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Accurate balance assessment is important in healthcare for identifying and
managing conditions affecting stability and coordination. It plays a key role in
preventing falls, understanding movement disorders, and designing appropriate
therapeutic interventions across various age groups and medical conditions.
However, traditional balance assessment methods often suffer from subjectivity,
lack of comprehensive balance assessments and remote assessment capabilities,
and reliance on specialized equipment and expert analysis. In response to these
challenges, our study introduces an innovative approach for estimating scores
on the Modified Clinical Test of Sensory Interaction on Balance (m-CTSIB).
Utilizing wearable sensors and advanced machine learning algorithms, we offer
an objective, accessible, and efficient method for balance assessment. We
collected comprehensive movement data from 34 participants under four
different sensory conditions using an array of inertial measurement unit (IMU)
sensors coupled with a specialized system to evaluate ground truth m-CTSIB
balance scores for our analysis. This data was then preprocessed, and an
extensive array of features was extracted for analysis. To estimate the m-CTSIB
scores, we applied Multiple Linear Regression (MLR), Support Vector Regression
(SVR), and XGBOOST algorithms. Our subject-wise Leave-One-Out and 5-Fold
cross-validation analysis demonstrated high accuracy and a strong correlation
with ground truth balance scores, validating the effectiveness and reliability of
our approach. Key insights were gained regarding the significance of specific
movements, feature selection, and sensor placement in balance estimation.
Notably, the XGBOOST model, utilizing the lumbar sensor data, achieved
outstanding results in both methods, with Leave-One-Out cross-validation
showing a correlation of 0.96 and a Mean Absolute Error (MAE) of 0.23 and 5-
fold cross-validation showing comparable results with a correlation of 0.92 and
an MAE of 0.23, confirming the model’s consistent performance. This finding
underlines the potential of our method to revolutionize balance assessment
practices, particularly in settings where traditional methods are impractical
or inaccessible.
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1 Introduction

Balance is frequently used among healthcare professionals in various clinical settings,

often associated with stability and postural regulation (1). Maintaining balance is critical in

an individual’s functional status and safety. Balance may be impacted by various factors,

including diseases, acute and chronic neurogenic injuries, and the natural aging process
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(2, 3). Assessing motor performance, which includes gait and

stability, offers a valuable clinical approach for predicting a range

of health implications. These include the risk of falls, risk of

hospitalization, the onset of neurological disorders such as

Parkinson’s disease, cognitive decline, and even mortality (4, 5).

Recent research has shown that balance and gait disorders are

prevalent among individuals with different forms of dementia,

including Alzheimer’s disease (AD) and even in its early stages,

such as mild cognitive impairment (MCI) (6). These disorders

can considerably affect cognitive and functional abilities (7),

leading to challenges in daily activities for adults with dementia,

such as self-care, home maintenance, walking, and driving

(8–10). These findings underscore the crucial need to assess and

measure balance among adults.

There are various methods and tools used to measure balance.

Several clinical assessments rely on visual examination by

healthcare professionals, such as the Romberg test and Berg

Balance Scale (BBS), or self-administered questionnaires like the

Activities-specific Balance Confidence Scale (11–13). The Romberg

test assesses balance by having the individual stand with feet

together and arms at their side or crossed in front, first with eyes

open and then closed. However, this test only evaluates balance on

a stable surface and may not reflect the challenges encountered in

dynamic environments. BBS, which includes 14 functional

activities, provides a broader assessment but necessitates more

extended periods and specialized expertise for administration. The

Timed Up and Go (TUG) test is another test that measures

mobility and requires a clear path of three meters, limiting its

applicability in space-constrained environments. Moreover, it

primarily focuses on the duration to complete the task rather than

the quality of movement and balance during the performance

(14). Self-administered questionnaires like the Activities-specific

Balance Confidence Scale offer subjective self-assessment, which

can be influenced by an individual’s perception and may not

accurately represent actual balance abilities.

The Modified Clinical Test for Sensory Interaction and Balance

(m-CTSIB) is a dynamic assessment tool that evaluates how

individuals utilize their sensory systems to maintain balance.

Distinct from the Romberg test, BBS, and TUG, the m-CTSIB

adds complexity by including conditions that test balance with

both eyes open and closed and on solid and compliant surfaces.

Furthermore, the m-CTSIB can be completed quickly, typically

less than a minute. Its rapid execution, coupled with its

comprehensive nature, enhances its practical utility in various

clinical settings. The m-CTSIB’s design to challenge multiple

sensory inputs is not only more reflective of real-world scenarios

where individuals must maintain balance with varying sensory

feedback but also allows for early detection of balance

impairments and the facilitation of targeted rehabilitation plans.

