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Introduction: Clinical assessment of upper limb sensorimotor function post-
stroke is often constrained by low sensitivity and limited information on
movement quality. To address this gap, recent studies proposed a
standardized instrumented drinking task, as a representative daily activity
combining different components of functional arm use. Although kinematic
movement quality measures for this task are well-established, and optical
motion capture (OMC) has proven effective in their measurement, its clinical
application remains limited. Inertial Measurement Units (IMUs) emerge as a
promising low-cost and user-friendly alternative, yet their validity and clinical
relevance compared to the gold standard OMC need investigation.
Method: In this study, we conducted a measurement system comparison
between IMUs and OMC, analyzing 15 established movement quality measures
in 15 mild and moderate stroke patients performing the drinking task, using
five IMUs placed on each wrist, upper arm, and trunk.
Results: Our findings revealed strong agreement between the systems, with 12
out of 15 measures demonstrating clinical applicability, evidenced by Limits of
Agreement (LoA) below the Minimum Clinically Important Differences (MCID)
for each measure.
Discussion: These results are promising, suggesting the clinical applicability of
IMUs in quantifying movement quality for mildly and moderately impaired
stroke patients performing the drinking task.

KEYWORDS

measurement system comparison, IMU validation, neurorehabilitation after stroke, upper

limb assessment, drinking task, movement quality, movement analisys
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1 Introduction

The number of stroke incidents and the number of survivors

are both increasing (1). Stroke is a major cause of disability (2)

and leads to a growing number of stroke survivors with

sensorimotor impairments. Up to 50% of these survivors

experience chronic upper limb impairments (3, 4), affecting their

independence and quality of life (5).

To meet the growing need for restoring upper limb

sensorimotor function in stroke survivors, it is essential to

maximize the effectiveness of rehabilitation strategies. Integral to

this process are accurate and precise assessments. They are

essential for both tailoring rehabilitation strategies and assessing

the effectiveness of interventions. However, current clinical

assessment strategies are primarily based on ordinal scales that

rely on task completion evaluation or visual scoring by trained

professionals, such as physiotherapists (6). This results in low

sensitivity of the assessments and mostly fails to adequately

quantify movement quality (7). Movement quality is defined by

the similarity of patients’ movements in a motor task as

compared to those of age-matched, able-bodied individuals (8).

Assessing movement quality is important as it helps to

distinguish between compensatory movements and true

behavioral restitution (9, 7, 10).

There is a strong consensus on employing instrumented or

technology-based assessments to overcome the existing

limitations. Assessments based on movement kinematics can

have higher sensitivity (11) and are optimally suited for

quantifying movement quality (12). However, this approach

brings with it two main challenges. First, movement kinematics

need to be captured accurately and reliably. Second, measures

that quantify movement quality with adequate clinimetric

properties must be identified (13).

Previous research recommends using an instrumented drinking

task to assess upper limb movement quality in mild and moderate

stroke patients (8). This task comprises important movement

primitives such as three-dimensional reaching and hand-to-

mouth movement and additionally stands out through its ease of

standardization. Kinematic measures, which quantify movement

quality (14) and have good clinimetric properties (15–17), have

been established for this task using Optical Motion Capture

(OMC) (18). However, the cost and impracticality of OMC limit

its translation into clinical application. This raises the question of

whether there is a measurement system that is both accurate and

precise enough to capture these established movement quality

measures, while also being cost-effective and user-friendly.

Wearable Inertial Measurement Units (IMUs) are a promising

candidate (19). Placed on multiple segments of the upper limb,

they allow for a robust recomposition of arm kinematics, while

remaining relatively low-cost. Additionally, IMUs have the

potential to go beyond controlled environments and measure

individuals during their daily life (20, 21). To evaluate the

suitability of IMUs as an alternative to OMC for an

instrumented drinking task, it is necessary to investigate the

measurement agreement between IMUs and OMC. This

evaluation should specifically focus on the measurement
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uncertainty of IMUs when determining the established

movement quality measures in stroke patients with mild to

moderate upper limb impairment. Three previous studies

compared measurements from IMUs to OMC for the drinking

task (22–24). However, none of these studies comprehensively

investigated the full set of the mentioned movement quality

measures among stroke patients.

With an eye toward clinical application, this underscores the

need to validate the entire set of the proposed measures in the

target group of stroke patients with moderate and mild upper

limb impairments. Therefore, in this study, we conducted a

measurement systems comparison between IMU and OMC,

involving 15 stroke patients with moderate and mild upper limb

impairments performing multiple trials of the drinking task. We

reconstructed and compared kinematics, including angular

kinematics and end-effector velocity, from IMUs and OMC.

Using these data, we calculated and compared the full set of

movement quality measures from IMUs and OMC. We then

assessed the agreement between the systems for all proposed

movement quality measures. Finally, we contextualized the

measurement uncertainty of IMUs by determining whether the

observed disagreements were within a clinically acceptable range

for practical application.

We anticipated that the discrepancy between kinematics

obtained from OMC and IMUs would be minor, showing small

error and a strong linear relationship between angular kinematics

and end-effector velocity. Therefore, we hypothesized that the

measurement uncertainty of IMUs regarding the movement

quality measures, as determined through comparison with OMC

(gold standard), is below the clinically relevant change of

measure. This would suggest that IMUs and OMC can be

interchangeably used for the drinking task assessment without

compromising the accuracy and precision of the movement

quality measures. We tested the hypothesis by comparing the

Limits of Agreement (LoA) from OMC and IMU for each

movement quality measure to the minimal clinically important

difference (MCID) of the respective measure.
2 Materials and methods

2.1 Study design and participants

This study was designed to evaluate the potential application of

IMU sensors in quantifying upper limb movement quality in stroke

patients. The focus was on analyzing well-established kinematic

movement quality measures during the performance of a

drinking task (see full list of measures in Supplementary

Table S4) and validating these against OMC. The study adhered

to the ethical guidelines set forth by the local ethics committee

(BASEC-No: 2022-00491).

