovation Hub (17), established in August,

2022, is leading the development of a generic immune digital

twin platform that will be contextualizable and applicable to

many, and eventually any, immune-related pathology. A

comprehensive cellular-level model and map of the immune

system, consisting of nearly 30 cell types, over 30 cytokines and

immunoglobulins spanning both innate and adaptive immunity

has been developed to form a “blueprint” of the general

purpose immune digital twin (18). Detailed sub-cellular models

of signal transduction and genome-scale metabolism for each of

the 30 cell types have also been developed (e.g., dendritic cells,

CD4+ T cells (19, 20). Work to integrate these sub-cellular

models into a comprehensive multi-scale, multicellular model

of the immune system is under way.

Digital Twin Innovation Hub is also developing a software

infrastructure to enable the construction, contextualization,

personalization, analysis, and simulation of the general purpose

immune digital twin. To accomplish this, the Hub is leveraging

and building atop of Cell Collective, a web-based collaborative

modeling platform (21). To this end, Cell Collective supports

several modeling approaches, including logical, kinetic, and

constraint-based models, and will soon also support

physiologically-based pharmacokinetic/pharmacodynamic models

and virtual clinical trials. Cell Collective also provides a

repository of computational models, which will provide a

gateway to features that will enable their integration into

multiscale systems—medical digital twins.
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A key principle of Cell Collective is its broad accessibility. To

fully leverage the potential of medical digital twins, it will be

critical that the technology is accessible to a wide range of user

audiences, including translational researchers, clinicians, and

patients. As such, in Cell Collective, no mathematical or

programming skills are required for users to build, modify,

simulate, or analyze models. It also allows users to focus on the

mechanistic information used to build and simulate the models

rather than dealing with the technicality of formalisms used to

build and modify the models.
C-IMMSIM, a generic immune system
simulation platform (F. Castiglione)

The computer model C-IMMSIM can be seen as the outcome

of a collaborative effort between a biologist, who provides insights

into mechanisms and actions, and a mathematician, who translates

that knowledge into a quantitative framework (22). Developing an

accurate computer model that represents the complexity of the

immune system and produces meaningful outcomes is a

challenging task. However, by accepting necessary

approximations and building upon solid theoretical mathematical

and biological assumptions, along with personalized data to infer

the model parameters (23), the C-IMMSIM model can be

considered as an underlying generic model of an individual’s

immune digital twin.

The essential components and prerequisites that have

influenced the development of C-IMMSIM are: diversity in

specific repertoires; probabilistic actions capturing the inherent

stochasticity of many mechanisms; cooperation between different

cell types; cell movement and global control; specific cell-cell and

cell-molecule interactions; competition and memory cells; clonal

selection and proliferation; controls and memory.

All these elements have been incorporated into the C-IMMSIM

model using specific mathematical or algorithmic choices. The model

can be categorized as an Agent-Based Model (ABM), where

individual cells are represented with their unique attributes, such

as position, age, membrane receptors, activation status, or

differentiation state. ABMs are well-suited for simulating the

immune system due to their ability to handle stochastic actions,

cell movement, and individual dynamics, while allowing large

populations to be simulated and tracked. During the simulation,

cells undergo transitions between activation or differentiation

states, influenced by stochastic events that rely on the compatibility

of their binding sites. While simulating billions of agents and

incorporating anatomical variations and an individual’s

immunological history remains impractical, even with high-

performance computers, the overall state of the system in the

simulation can still be considered a representative immunological

state for an individual. In adopting a digital twin perspective, the

model can be customized to align with a patient’s physical

characteristics and current health status. As a result, it can provide

valuable insights into an individual’s immune status and potential

outcomes in response to specific stimuli. The C-IMMSIM model,

in this context, offers a means to simulate a cohort of virtual
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individuals (referred to as a virtual cohort) for the study of specific

pathologic and therapeutic conditions, such as type 2 diabetes (24,

25) or COVID-19 vaccination (26).
Toward a medical digital twin for
pneumonia patients in the intensive care
unit (R. Laubenbacher, B. Mehrad)

Doctors in intensive care units (ICUs) make decisions in a

complex environment, bombarded with thousands of pieces of

data, and often under intense time pressure and heterogeneity of

patient response to treatment. Available ICU risk calculators

provide highly accurate predictions of a patient’s length of stay and

likelihood of death, but do not provide actionable information

about what interventions could be applied to an individual patient

to improve the outcome. A common condition of ICU patients is

pneumonia. It is the second most common cause of hospital

admissions (after admissions for childbirth), with up to 10% of

patients requiring an ICU stay. And up to 5% of hospital patients

contract pneumonia. It is the main cause of infant mortality. The

goal of this project is to build a pneumonia digital twin for ICU

patients that serves as a decision support tool for the doctor.

Underlying the digital twin is a mathematical model that encodes

disease-relevant biological mechanisms and is dynamically

calibrated to an individual patient as new data become available.

The computational model underlying the pneumonia MDT will be

an extension and modification of a model that captures the innate

immune response to a fungal infections in the lung, using

Aspergillus fumigatus as the model pathogen (27).