For example, in older adults with Alzheimer’s disease, condition

four of the m-CTSIB, which assesses balance with visual input

removed and standing on a compliant surface, has significantly

impacted functional capacity, highlighting its utility in this

population (15, 16). Similarly, for individuals with idiopathic

Parkinson’s disease, there has been evidence of the test’s validity,

with accelerometer data from the m-CTSIB showing consistency
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with force plate measurements, reinforcing its application for these

patients (17–19). Similar to the Romberg test, BBS, and TUG,

clinicians evaluate m-CTSIB visually as the duration of the tests.

A significant limitation of these methods is their dependence

on the clinician’s expertise, which can lead to variability in

results. Moreover, these tests often only consider the duration of

the test as the final measure, potentially overlooking crucial

aspects of balance and stability. This limitation can result in

inconsistent construct and criterion validity, varying based on the

patient population and the method of administration, thus

highlighting the need for more objective and comprehensive

assessment tools in balance evaluation.

Employing recording instruments, such as Falltrak II (MedTrak

VNG, Inc.), for assessing m-CTSIB introduces a systematic balance

quantification, examining the integration of somatosensory, visual,

and vestibular inputs. Falltrak II measures deviations of the center

of pressure (COP) from the center of mass (COM), thereby offering

a comprehensive and objective analysis of an individual’s postural

stability (20). This objective quantification enhances the precision

of m-CTSIB, rendering it a more exact tool for conducting

detailed assessments of balance (21, 22). However, their primary

limitation lies in the reliance on specialized, expensive

equipment, which may not be readily accessible in all clinical

settings. Additionally, these instruments often lack the flexibility

for remote assessments, limiting their application in home or

community-based healthcare scenarios where such evaluations

are increasingly necessary.

In response, recent research has focused on integrating

wearable sensor technology and machine learning algorithms to

improve the accuracy and accessibility of balance assessments.

Wearable sensors also offer a practical and cost-effective solution

for capturing detailed movement data, essential for balance

analysis. Positioned on areas like the lower back and lower limbs,

these sensors provide insights into three-dimensional movement

dynamics, essential for applications such as fall risk assessment

in diverse populations. Coupled with the evolution of machine

learning, these sensor-derived datasets transform into objective,

quantifiable balance metrics, utilizing an array of machine

learning techniques. For example, research by Bhargava et al.

showcased the potential of using wearable coupled with machine

learning to discern individuals with balance impairments from

those without (23). Similarly, LeMoyne et al.’s work with support

vector machines (SVM) and neural networks offered new

insights into the gait characteristics of individuals with

Friedreich’s ataxia compared to healthy controls (24). Howcroft

et al. employed wearable sensors to classify fall risk in older

adults, with SVM and neural networks emerging as the most

effective intelligent modeling techniques for this purpose (25).

Other examples include the objective assessment of TUG (26)

and the approximation of BBS scores (27) using wearable sensors

and machine learning. Please refer to (28, 29) for a detailed

review of recent advancements in wearable sensor technology

and machine learning for balance assessment.

Despite these advancements, a significant gap remains in the

objective assessment of m-CTSIB scores without relying on

specialized equipment like the Falltrak II. This dependency
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restricts access and complicates implementation in remote or

underserved areas. Our study addresses this gap by introducing a

novel approach using wearable sensors and machine learning to

estimate m-CTSIB scores. By replacing the specialized force plate

equipment, our approach significantly contributes to balance

assessment by making it more accessible, cost-effective, and

capable of remote administration. Such innovation would extend

the benefits of comprehensive balance evaluation to a broader

range of clinical and everyday settings.

Our methodology involved collecting motion data from 34

participants under four different sensory conditions of m-CTSIB

using an array of inertial measurement unit (IMU) sensors

complemented by a specialized system (Falltrak II) for precise

m-CTSIB score evaluation. The wearable sensor data served as

the input for our machine-learning models, and the

corresponding m-CTSIB scores from Falltrak II acted as

the ground truth labels for model training and validation.

Multiple machine-learning models were then developed to

estimate m-CTSIB scores from the wearable sensor data.

Additionally, we explored the most effective sensor placements to

optimize balance analysis. This novel approach represents a

significant advance in objective balance assessment, especially

valuable for remote monitoring in home-based or nursing care

settings, potentially transforming balance disorder management.