Participants. Stroke survivors were recruited from the

University Hospital Zurich Stroke Registry and the cereneo

clinic. Eligible participants were invited for a single-session

measurement, lasting approximately two to three hours.

Inclusion criteria mandated that participants be at least 18 years
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old, capable of providing informed consent, and have a confirmed

diagnosis of stroke. Additionally, participants were required to have

at least partial ability to perform a reaching movement, and to grasp

a cup unassisted using a cylindrical grip with the affected hand.

Exclusion criteria consisted of pre-existing upper limb deficits,

such as orthopedic impairments, and other neurological conditions.

Key characteristics of interest in this study were gender, age,

affected arm, time since stroke, dominant arm, and severity of

upper limb motor impairment, which was quantified using the

Fugl-Meyer Assessment for Upper Extremity (FMA-UE) (25). A

trained evaluator performed the FMA-UE alongside the drinking

task measurements in a single session.

The study included an ad-hoc sample size of 15 stroke patients

[which is above previous sufficiently powered studies on IMU

validation (26)], with a mean FMA-UE score of 54.6, indicating

a moderate level of upper limb impairment (see Table 1).

Measurement procedure. The measurement procedure,

adhering to established standards from prior studies (18), involved

participants initiating and concluding a drinking task in a

standardized pose. The cup was consistently positioned 30 cm

from the table edge (see Figure 1). The cup was filled with

approximately 100 ml of water and refilled between trials when

necessary. Participants were instructed to take a sip of water on

every trial. In the rare event that participants dropped the cup and

spilled water (2 participants), the water was replaced with a ball of

similar weight as the water. Participants were instructed to

perform the drinking movement regardless. Participants completed

40 trials of the drinking task with the unaffected arm, followed by

40 trials with the affected arm. Each repetition of the drinking

task is considered a trial. The unaffected arm was recorded as a

proxy for control data of healthy, able-bodied, age-matched

individuals. Each trial was individually recorded, with the OMC

recording being started and stopped accordingly. The participants

were verbally instructed when a trial started, and the recording

was stopped once the trial was completed. Additional trials were

carried out if any trials were suspected to be invalid (movement
TABLE 1 Demographic data and clinical characteristics of stroke patients.

P-ID Months since stroke Age Gender
1 116 76 M

2 12 61 M

3 52 77 M

4 183 56 M

5 1 53 M

6 6 80 F

7 12 52 M

8 28 82 M

9 31 78 M

10 33 44 M

11 54 87 F

12 2 59 F

13 51 78 M

14 56 45 M

15 34 63 F

Mean 45 66.07 11M 4F

SD 48.20 14.33

P-ID: Patient-ID; R: right; L: left ; B: both; M: male ; F: female; FMA-UE: Fugl-Meyer A
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start before recording start, incomplete movement). After

completion of the drinking task, the FMA-UE was conducted.
2.2 Measurement systems

This study utilized two primary measurement systems: IMUs

and OMC.

IMUs. The IMU system utilized XSENS DOT units (27),

recording offline at a rate of 120 Hz. The IMUs were internally

synchronized with each other. Five IMUs were attached to the

participants: one on each wrist and upper arm, and one on the

trunk (see Figure 1). The IMUs were initially affixed to OMC

clusters, then secured to the participants using a velcro band for

the trunk and double-sided tape for the wrists and arms. The

sensors were positioned to align with the anatomical axes of each

body segment. Additionally, an IMU was mounted on a vibration

box for synchronization, which vibrated as long as the OMC

recording was ongoing.

OMC. The OMC system operated at a sampling frequency of 100

Hz, using technologies from Vicon, Qualisys, and Optitrack across

different measurement setups. The five 3D-printed OMC clusters

each featured a distinct configuration of four markers (see Figure 1).

This design facilitated their automatic detection and labeling. In

addition to the cluster markers, extra markers were placed on the

middle knuckle of each hand, on the forehead and the cup, as

required for movement phase classification in previous studies (18).
2.3 Data preprocessing

OMCdata qualitywas highwith few,mostly small gaps (, 0:1ms).

All gaps weremanually filled inQualisys TrackManager using different

methods depending onmarker type (cluster markers: relational, within

cluster rigid body; bodymarkers: mostly polynomial or linear). Manual

filling of gaps allowed for visual control of the validity of the filled gaps.
Dominant arm Affected arm FMA-UE
R L 38

R L 62

R R 31

R L 48

R R 50

R B 63

L L 57

R L 57

R R 47

R R 66

R R 62

R L 64

R L 62

R R 64

L L 48

13R 2L 9L 5R 1B 54.6

10.53

ssessment for Upper Extremity; SD: standard deviation.
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FIGURE 1

Sketch of measurement setup with the placement of IMUs, OMC clusters, and markers as well as the standardized sitting pose and positioning of the
cup. Units of OMC clusters and IMUs share the same local coordinate system, as depicted in the figure.
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Given the high quality of the raw data, along with careful manual filling

and detailed visual inspection, we assume that the impact of filled gaps

on the study resultswas negligible. Cleanorientationdata of clusters and

positional data of markers were then exported toMATLAB. All further

processing steps were done using custom-written MATLAB code.

IMU data was segmented into trials according to the vibration

box’s synchronization signal. For the IMUs, two types of orientation

estimation algorithms were utilized. First, we used XSENS DOT

orientation estimation (DOT), employing accelerometer, gyroscope,

and magnetometer data for 9D orientation estimation (27). The

orientation estimation process occurs onboard the IMU, and the

data is directly provided by the XSENS sensors. However,

magnetometer data might be affected by ferromagnetic or

electromagnetic interference in clinical contexts. Therefore, we also

used the Versatile Quaternion-based Filter (VQF), which uses

acceleration and gyroscope for 6D orientation estimation (28).