Ongoing work focuses on an expansion of the model to viral

and bacterial pathogens. These studies will be used to expand the

computational model for fungal pneumonia, covering all major

pathogens causing pneumonia. A tissue culture platform,

combined with a cryopreservation technique that keeps human

lung tissue functional over several days is being used with lung

tissue obtained from surgeries. Collecting heterogenous data from

infected tissue from a range of donors allows us to “personalize”

the computational model to different donors and investigate

heterogeneity in disease progression and response to drugs. This

represents the next step in developing the computational model

to a state where it can be personalized to actual patients. A part

of future work to be done is to integrate this tissue/organ-scale

model with a physiological model that allows implementation of

all standard treatments available to a pneumonia patient,

allowing the comprehensive simulation of patient trajectories

under treatment. The final product will be an MDT that is based

on a mechanistic computational model, is calibrated dynamically

to a pneumonia patient in the ICU for the purpose of helping to

plan therapeutic interventions.
A breast cancer digital twin (T. Yankeelov)

Yankeelov and colleagues have developed mechanism-based

mathematical models that are initialized and calibrated with
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patient-specific, quantitative imaging data for a variety of

cancers, especially the breast. The imaging data has included

both quantitative positron emission tomography (28) and

magnetic resonance imaging (MRI) (29), with a particular

emphasis on dynamic contrast enhanced MRI to report on

blood flow, and diffusion weighted MRI to report on cellularity.

[Using medical imaging data has the advantage of being able to

report on anatomical, physiological, cellular, and molecular data

non-invasively and at multiple time points to update a digital

twin throughout the course of therapy (30)]. Given a high-

resolution anatomical image to establish the computational

domain, reaction-diffusion equations accounting for tissue

mechanical properties and therapeutic regimens are solved over

the breast to establish patient specific parameters related to

tumor cell migration, tumor proliferation, and response to

therapy. After parameterizing the model system, it can be

simulated to predict the response of the specific tumor to the

specific treatment with high accuracy across space and time (31).

It is natural to use the model to form the backbone of an MDT

designed to predict and, ultimately, identify therapeutic

regimens to optimize the tumor response.

It is important to note that only by employing mechanism-

based models can one simulate a range of therapeutic options,

including new emerging therapeutics without large clinical trials

to use as training data. When using a strictly data-driven

approach, one can only search for responses to therapeutic

regimens that are included in the training set. By using a

mechanism-based model, one is not limited to only the

therapeutic regimens included in a historical training set.
A leukemia digital twin (I. Shmulevich)

The Acute Myeloid Leukemia Digital Twin (AML-DT)

project is an initiative supported by the National Cancer

Institute (NCI) and the Academy of Finland. It aims to develop

a comprehensive digital twin system for AML. This project is

characterized by its unique approach to the disease that

combines knowledge graphs built by integrating mechanistic

models with machine learning approaches applied to data from

patients. The models include intracellular gene regulation

models and models that capture hematopoiesis and

leukemogenesis in a multi-cellular context, incorporating key

drivers of tumor progression. The overarching goal of this

project is to predict disease progression and optimize response

to therapies, thereby revolutionizing the way we understand

and treat AML. The project is a collaborative effort, bringing

together diverse technologies, such as modeling, machine

learning, human-computer interaction, and clinical practice.

The development of the AML digital twin necessitates several

types of data that capture different aspects of a patient, such as

clinical data, cytogenetics, mutation panels, and flow cytometry

measurements. These data are utilized to individualize each

digital twin, creating a personalized representation of the

patient’s disease state. Alongside patient-specific data, the project

also incorporates public datasets for the construction of
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knowledge graphs. These datasets include molecular profiling, as well

as ex vivo drug sensitivity data, both linked with clinical outcomes.

The integration of individual patient data and public datasets

enhances the digital twin’s ability to predict disease progression

and drug response, which is the primary objective of this project.

We have captures the central features of the immune system

that contribute to pathogenesis of AML through the integration

of detailed domain-specific knowledge graphs with multiscale

dynamical models of the tumor microenvironment. These models

incorporate key mechanisms of cancer progression, which can

aid in the development of new therapies.

The digital twin approach goes beyond being just a model. Each

AML patient will have a digital twin individually tailored using

information produced in a clinical laboratory. This is combined

with a model-based approach for making personalized predictions.

An important aspect of this approach is the learning-cycle, where

patient outcomes are continuously utilized to improve predictions.

Over time, the system will improve as discoveries are made related

to the biological aspects that are most important for accurate

prediction of patient outcomes. This approach allows us to capture

the temporal evolution of the disease state for a particular patient,

providing a more accurate and personalized prediction of disease

progression and treatment response.
Conclusion

We are in the very early stages of developing MDTs as a key

technology for personalized medicine. To make an analogy to the

development of aviation, we are only a short time past the first

flight at Kitty Hawk in the early years of last century. While it

would a century until we can travel between continents in record

time and comfort, it is worth noting that only a decade after the

Wright Brothers’ first flight, all major combatants in World War

I fielded an air force. Likewise, while it might take a long time

still until MDTs are in standard use across medicine, this

technology might provide a measurable improvement over our

current capabilities. To achieve this, we must collectively engage

in a focused effort on improving our understanding of human

biology and translate it into computational models, enable and

implement the collection of human data and algorithms needed

to personalize these models, and adapt them for practical use in

healthcare. While this will be very challenging, it is necessary for

a new, improved, paradigm in human health. The sample

projects we described are, for the most part, far away from being

functional and useful MDTs. All of them, however, represent

progress toward applications and technology platforms for truly

personalized medicine.
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