Our study addresses a crucial gap in balance assessment and sets

a new benchmark in the application of wearable technology and

machine learning in healthcare.
2 Materials and methods

In this section, we detail our comprehensive approach

encompassing data collection, signal processing techniques, and

the application of machine learning methodologies. Figure 1

illustrates the key steps involved in our data processing and

machine learning approach. Our system utilizes data from

wearable sensors and Falltrak II scores as input and ground truth

scores, respectively. The following sections provide a detailed

description of each step in the process.
FIGURE 1

The diagram illustrates the proposed approach for estimating the m-CTSIB
through the Falltrak II system serve as the reference for training and testing
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2.1 Subjects

The study recruited 34 participants, 12 males and 23 females,

aged 21–88 years (see Table 1). The study adhered to the

principles of the Helsinki Declaration and was approved by the

Institutional Review Board (IRB). Informed consent was obtained

from each participant through signed consent forms.
2.1.1 Participant selection criteria and population
comparability analysis

The participant cohort for our study was selected to align with

the demographic that commonly undergoes the m-CTSIB. Focused

on community-dwelling adults and older adults, our inclusion

criteria spanned those without cognitive deficits to those with MCI

and early-stage AD, deliberately excluding individuals with more

advanced AD. This choice was informed by evidence pointing to

the m-CTSIB’s reliability in populations with mild cognitive

variations and its capacity to offer significant insights into balance

and mobility (30). The demographic inclusivity ensures our

findings apply to the broader clinical and research contexts where

the m-CTSIB is an established tool for balance assessment.
2.2 Recording tools

The Falltrak II system by MedTrak VNG, Inc., along with a

series of IMU sensors, constituted the primary recording tools in

this study. The Falltrak II system featured a pressure-sensitive

platform that measured shifts in COP, both anterior-posterior

(AP) and medial-lateral (ML). It provided a measure of the path

length (PL) and average velocity (AV) of the COP. The units for

PL are inches, representing the distance traveled by the COP,

while AV is measured in inches per second, representing the

average velocity of the COP movement. In addition to the Falltrak

II system, IMU sensors, which included two Shimmer sensors and

six APDM sensors, were utilized to capture comprehensive

accelerometer and gyroscope data. The sensors’ technical

specifications closely match, ensuring data consistency for our
scores from wearable sensor data. m-CTSIB scores obtained in parallel
our machine learning algorithms.
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TABLE 1 Participant demographics.

Total participants 34 Right-handed 31

Gender (male, female) 12, 22 Hight (inches) 65:31+ 3:72

Age range (year) 58:78+ 18:06 Weight (pound) 169:34+ 45:88

Values are presented as numbers, mean + SD, and/or [range].
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study. Table 2 compares the APDM and Shimmer sensors directly,

both operating at 128 Hz with a range of +16 g across three axes,

facilitating robust comparative analysis. Section S2 in the

Supplementary Material provides more details about APDM and

Shimmer sensors. A microphone attached to the participants’

chest was also used for audio cues, essential for data segmentation

across different experiments as elaborated in Section 2.6.

Section S3 in the Supplementary Material provides more details

on the measurement framework provided by the FallTrak II system.
2.3 Wearable sensor placements

IMU sensors were placed on the participants to gather

accelerometer and gyroscope data (see Figure 2A). The Shimmer

sensors were placed on the upper arms, positioned just outside

and below the deltoid muscle–the primary muscle shaping the

contour of the shoulder. This specific placement was chosen to

ensure central alignment and effective capture of upper body

movements, facilitating detailed analysis of arm and shoulder

dynamics crucial for understanding overall body sway. The APDM

sensors were placed at several key points on the body for

comprehensive motion analysis. One sensor was placed on each

ankle, centered to track lower limb movements. This location is

important for assessing leg stability and the role of the lower

extremities in balance maintenance. Another sensor was secured

on the lumbar region, specifically centered at the L3 vertebra. This

placement is key for monitoring core body movements, offering

valuable data on how the body’s midsection, an area pivotal for

balance, responds to different postural demands. The sternum

sensor was affixed to the flat surface of the chest, positioned just

below the meeting point of the collar bones, ensuring it was

centered for optimal data capture of the torso’s movements,

contributing to our comprehension of how central body motion

impacts balance. Lastly, sensors were placed on the wrists, akin to

wearing a watch, to monitor wrist and hand movements,

providing insights into the fine motor adjustments made by the

participants to maintain balance. The careful positioning of these

sensors ensured accurate and reliable data collection in our study.