Both OMC and IMU data were then filtered using a 5 Hz low-

pass Butterworth filter of fourth order. To align OMC and IMU

data for direct comparison, the OMC data was resampled to

match the IMU sampling frequency using spline interpolation.

Upsampling was selected to ensure complete retention of

information from IMU sampling points, which could be

beneficial when calculating movement smoothness.

Initially, the orientation representations from the IMUs and

OMC clusters do not share the same global coordinate system.

To rectify this, the orientations of the OMC clusters at the start

of each trial were used to rotate the global coordinate systems of

each sensor into the global OMC coordinate system.
2.4 Kinematic trajectories

We first reconstructed kinematics trajectories, specifically the

trajectories of angular kinematics and end-effector velocity. These

kinematics form the basis for deriving most of the measures by,
Frontiers in Digital Health 04
for example, taking peak values of angular kinematics or end-

effector velocity during specific movement phases. Consequently,

the accuracy of movement quality measures is inherently linked

to the precision of these kinematics. Therefore, and to compare

to other studies, we initially calculated kinematic trajectories and

analyzed how IMU-based angular kinematics and end-effector

velocities compare to those from OMC. Subsequently, we

extracted movement quality measures and conducted a

comprehensive measurement system comparison based on these.

We first detail the calculation and analysis of the kinematic

trajectories, and second the process for deriving movement

quality measures and how we examined and contextualized their

agreement between OMC and IMU.

The following kinematic trajectories are necessary for deriving

all established movement quality measures for the drinking task

(14, 18, 17, 29) (see Supplementary Table S4): elbow angle, elbow

angular velocity, shoulder angle (flexion / abduction), trunk

displacement angle and end-effector velocity. In the following, the

calculation of these kinematic trajectories is described. Since

these calculations depend on orientation data, the same methods

can be applied to both OMC and IMU, by utilizing orientation

data from the OMC clusters and orientation data provided by

the IMUs.

End-effector velocity. To determine the end-effector velocity

based on orientation data, we employed a simple forward

kinematic model driven by the orientation of the upper arm and

the wrist (30, 31, 26). In this model, the shoulder is assumed to

remain stationary. The kinematic model is described by the

equation 1. The lengths of the upper and lower arms (both left

and right) for each participant were determined by placing

additional OMC markers on bony landmarks: the shoulder

(RSHO for the right, LSHO for the left), elbow (RELL for the

right, LELL for the left), and wrist (RWRM for the right, LWRM

for the left), as detailed in (32). Segment lengths were

determined by calculating the distances between these markers,
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specifically from the shoulder to the elbow for the upper arm, and

from the elbow to the wrist for the lower arm. We then adjusted the

kinematic model lengths accordingly. This model allows for the

estimation of the end-effector position, which is temporally

differentiated to calculate the end-effector velocity.

Tj ¼ Rj

�lj
0
0

2
4

3
5, Hj ¼ Rj Tj

0` 1

� �
,

Hend�effector ¼ HupperarmH forearm

(1)

Here, l describes the length of a segment, j indexes the segment (either

upper arm or forearm),R describes the rotationmatrix of the segment,

T the translation vector, and H the transformation matrix.

Utilizing a kinematic model, driven by orientation enables

the application of identical methods for both IMUs and OMC

clusters for end-effector velocity estimation. This approach

prevents discrepancies arising from different methods and

facilitates direct comparison. Before comparing the end-effector

velocity between IMU and OMC (system validation), we

compared the model-based end-effector velocity from OMC

clusters Vm
OMC with the velocity of the hand marker Vh

OMC to

gain insights into the characteristics and validity of the kinematic

model (model validation).

Angular kinematics. To calculate angular kinematics, the angle

between two axes of interest was determined using Equation 2:

un ¼ arccos
v1n � v2n

kv1nkkv2nk
� �

(2)

Here, un represents the angle at the nth sample. Vectors v1n and v2n
correspond to the two axes of interest at the nth sample. Segment

axes were derived from orientation data. For elbow angle

calculation, we used the x-axes of the upper arm and wrist IMUs

(see Figure 1). Elbow angular velocity is the derivative of the

elbow angle.

Due to the natural curvature of participants’ chests, the trunk

sensor often displayed an inclination, preventing it from showing

a true vertical alignment in an upright seated position at the start

of the measurement (see Figure 1). To address this, we

performed a sensor-to-segment alignment by transforming the

sensor orientation to match the trunk orientation. This

adjustment was done at the beginning of each trial when patients

were sitting upright in a standardized position. This method

corrects for any initial inclination while maintaining the same

directional heading. The resulting trunk orientation was used to

calculate trunk displacement angle.

The vertical trunk axes alongside the x-axes of upper arm

sensors were used to calculate the shoulder angle. To differentiate

between shoulder abduction and shoulder flexion, the shoulder

angle was projected onto the coronal and sagittal planes,

respectively. The sagittal and coronal planes were defined based

on the trunk orientation. Specifically, the coronal plane

corresponds to the x-y-plane of the trunk, while the sagittal

plane is determined by the x-z-plane (see Figure 1).
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Model validation. Trajectories of the end-effector velocity based

on the hand marker Vh and the kinematic model Vm were plotted

for comparison (see Figure 2). Prior to utilizing the kinematic model

with IMU and OMC orientation data to derive movement quality

measures, we assessed the model’s validity by comparing the

trajectories of end-effector velocity from the kinematic model Vm
OMC

with those from the hand marker Vh
OMC . This comparison employed

measures such as root mean squared error RMSE and Pearson

correlation r for the trajectory, along with characteristic values like

differences in time to peak velocity (Dt to PV) and peak velocity

(DPV) itself. These comparisons were aimed at evaluating the linear

relationship and the magnitude of error between Vh
OMC and Vm

OMC .

System validation. To assess the linear relationship and error

in kinematic trajectories derived from IMU and OMC, we

calculated r and RMSE for each kinematic trajectory. RMSE and

r are frequently reported metrics in previous studies comparing

kinematic trajectories from IMU and OMC. We reported the

median and quartile ranges for r and RMSE across all trials, for

both the affected and unaffected arm. For both model and

system validation, the measures used for comparison were

derived for each trial. The median and quartile range (first to

last) across all trials are reported, distinguishing between the

affected and unaffected arm. This distinction was made to assess

whether pathological movement characteristics influence the

validity of the kinematic model and the IMU system, respectively.
2.5 Movement quality measures

The movement quality measures included in this study are

those previously established for the drinking task in various

studies (14, 18). In this study, however, we shifted from

measuring trunk displacement in [mm] to [ � ]. This adjustment

was made because IMUs demonstrated enhanced accuracy and

precision in angle measurements compared to displacement

metrics (33). We assume that compensatory trunk movements in

a stationary, seated posture can be effectively quantified through

both translational trunk displacement and the angular alteration

of the trunk. Additionally, we investigated the acceleration-based

Log Dimensionless Jerk (LDLJ) (34) as an additional measure for

evaluating movement smoothness in the drinking task, alongside

the number of movement units (see full list of measures in

Supplementary Table S4). Unlike the number of movement units,

this smoothness measure is independent of movement duration.

Moreover, it is especially well-suited for measuring smoothness

with IMUs, as the calculation is based on a derivative of the

acceleration signal of the end-effector. Movement quality

measures were derived from the kinematic trajectories and

timestamps indicating the start and end of different phases of the

drinking task (detailed in Table S4). These phases are: reaching,

forward transport (moving the cup to the mouth), drinking, back

transport (placing the cup back on the table, which includes

releasing the grasp), and returning (moving the hand back to the

starting position). The classification of these phases followed the

same method used in previous studies (18) and results were used

for both IMU and OMC-derived measures.
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FIGURE 2

Exemplary kinematic trajectories of patient P9, showing one trial each for the affected and unaffected arm, and displaying all necessary kinematic
trajectories for deriving the movement quality measures. Angular kinematics are presented using various methods including OMC cluster, VQF,
and DOT. End-effector velocities are displayed for the kinematic model deploying orientation data from the OMC cluster, IMU (VQF and DOT),
alongside hand marker velocity.
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In the following, we explain the calculation of specific measures

where understanding is not immediately evident from Table S4 and

descriptions of kinematic trajectories. Straightforward measures,

such as peak velocity during reaching, are not elaborated upon here.

The reaching movement starts at the first instance when the

end-effector velocity exceeds 2% of its maximum. Total movement

time is then defined as the duration between this starting point

and the last instance when the end-effector velocity exceeds the

2% threshold.

The first peak velocity is identified as the first velocity peak in

reaching exceeding a threshold of 10% of the peak velocity. The

calculation of the number of movement units is based on the

method from previous studies (18), involving the detection and

counting of peaks that meet specific criteria in the end-effector

velocity trajectory. The calculation of LDLJ (34) was performed

using the acceleration signal from the IMU, and for OMC, it was

done with acceleration obtained from the double differentiation

of the hand marker’s position. Interjoint coordination is

calculated with Pearson correlation between the elbow angle and

shoulder flexion angle trajectory during the reaching phase.
2.6 Statistical analysis and clinical
contextualization

Measurement system comparison. To visualize the agreement

between OMC and IMUs in movement quality measures we

plotted the results for each measure using both correlation

and Bland–Altman plots. Furthermore, we averaged data points

from all trials for each patient’s affected and unaffected

arm into a single value for inclusion in these plots. This

facilitates visual examination of correlation, bias, error variance,

and heteroscedasticity.

We estimated LOAs using linear mixed-effects models since

our data involved repeated measures within subjects (35). The

LOAs for the differences between each OMC and IMU measure

were calculated as the mean bias estimate plus or minus 1.96

times the standard deviation estimate.

For this purpose, the paired differences between each OMC

and IMU measure were modeled with a mixed-effects model

(random effect of patient and arm). The estimate of the standard

deviation of the differences was obtained from the square root of

the sum of the variance due to the effect of patient, due to the

effect of trial, and the squared standard deviation of the residual.

Additionally, the difference between each OMC and IMU

measure was modeled with a reduced mixed effects model

(random effect of patient). The resulting intercept yields an

appropriately weighted estimate of the mean bias (36).

We tested the reported correlation values for movement quality

measures for statistical significance by applying a two-sided t-test,

with a significance level set at p ¼ :05.

Clinical contextualization of measurement uncertainty. In

the context of introducing a new clinical measurement system, it

is critical to assess the system’s measurement uncertainty. This

can be achieved with LOAs, which define an interval that

contains approximately 95% of measurement errors. LOAs can
Frontiers in Digital Health 07
thus be considered a benchmark of tolerable measurement error

(measurement uncertainty) of a system. The clinically tolerable

amount of measurement uncertainty depends on the minimal

change of interest in a given measure. For movement quality

measures from the drinking task, this minimal change can be

approximated by the measure’s Minimally Clinically Important

Difference [MCID, (8)]. If each LOA is lower than the MCID for

a measure, this suggests that the system is sensitive enough to

detect all changes in the measure that are clinically important.

Conversely, if a LOA exceeds the MCID, the measurement system

may still be useful but is not able to capture changes in the

measure down to the most granular level of sensitivity.