Sensor placement was conducted by trained research personnel

adhering to a standardized protocol, utilizing specific anatomical
TABLE 2 Specifications of APDM and shimmer sensors used in the study.

APDM (31) Shimmer (32)
Axes 3 axes 3 axes

Noise 120mg=
ffiffiffiffiffiffi
Hz

p
125mg=

ffiffiffiffiffiffi
Hz

p

Sample rate 128 Hz 128 Hz

Range +16 +16

Resolution 17.5 bits 16 bits
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landmarks to ensure consistent participant positioning. We used

detailed visual and written guidelines and preparatory practice

sessions for the team to minimize variability in sensor attachment.

Anatomical reference points, such as the deltoid muscle for the

upper arms and the L3 vertebra for the lumbar region, were

crucial for achieving uniformity. Furthermore, the team regularly

reviewed and calibrated their techniques based on feedback,

ensuring the accuracy and reliability of data collection were

maintained throughout the study. This rigorous methodology was

pivotal in addressing potential placement variability between

subjects, thereby enhancing the study’s overall data integrity.

The consistent coordinate direction was established for all sensors

to analyze and compare the recorded signals (see Figure 2B). The

APDM sensors’ Y-axis was oriented away from the skin, and

the X-axis followed the right-hand rule. The Z-axis, defined by the

buttons on the sensor sides, faced the ground. For the Shimmer

sensors, the port side of each sensor was oriented away from the

ground, with the Y-axis facing outward from the skin. The X-axis

was aligned according to the right-hand rule. All sensors, except

those placed on the arms, recorded data from the accelerometer

and gyroscope in three dimensions (X, Y, and Z), with the X-axis

representing ML displacement, the Y-axis indicating AP

displacement, and the Z-axis aligning with VT (vertical) motion.

Due to the standing position, the orientation was adjusted for the

sensors placed on the arms. The X-axis represented AP

displacement, and the Y-axis indicated ML displacement.
2.4 Data synchronization

To ensure the accuracy and consistency of data across all

sensors, all sensors were set to a uniform sampling frequency of

128 Hz and were synchronized. The APDM sensors were

synchronized during their calibration phase. Section S4 in the

Supplementary Material explains our technique to synchronize

the Shimmer sensors with the already synchronized APDM

sensors. By initializing all sensors through their respective

systems and connecting them to a single PC, we aligned their

internal clocks with the PC’s clock, minimizing the clock drift

risk. Considering the brief duration of our data collection

sessions, typically under one minute, the potential for significant

clock drift was substantially reduced. Both the Falltrak II system

and the IMU sensors were calibrated before each session.
2.5 Study design

Participants underwent a series of methodically structured

steps as part of the study design.

• Placements of wearables: IMU sensors were placed on the

participants’ bodies as described in Section 2.3

• Positioning on Falltrak: Participants stood barefoot on the

Falltrak II platform, with specific instructions for initial

positioning to ensure accuracy in balance measurement.

Participants were instructed to adopt a standardized stance
frontiersin.org
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FIGURE 2

Sensor placement and orientation. (A) Shows the placement of APDM (in blue) and Shimmer (in orange) sensors, along with a microphone, on the
human body. (B) Provides a detailed view of the sensors’ orientation, indicating the axes’ alignment for accurate data capture.
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throughout the testing: feet shoulder-width apart, arms hanging

at the sides, and eyes directed forward with no repositioning

between conditions to maintain the continuity and efficiency

of the test procedure. The procedure was immediately halted

if any deviation from the prescribed posture was observed,

such as unauthorized movement of the arms or opening of

the eyes during conditions requiring them to be closed.

Additionally, immediate support was provided to participants

who showed signs of instability or were at risk of losing

balance, thereby preserving the consistency of the test

conditions and safeguarding participant well-being.

• Order of measurements: Tests conducted in a fixed sequence

listed below. This order was designed to increase the challenge

to participants’ balance systems progressively. In addition,

these tests assess balance performance when one or more

sensory systems are compromised.
Fronti
- Eyes open, stable surface (EOSS): Subjects stood on the

hard surface of the platform with their eyes open.

Participants stand on a stable surface with their eyes open

in this condition. Here, all three primary sensory systems

for balance (visual, somatosensory, and vestibular) are

available for maintaining posture and equilibrium. The

EOSS condition does not intentionally compromise any

sensory system; instead, it serves as a baseline to evaluate

balance under normal conditions where the visual and

somatosensory inputs are intact and unaltered.