Therefore, we used the MCID as a benchmark and reported

whether the LOA is below or above the MCID for each measure.

Estimation of MCID Determining theMCID typically involves

longitudinal studies and patient self-reports of improvement. This

approach was applied in a previous study for two of the measures

included here (8): total movement time and number of movement

units. For the remaining measures, MCIDs do not exist and

there is no established approach for their estimation from single

time-point study data. It was proposed that a change in

kinematic measures is clinically important if it is at least 15% of

the range of a measure (8). Another approach is to estimate

MCIDs as multiples of the standard deviation of a measure with

the less impaired arm, analogously to studies with large

normative data from an able-bodied, age-matched population

(37). We calculate MCIDs for each measure using each of these

approaches, and used the smallest resulting MCID as a

benchmark, as a conservative option. A detailed explanation of

the different methods and resulting MCIDs can be found in the

Supplementary Material.
3 Results

3.1 Data set

In total 1127 trials of the drinking task of 15 patients were

included with a median of 39 [35, 40] trials per arm per patient.

Trials were excluded when the OMC recording did not include

the entire movement, typically because the movement onset

occurred before the recording started. Moreover, trials were

excluded when the drinking task was not completed, such as

when the cup was dropped. Finally, trials were excluded when

OMC data were incomplete and could not be interpolated which

was usually due to occluded markers.
3.2 Kinematics and movement quality
measures

As mentioned above we first compared kinematic trajectories

of OMC and IMU as well as end-effector velocity from the

kinematic model and hand marker. Subsequently, we thoroughly

analyzed the movement quality measures on which we ultimately

judged the agreement between the systems.
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3.3 Kinematic trajectories

Exemplary plots of reconstructed kinematic trajectories can be

found in Figure 2. The in-depth analysis of kinematic trajectories

described in the following and displayed in Table 2 compares

IMU-based (DOT) kinematic trajectories with OMC-based

kinematic trajectories as well as Vh
OMC and Vm

OMC (kinematic

trajectories of IMUs based on VQF orientation, although also

displayed in Figure 2, are not considered in this analysis).

Model validation. We observed a strong linear relationship

between Vh
OMC and Vm

OMC , demonstrated by a high median

correlation (r . 0:9). The median differences in time to peak

velocity were minimal (unaffected arm: �0:03 s; affected arm:

�0:08 s), confirming high temporal alignment in peak velocities.

While these results demonstrated good temporal alignment of

Vh
OMC and Vm

OMC , differences in the magnitude and smoothness of

the signals were observed (see Figure 2). The median RMSE in

velocity profiles was 94mm=s for the affected arm and 88 mm/s

for the unaffected arm. DPV consistently exceeded the RMSE,

reflecting greater variability at the peaks. This observation aligns

with our visual inspection of the trajectories.

System validation. We observed a very high linear relationship

for all kinematic trajectories between IMUs and OMC. This was

reflected by high median correlations (r . 0:99), with small
TABLE 2 Medians and interquartile ranges for r and RMSE of kinematic
trajectories were calculated across all patients, differentiating between
the affected and unaffected arms.

Kinematics Value Unaffected arm Affected arm

(a) Model validation Vh
OMC vs. Vm

OMC

Velocity r 0.90 [0.87, 0.93] 0.90 [0.85, 0.92]

RMSE (mm/s) 88.12 [76.05, 104.48] 94.72 [75.94, 118.81]

Peak Velocityy Dt to PV (s) �0.03 [�0.11, 0.01] �0.08 [�0.13, �0.02]

DPV (mm/s) 62.66 [�90.70, 207.23] 122.87 [�66.39, 303.16]

(b) System validation Vm
OMC vs. Vm

IMU

Velocity r 1.00 [0.99, 1.00] 0.99 [0.98, 1.00]

RMSE (mm/s) 20.39 [14.27, 30.71] 20.64 [16.32, 29.04]

Angular kinematics
Elbow Angular
Velocity

r 0.99 [0.99, 0.99] 0.99 [0.98, 0.99]

RMSE (°/s) 4.53 [3.11, 6.22] 4.61 [3.02, 6.89]

Elbow
Extension

r 0.99 [0.99, 0.99] 0.99 [0.99, 0.99]

RMSE (°) 2.78 [2.05, 4.02] 2.89 [2.07, 3.87]

Shoulder
Flexion

r 0.99 [0.99, 0.99] 0.99 [0.99, 0.99]

RMSE (°) 1.03 [0.71, 1.49] 1.05 [0.69, 1.51]

Shoulder
Abduction

r 0.97 [0.94, 0.99] 0.98 [0.94, 0.99]

RMSE (°) 2.15 [1.43, 3.63] 2.37 [1.37, 3.81]

Trunk Angle r 0.99 [0.99, 0.99] 0.99 [0.98, 0.99]

RMSE (°) 0.38 [0.27, 0.52] 0.49 [0.35, 0.71]

These measures were derived from the comparison of kinematic trajectories using

IMU (DOT) and OMC (Cluster) for angular kinematics as well as hand marker and

kinematic model for end-effector velocity. Besides correlation and RMSE

between end-effector velocity trajectories, characteristic values of the end-

effector velocity with the difference in time to peak velocity (Dt to PV) and the

difference in peak velocity itself (DPV) are also reported (denoted with y). The
upper indices m and h stand for m:model and h:hand marker.
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interquartile ranges for all measurements. Intersystem correlation

for shoulder abduction was slightly lower than for other kinematic

trajectories with r . 0:97 (unaffected) and r . 0:98 (affected).