- Eyes closed, stable surface (ECSS): Participants stood

on the hard surface but with their eyes closed,

increasing reliance on somatosensory and vestibular

inputs for balance.
ers in Digital Health 05
- Eyes open, foam surface (EOFS): This condition involved

standing on a foam pad placed on the platform with eyes

open. This setup is designed to challenge the

somatosensory system by introducing an unstable surface

under the feet, compromising the reliability of

somatosensory feedback used for balance. The visual and

vestibular systems remain engaged and unaltered,

providing the primary sources of sensory input for

balance maintenance in this condition. The foam surface

effectively simulates a compromised somatosensory

condition, testing the participant’s ability to maintain

balance with reduced somatosensory input.

- Eyes closed, foam surface (ECFS): In the most

challenging condition, subjects stood on the foam pad

with their eyes closed, significantly reducing visual and

somatosensory feedback.
• Duration of each test and no breaks: Each test condition lasted

for approximately 11 s, following the 10 s guideline from the

Falltrak II system to ensure compatibility with the equipment’s

data collection parameters while still obtaining meaningful

balance performance metrics (17). The tests were conducted

without breaks between tests to simulate continuous balance

challenges and streamline the assessment process.
2.6 Pre-processing considerations

Following data collection, we obtained one accelerometer and

one gyroscope recording from each wearable sensor for all the

experimental conditions: EOSS, ECSS, EOFS, and ECFS.
frontiersin.org
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TABLE 3 The extracted features for each wearable sensor recording.

Feature name Signals # Features
Statistical 1 – Standard deviation X, Y , Z 3

2 – Skewness X, Y , Z 3

3 – Kurtosis X, Y , Z 3

4 – Sparsity X, Y , Z 3

Entropy 5 – Shannon entropy X, Y , Z 3

6 – Sample entropy X, Y , Z 3

7 – Frequency-domain entropy X, Y , Z 3

Frequency 8 – Power of the main frequency X, Y , Z 3

9 – Power of the secondary frequency X, Y , Z 3

10 – Main frequency X, Y , Z 3

11 – Secondary frequency X, Y , Z 3

Time 12 – Difference sum X, Y , Z 3

13 – Average jerk X, Y , Z 3

14 – Cross correlation XY X, Y 1

15 – Cross correlation XZ X, Z 1

16 – Cross correlation YZ Y , Z 1

Total number of features 42
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Associated with each condition, we also derived the AV and PL

scores from the Falltrak II system, representing the m-CTSIB

scores. We used the chest-mounted microphone’s recorded vocal

cues to determine the start and stop of each condition and

segment each participant’s wearable sensor data into four distinct

files, each corresponding to a different experimental condition.

To account for potential transitions on or off the board, which

could skew our analysis, we omitted a 0.5 s interval from the

beginning and the end of each wearable sensor data segment.

This pre-processing resulted in wearable data, with an average

duration of 11 s (+1.6 s standard deviation) per condition.

Accompanying each wearable sensor recording were their

corresponding m-CTSIB AV and PL scores from the Falltrak II

system. These data were then organized and stored in :csv format

for further analysis.

In our study, among the participants, 31 were right-sided and 3

were left-sided. Recognizing the significant influence of limb

dominance on postural stability and control, as highlighted in

prior research by Promsri et al. and Yoshida et al., we

categorized the sensor data to reflect each individual’s dominant

and non-dominant sides (33, 34). This approach ensures a more

accurate representation of balance performance, taking into

account the variability introduced by side dominance.

Our decision to focus on estimating AV scores through our

machine learning models is rooted in the clinical significance of

AV in balance assessments for evaluating balance and stability,

where higher scores indicate increased instability (35, 36). This

emphasis on AV is further supported by our analysis, which

revealed a strong Pearson correlation coefficient between AV and

PL scores across all test conditions—0.94 for EOSS, and 1.00 for

ECSS, EOFS, and ECFS. This high correlation demonstrates that

variations in AV correspond closely with changes in PL,

highlighting their interconnectedness in assessing balance.

We also decided to develop a single machine learning model

for all EOSS, ECSS, EOFS, and ECFS experimental conditions.