The RMSEs between OMC and IMUs were minimal for all

kinematic trajectories. For the end-effector velocity, median

RMSEs between the systems were fairly low with 20:39mm=s and

20:64mm=s for the unaffected and affected arm, respectively. The

biggest RMSEs observed regarding the joint angles were in the

elbow angle (unaffected: 2:7�[2�, 4�], affected: 2:8�[2�, 3:8�]).
These findings demonstrate an overall high linear association

and consistently low errors between the systems. Again, this

observation was consistent with visual inspection of the trajectories.
3.4 Movement quality measures

The results for the movement quality measures of OMC and

IMU (DOT) are shown in Figure 3 and summarized in Table 3.

Results for VQF can be found in the Supplementary Material

(see Table S7). In general, most of the measures showed high

agreement between OMC and IMU, which can be visually

observed in the plots (see Figure 3) and was supported by high

Pearson correlations, narrow LOAs and low biases (see Table 3).

End-effector velocity-based measures compared results from

Vm
OMC and Vm

IMU . Across the measures, we generally observed high

correlations (0:96 , r , 1), accompanied by few and small outliers.

An exception here is the time to first peak velocity, where several

outliers in the single trials were observed, resulting in a funnel shape

of error in Bland–Altman Plots and a lower correlation for averaged

trials (r ¼ 0:8). Also, interjoint coordination showed a few outliers

coming from two different patients.
3.5 Agreement of measures and clinical
contextualization

Table 3 summarizes the results of comparing movement

quality measures between OMC and IMU. It reports the Pearson

correlation for both individual and averaged trials, as well as the

bias and LOAs derived from the mixed-effects model.

Additionally, the table reports the MCIDs to facilitate

comparison with the upper (ULA) and lower (LLA) (LOAs). The

last column evaluates whether the LOAs are smaller than the

MCIDs (yes/no).
4 Discussion

4.1 Key summary

We hypothesized that IMUs are suitable for deriving

established movement quality measures for the drinking task of

stroke patients, with an agreement level high enough to satisfy

clinical requirements when compared to the gold standard. We

evaluated clinical relevance by checking whether the LOAs

between OMC and IMU for each measure are below the MCID
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FIGURE 3

Correlation and Bland–Altman plots for each measure, comparing OMC and IMUs (DOT). Each data point with low opacity represents a single trial.
Points with high opacity represent the average over a patient’s arm. Trials are color-coded per patient and shape-coded per arm. In the correlation
plots, the Pearson correlation coefficient for average trials is denoted. The Deming regression line is displayed as a dashed grey line. In the Bland–
Altman plots, bias and LOAs are displayed according to the results of mixed-effects model analysis.
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of the respective measure. We found that, except for time to first

peak velocity and number of movement units, all measures fulfill

the criteria.
4.2 Interpretation

Kinematic trajectories. The movement quality measures in our

study were primarily based on end-effector velocity and angular

kinematics. Therefore, we first validated our kinematic model for

the calculation of end-effector velocity and compared the

kinematic trajectories of IMU and OMC to gain insight into

their agreement at a basic level of analysis.

We validated the kinematic model for estimating end-effector

velocity by comparing it to the hand marker velocity. The high

linear association (r . 0:9) observed on both affected and
Frontiers in Digital Health 11
unaffected arms, coupled with minimal temporal discrepancies in

peak times, supports its temporal validity. However, some

differences in peak velocity magnitudes between the model-based

velocity and the hand marker velocity were noted, likely due to

coarse precision in segment lengths, imperfect cluster/sensor-to-

segment alignment, and the disregard of trunk-induced velocity.

Moreover, the model-based velocity showed less smooth

trajectories which might weaken its ability to accurately estimate

the number of movement units. Our findings suggest that while

peak velocities and smoothness may differ between these two

methods, the kinematic model remains reliable for estimating

end-effector velocity, particularly in temporal aspects. All

kinematic trajectories exhibited a strong linear association across

all trials for both affected and unaffected arms (medianr . 0:97),

along with a small median RMSE (end-effector velocity: 20mm=s,

joint angles: 1� to 3�) when comparing IMU and OMC
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1359776
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


TABLE 3 Statistical summary and clinical contextualization of agreement between measures derived from OMC and IMUs (DOT): This table presents the
Pearson correlations (rsingle and ravrg ) calculated across individual trials and averaged trials, respectively.

Movement Quality Measure rsingle ravrg bias ULA LLA MCID LOA < MCID
1 Velocity and movement time

1.1 Total movement time [s] 0.99� 0.99� �0.27 0.61 �1.15 2.4 y

1.2 PV [mm/s] 1� 1� �4.88 54.96 �64.71 247.2 y

1.3 Elbow angular PV [°/s] 0.98� 0.99� 2.58 18.09 �12.94 29.5 y

2 Movement strategy

2.1 Time to PV [s] 0.98� 0.98� 0 0.14 �0.13 0.4 y

2.2 Time to first PV [s] 0.7� 0.96� 0.06 0.53 �0.42 0.2 n

2.3 Time to PV [%] 0.97� 0.99� 0.11 7.92 �7.7 14.2 y

2.4 Time to first PV [%] 0.5� 0.8� �5.57 34.3 �45.43 11.9 n

3 Smoothness and coordination of movement

3.1 Number of movement units [n] 0.95� 0.99� �0.6 2.01 �3.21 3 n

3.2 Interjoint coordination 0.96� 0.97� 1.2 8.5 �6.1 9.6 y

3.3 Log Dimensionless Jerk 0.97� 0.99� �0.16 0.16 �0.47 0.7 y

4 Compensatory trunk displacement and maximal angular joint motions

4.2 Trunk displacement [°] 1� 1� �0.18 1.07 �1.43 7.4 y

4.3 Shoulder flexion - R [°] 0.98� 0.98� 0.51 3.61 �2.6 7.4 y

4.4 Elbow extension - R [°] 0.99� 0.99� 1.8 6.04 �2.43 8.7 y

4.5 Shoulder abduction - D [°] 0.98� 0.99� �0.14 2.48 �2.77 7.4 y

4.6 Shoulder flexion - D [°] 0.99� 0.99� �0.2 1.63 �2.03 6.7 y

Bias and LOAs are the results of mixed-effects model analysis. The MCIDs are those reported in Supplementary Table S6. The final column indicates whether the LOAs fall

below the MCID thresholds (y: yes, n: no) �(p , 0:01).
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measurements. Interestingly, there was no notable difference in

RMSE and r between the affected and unaffected arms,

indicating the robustness of IMUs in deriving kinematics even in

the presence of pathological compensatory movements. The

observed results for angular kinematics align with those reported

in previous IMU validation studies (33).