This approach improves the diversity of the dataset and the

model’s ability to generalize, reflecting varied sensory and

environmental challenges. Our analysis showed consistent sensor

data patterns across conditions, supporting the effectiveness of

one model to accurately estimate AV scores in diverse

experimental conditions, enhancing both accuracy and versatility

for balance assessment and rehabilitation applications.
2.7 Feature extraction

For each wearable sensor data, we extracted features

independently from the X, Y, and Z axes. This process yielded a

total of 42 features for each IMU data. Features were extracted

from the full, unsegmented signal to maintain data integrity

within each m-CTSIB test condition, as we chose not to

implement signal segmentation due to the short duration of our

data segments (approximately 11 s each). The extracted features

(listed in Table 3) encompassed a wide range of data

characteristics for their potential to reveal the subjects’ balance

performance. These features are described in (37) and include:
Frontiers in Digital Health 06
• Statistical features: These features, such as standard deviation

(SD), skewness, kurtosis, and sparsity, provide insights into

the distribution and variability of the sensor signals and the

stability and consistency of the subjects’ balance.

• Time-domain features: Features like difference sum, average jerk,

and cross-correlation (XY, YZ, XZ) capture movement dynamics

over time, reflecting how balance is maintained or adjusted.

• Entropy measures: Shannon entropy, sample entropy, and

frequency-domain entropy offer an understanding of the

complexity and predictability of the sensor signal patterns,

which are indicative of balance control mechanisms.

• Frequency-domain features: These features, including the

power of the main and secondary frequencies and their

respective frequency values, reveal the dominant patterns of

movement and rhythmic stability.

2.8 Machine learning models and feature
selection

PredictingAVscores fromwearable-derived featureswas formulated

as a regression problem:AV ¼ f ð featuresÞ, where ’features’ are derived
from the wearable sensor data. In selecting the appropriate machine

learning models for our study, we considered various factors, such as

the nature of our data, the complexity of the regression problem, and

the need for both interpretability and predictive accuracy. Multiple

Linear Regression (MLR) was chosen for its simplicity and ease of

interpretation, providing a clear understanding of how each feature

influences the AV scores linearly. MLR models the relationship

between a dependent variable Y (AV scores) and independent

variables X1, X2, . . . , Xn (wearable-derived features):

Y ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn þ e

Here, b0 is the intercept, b1, b2, . . . , bn are the coefficients,

and e is the error term (38).
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Support Vector Regression (SVR) was selected due to its

effectiveness in handling non-linear relationships and its

robustness to outliers, common in sensor data. SVR is a SVM

variant used for regression problems (39). The SVR model can

be represented as:

Y ¼ hw, fðXÞi þ b

where Y is the AV score, X is the feature vector, fðXÞ is the feature
vector transformed by the kernel function, w is the weight vector,

and b is the bias. The kernel function transforms the original data

into a higher dimensional space where a linear regression can be fit.

Finally, eXtreme Gradient Boosting (XGBOOST) was included

for its advanced capabilities in handling complex, high-

dimensional data and its inherent feature selection mechanism,

making it adept at capturing intricate patterns in the data (40).

The core principle of XGBOOST involves sequentially

constructing an ensemble of decision trees, where each tree is

built to correct the residuals or prediction errors made by the

preceding trees. This additive model is represented as:

Y ¼
XK

k¼1

fkðXÞ, fk [ F

where Y is the AV score for the feature set, X, K represents the

number of boosting rounds (trees), and F is the space of all

regression trees.
2.9 Training and testing setup

We applied both Subject-wise One-Leave-Out and 5-fold cross-

validation methods for splitting the dataset into training and

testing sets. For each iteration, one subject’s data was set aside

for testing in the One-Leave-Out method, and for the 5-Fold

method, data was divided into five parts, with one part used as

the test set in each fold. To ensure the reliability and

generalizability of our models, the training data was shuffled

before being divided into training and validation sets, with 80%

of the data used for training and the remaining 20% for

validation. This validation set was used as an interim test to fine-

tune model hyperparameters and avoid overfitting.

Hyperparameters for our models were optimized through a

grid search strategy, focusing on the key parameters of each

model. For SVR, we focused on optimizing the regularization

parameter C between 0.1 and 10, epsilon 1 from 0.01 to 0.2, and

Linear and Radial Basis Function (RBF) kernel functions. In the

case of XGBOOST, the feature subsampling rate range was set as

ð0:1, 0:5Þ. For maximum depth, we explored values from 3 to

10 in steps of 2 (i.e., 3 � maximum depth � 10, step=2), and for

number of trees, the range was from 10 to 200 in increments of

20 (i.e., 10 � number of trees � 200, step=20).

The performance of our machine learning models was

evaluated based on minimizing the Mean Absolute Error (MAE)

between the predicted AV scores from the wearable sensor data
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and their ground truth AV scores from Falltrak II. We also

provided the Pearson Correlation coefficient (r) as another

objective evaluation metric.

2.9.1 Feature selection strategy
During each iteration of the MLR and SVR subject-wise One-

Leave-Out or 5-fold cross-validation, we calculated Pearson

correlation coefficients between each IMU-derived feature and

the AV scores from the training subset. Only features with a

correlation coefficient above 0.7 were chosen for model inputs.

This approach prevented leakage between the training and testing

datasets and ensured the inclusion of features with a significant

linear relationship with the AV scores. No separate feature

selection was necessary for XGBOOST, which integrates its

feature selection within the learning algorithm.
3 Results

This section presents a detailed analysis of the results obtained

from our study. This includes FalltrakII measurement reports, a

thorough analysis of features, an evaluation of the optimal sensor

placement for estimating m-CTSIB AV scores, and a

comprehensive assessment of the performance of our three

machine learning methodologies.
3.1 Falltrak II measurements for participants

Falltrak II traces participants’ real-time COP during the

m-CTSIB test. Figure 3 shows the Falltrak II report for a

participant and how PL and AV vary through different conditions,

with ECFS being the most challenging with the highest PL and

AV scores. Table 4 lists the mean and SD values of PL and AV

for the study participants. PL is a measure of how much the COP

moves during the test. A shorter path length indicates a better

balance performance. AV is a measure of how fast the COP

moves during the test. A lower average velocity indicates a better

balance performance. We conducted a correlation analysis to

evaluate the relationship between AV scores across EOSS, ECFS,

EOFS, and ECFS conditions. Figure 4A illustrate a substantial

correlation between the eyes-open conditions, EOSS and ECFS,

with coefficients reaching 0:73. Conversely, the least challenging

condition (EOSS) demonstrates the lowest correlation with the

most demanding condition (ECFS), yielding coefficients of 0:47.

Additionally, Figure 4B presents a histogram analysis comparing

these conditions, revealing variations in the distribution of AV

scores across them. This observation suggests that each condition

poses a unique challenge for balance assessment, offering novel

insights into the assessment of balance.
3.2 Feature analysis of wearable sensors

We extracted features from the accelerometer signals collected

during each m-CTSIB condition as explained in Section 2.7. Our
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FIGURE 3

The variations in path length (PL) and average velocity (AV) across four m-CTSIB conditions of one of our subjects. The horizontal and vertical axes
represent the displacement of the subject along the x-axis and y-axis, respectively. The green lines represent the real-time tracing of the subject’s
center of pressure (COP) during the test, and the pink circles indicate the standard deviation of the subject’s COP.

TABLE 4 Summary of average velocity (AV) and path length (PL) for test
conditions.

EOSS ECSS EOFS ECFS
AV (inches/second) 0:33+ 0:16 0:63+ 0:32 0:70+ 0:36 1:94+ 1:00

PL (inches) 3:32+ 1:58 6:36+ 3:16 7:05+ 3:58 19:47+ 9:99

Values are presented as mean + SD. AV and PL stand for average velocity and path

length from the COP, respectively. AV, average velocity; PL, path length; EOSS, eyes

open, stable surface; ECSS, eyes closed, stable surface; EOFS, eyes open, foam

surface; ECFS, eyes closed, foam surface.
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feature analysis was conducted to determine the relevance of these

sensor-derived features in predicting m-CTSIB AV scores. To

ensure uniform contribution across all features in our model,

each was normalized using its mean and standard deviation. This

normalization process prevented any feature from dominating

due to scale variance. We then computed correlation coefficients
FIGURE 4

Falltrak II AV score analysis. (A) Depicts the correlation analysis of AV scores ac
four distinct m-CTSIB conditions.
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between the normalized features and the AV scores to assess the

relevance of each feature to balance. Figure 5 displays a series of

radar plots for different sensor locations: the ankle, lumbar,

sternum, wrist, and arm. These plots illustrate the correlation

coefficients of each feature from 0 to 1, with higher radial

distances indicating stronger correlations. The features arranged

counterclockwise as per Table 3, include cross-correlation

features (XY, XZ, and YZ) as the 14th feature on respective axes.

The analysis revealed that features related to ML movements

showed the highest correlation values, followed by those related

to AP movements, highlighting the significance of ML and AP

movements in balance control. Among the sensors, the ankle

showed the highest correlation values for balance-related features,

followed by lumbar, sternum, wrist, and arm sensors in that order.