It is important to note that tremors and small movement

perturbations can impact the measurement accuracy of both

IMU and OMC systems, and that these may be exacerbated by

soft tissue effects (38, 39). Additionally, the orientation

estimation of IMUs can drop in accuracy when tremor

and small perturbations are present. This mainly becomes a

problem for measurements over longer periods of time, where

orientation estimation starts to drift (40). However, the

measurement time for the drinking task is short and the

magnitude of measurement error introduced by these factors is

likely minor compared to the magnitude of the values of the

established measures of the drinking task, which are focused on

assessing gross upper limb movements.

MCID. We agreed that it is better to underestimate MCIDs

than to overestimate them, and therefore applying stricter criteria

regarding measurement uncertainty than may even be necessary.

Before applying the MCIDs, we assessed whether our estimated

MCIDs are likely to be valid and behave in such a way. We

compared known MCIDs from previous studies (41) to those

estimated by our approach.

These studies reported MCIDs ranging from 2.5 to 5 s for total

movement time and 3 to 7 movement units for smoothness. In our

study, the estimated MCIDs ranged from 2.4 s to 3.5 s for total

movement time, and from 2.4 to 6.6 movement units for

smoothness. Taking the lowest MCID as we did in this study
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consequently underestimated these known MCIDs. Given this, we

assume that the MCIDs estimated for all other measures are

valid, likely to fall within true ranges of MCID, with a tendency

to underestimate them, and unlikely to overestimate them.

Agreement of measures and clinical contextualization. Visual

inspection of Bland–Altman and correlation figures showed no

difference in the agreement of IMU and OMC between the

affected and unaffected arms. This is consistent with our

previous analysis of kinematic trajectories. Consequently, we

consider it valid to calculate the LOAs by pooling the data of

both affected and unaffected arms.

The superior performance of measures calculated with DOT

over those calculated with VQF may be attributed onboard

orientation processing and access to a higher sample rate (800

Hz) of DOT (27). In contrast, VQF relies on raw sensor data of

120 Hz. In this study, the IMUs were used without performing

prior intrinsic sensor hardware calibration (accelerometer,

gyroscope, magnetometer) as intrinsic calibration methods are

not available from the manufacturer. Since VQF is open source,

fully transparent in processing, sensor brand independent, and

offers orientation estimation both with and without a

magnetometer it is still a considerable option for research and

clinical application.

LDLJ was investigated alongside the recommended kinematic

movement quality measures as an alternative or complementary

measure of smoothness. It was previously validated for IMUs in

a study involving four stroke patients performing tasks of the

Action Research Arm Test (34). Our results demonstrate that

IMU and OMC agree in measuring LDLJ, confirming these

previous findings. Additionally, we expand upon the previous

findings as by applying LDLJ to a different IMU sensor system
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(unlike the previously used Zurich Move IMUs), a larger

population of stroke patients, and a different task, thereby

suggesting broader applicability of the measure. The advantage of

LDLJ, particularly its time independence, became apparent in

Participant P1’s case. P1 required significantly more time to

complete the drinking task with his affected arm compared to

other participants, resulting in prolonged movement execution

time and a consequential increase in movement units. However,

when analyzed with LDLJ, P1’s movements showed no drastic

deviation in LDLJ values compared to other patients like P3, who

exhibited similar levels of impairment. We therefore suggest to

add LDLJ as smoothness measures to the drinking task,

especially when using IMUs.

Except for the time to first peak velocity, Bland–Altman and

correlation plots showed no major outliers, with minor

exceptions in interjoint coordination. These outliers primarily

appeared in patients with higher levels of impairment and

restricted joint mobility, particularly in elbow angle (extension)

and shoulder flexion. As interjoint coordination is the correlation

between elbow angle (extension) and shoulder flexion, the very

limited range of motion in these joints makes the measure more

susceptible to small inaccuracies. Consequently, even minor

measurement errors can have a disproportionate impact on the

calculation of interjoint coordination, underscoring the

importance of precise measurement techniques in patients with

limited joint mobility.

The lack of precision in the magnitude of end-effector velocity is

also the primary cause of substantial noise in the estimation of time

to first peak velocity, rendering these measures clinically unfit for

the time being.
4.3 Comparison with other studies and
generalizability of results

Research on the accuracy of kinematic measurements with

IMUs often involve comparison to a gold standard. Technical

studies often employ industrial robots as benchmark (42), but

across studies the most commonly used gold standard are OMC

systems. Studies on IMU accuracy investigated a wide range of

body movements, from gait (43) to upper limb motions (33),

and revealed that accuracy varies with both the type of

movement and the specific joint or segment involved.

A recent detailed review of upper limb kinematic measurement

with IMUs analyzed 52 validation studies and compared the data

processing methods and measurement errors, specifically

regarding upper limb joint angles (33). Across all studies, which

used different sensors, algorithms and upper limb movement

tasks, the discrepancy between IMU and OMC measurements for

humerothoracic movements was around 4�. Specifically, the

elbow joint measurements were found to be more accurate, with

an RMSE as low as 2�. In contrast, the glenohumeral joint

movements reported RMSEs of at least 6�, and the

scapulothoracic joint movements had RMSEs exceeding 10�.
Our study did not examine some joint angles of the upper

limb (e.g., internal rotation of shoulder, pronation/supination,
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scapulothoracic joint), since these were not required to derive the

movement quality measures for the drinking task. However, the

joint angles we did analyze aligned well with the existing

literature, generally even showing better accuracy than previous

studies with median RMSEs below 3� for all included joint angles.

The results of our study also align with previous IMU validation

studies specifically focusing on the drinking task in terms of joint

angle accuracy (22, 24). In terms of end-effector velocity during

the drinking task with IMUs our study is the first one to test a

kinematic model for this purpose. While our method allows for

very high temporal resolution and reconstruction of end-effector

velocity, the integration-based analysis used in a previous study on

the drinking task reports even smaller RMSEs (23), but such an

analysis might be vulnerable to sensor drift. Thus, a combination

of both methods would likely yield the most robust and accurate

results. Our results suggest that the orientation estimation of

Xsens IMUs surpasses other advanced algorithms (VQF), which is

supported by other literature as well (33). This suggests that

alternative IMU models might deliver slightly less precise

orientation and kinematic measurements.

Furthermore, when considering the applicability of our

methods to other movement tasks, existing research indicates

that errors similar to those we reported for upper limb

movements in the drinking task are likely to be observed

(22, 33, 24, 23). Therefore, we anticipate our methodology will

yield consistent error margins across various upper limb

activities, assuming they do not significantly diverge from the

movements studied in our drinking task research.

Our study stands out from other studies in that we not only

compare the kinematic trajectories with each other but also the

measures that can be used in clinical application, in this case,

measures that quantify movement quality. Furthermore, we put

the magnitude of measurement error in relation to a clinically

acceptable error which increases the relevance of our methods

and results for the translation into clinical application.
4.4 Limitations

Our analyses and results, while promising, do not yet provide

the basis for a fully independent IMU-based solution for

obtaining movement quality measures. The initial alignment of

the global coordinate system between the OMC cluster and IMU

also resolves potential heading differences between IMUs. The

brief recording times minimized the impact of drift over time,

which is a common issue with IMUs. Also, phase classification

still purely relied on OMC data. Next, no segment-to-sensor

calibrations were used, as we relied on sensor alignment with

anatomical axes by careful placement. Additionally, we observed

differences in velocity peak values between the employed

kinematic model and hand marker velocity, which hinders cross-

sensor system comparison of this value. Moreover, although the

method we employed to calculate MCIDs from our study

population’s data produces results consistent with those MCIDs

that have been empirically studied, it is crucial to acknowledge

that the majority of our MCIDs lack further empirical validation.
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4.5 Implications and suggestions for future
studies

Our study establishes a benchmark in IMU performance,

demonstrating the feasibility of achieving a clinically acceptable

level of agreement between OMC and IMU measurements to

derive movement quality measures in stroke patients performing

the drinking task. Our findings pave the way for future research

aimed at developing a standalone IMU solution. The key areas

for this future investigation include:

1. Standardization of sensor-segment alignment and placement:

The development of a standardized protocol for sensor

alignment and placement is essential for ensuring consistent

and accurate data collection.

2. IMU phase classification: Implementing and validating an

IMU phase classification algorithm is crucial for an IMU

standalone solution.

3. Performance stability trials: Investigating the number of trials

needed to average over to achieve performance stability with

IMUs, similar to the established protocols for OMC (15), also

is crucial for clinical application.

4. Empirical MCIDs: Further studies to derive MCIDs will

strengthen both our findings and the validity of clinical

contextualization.

5. Kinematic Model Enhancement: Enhancing the kinematic

model, especially by incorporating more sophisticated

methods for end-effector velocity calculation and adding

kinematic constraints using tools like OpenSim/OpenSense,

could significantly improve the reliability and robustness of

the measurement system.

If future research successfully bridges these identified gaps enabling

a standalone IMU solution with minimal error, our results point

towards the clinical applicability of using IMU-instrumented

drinking tasks to quantitatively assess upper limb movement

quality in stroke patients.
5 Conclusion

In this study, we examined the agreement between OMC and

IMUs in acquiring movement quality measures for stroke

patients with mild to moderate impairment levels performing the

drinking task. Our study goes beyond mere agreement analysis; it

evaluates LOAs of each measure in relation to their respective

MCID, thereby contextualizing the agreement in terms of its

clinical relevance.

Our results indicate no notable differences in kinematic

accuracy between groups of varying impairment levels,

demonstrating the overall robustness of the IMUs in

accurately capturing also pathological movements. All

measures, except for the time to first peak velocity and

number of movement units, exhibited LOAs below the MCID,

indicating interchagebility of systems without relevant loss of

precision. Additionally, We investigated LDLJ as an

alternative measure of movement smoothness. Our findings
Frontiers in Digital Health 14
both confirm and extend previous validation studies on LDLJ

in terms of patient population, the performed tasks, a the

specific sensors, suggesting its validity as obtained with IMUs

accross sensors and tasks.

We recommend refining the calculation of end-effector

velocity to reduce the impact of noise on the detection of the

first peak velocity and differences in peak velocity when

comparing hand marker velocities with kinematic model-

based velocities.

The findings indicate the interchangeability of OMC and

IMU systems without loss of precision for most measures,

which is a promising development for their potential use in

clinical settings to quantify movement quality. In conclusion,

our study presents encouraging results that support the

clinical validity and applicability of IMUs for the assessment

of movement quality measures in stroke patients performing

the drinking task.
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