We considered features with a correlation coefficient greater than

0.7 with the balance score as significant features. Figure 6 showcases
ross four distinct m-CTSIB conditions. (B) Illustrates the histogram across
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FIGURE 5

Radar plots of feature correlations across sensors. Radar plots illustrate the correlation of accelerometer-derived features from the medial-lateral (ML),
anterior-posterior (AP), and vertical (VT) axes with average velocity (AV) balance scores. Features are represented on spokes with correlation
coefficients ranging from 0 to 1. The red radar indicates a correlation of 0.7, and features with correlations exceeding this threshold are
considered significant.
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FIGURE 6

This figure illustrates the significant features of each sensor along three axes: medial-lateral (ML), anterior-posterior (AP), and vertical (VT), identified by
a correlation coefficient exceeding 0.7. The colors represent different sensor placements.
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these significant features for each sensor location. This figure reveals a

notable presence of features related to variability metrics, such as

STD and difference sum, as well as entropy-based features. Their

dominance implies that sensor-captured movement variations are

critical in indicating balance stability or instability, with higher

STD values, for example, potentially reflecting greater instability.

Figure 7 offers an insight into the distribution of these significant

features across sensor locations and feature types. It shows that the

ankle and lumbar sensors have the most substantial number of

significant features, with 7 and 6 features, respectively. These

locations represent 32% and 27% of all significant features

identified, highlighting their importance in accurately estimating m-

CTSIB AV scores. The graph also emphasizes the prevalence of

statistical and time-domain features as key predictors of balance

while noting the absence of significant frequency-domain features

in any sensor placements. This distribution underscores the

relevance of specific feature types and sensor locations in balance

assessment and aids in optimizing the balance evaluation process.
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3.3 m-CTSIB score estimation

Our experiments employed specific Python packages:

sklearn:linear model for implementing MLR, sklearn:svm for

SVR, and the xgboost package for implementing the XGBOOST

algorithm. We followed the training and testing setup described

in Section 2.9 and reported the optimal hyperparameters for the

SVR and XGBOOST models of each sensor placement in

Table 5. We observed variability in hyperparameter values across

different cross-validation folds, stemming from each fold

featuring a distinct training and validation data combination.

This diversity necessitates adjustments in model parameters to

best fit each specific data distribution. Moreover, the range of

optimized hyperparameters varied between the One-Leave-Out

and 5-Fold cross-validation methods. The One-Leave-Out

approach, with its detailed analysis per fold, permits a wider

exploration of hyperparameter settings. In contrast, the 5-fold

method consolidates findings across multiple folds, requiring a
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FIGURE 7

Distribution of significant features by sensor placement and feature type.
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more cautious hyperparameter selection to maintain model

generalizability while avoiding overcomplexity.

The validation and test results, including r and MAE, are

detailed in Table 6. Specifically, with One-Leave-Out cross-

validation, lumbar sensor results showed r of 0:92 and MAE of

0:23 using MLR. The same sensor achieved r values of 0:90 and

0:96, and MAE values of 0:24 and 0:23 with SVR and

XGBOOST, respectively. In 5-fold cross-validation, the lumbar

sensor’s performance included r values of 0:55 to 0:92 and MAE

from 0:50 to 0:23 across MLR, SVR, and XGBOOST.

Similarly, the ankle sensor demonstrated strong performance.

During One-Leave-Out cross-validation, it reached r of 0:91 and

MAE of 0:25 with MLR, and for SVR and XGBOOST, it

recorded r values of 0:88 and 0:94, and MAE values of 0:27 and

0:26, respectively. The 5-fold cross-validation for the ankle sensor

showed r ranging from 0:58 to 0:89 and MAE from 0:51 to 0:27

across the three machine learning models.

In refining our models, we addressed feature redundancy by

excluding highly correlated features with a correlation of >0.9
TABLE 5 Optimized hyperparameters for best models across various sensor l

Sensors SVR

Kernel C e Numb
One-Leave-Out Ankle Linear [0.1–10] [0.01–0.2] [

Lumbar Linear [0.1–10] [0.01–0.2] [

Sternum Linear [0.1–10] [0.01–0.2] [

Wrist RBF [0.1–10] [0.01–0.2] [

Arm Linear [0.1–10] [0.01–0.2] [

5-Fold Ankle Linear [0.1–1] [0.01–0.2] [

Lumbar Linear [0.1–1] [0.1–0.2] [

Sternum Linear [0.1–1] [0.1–0.2] [

Wrist RBF [1–10] [0.01–0.1] [

Arm Linear [1–10] [0.01–0.1] [

Values are presented as [range].
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with each other. This adjustment aimed to streamline the feature

set for MLR and SVR algorithms. Our observations suggested a

negligible effect on model efficacy, with a slight performance

decrease in certain cases. This outcome implied that given the

modest size of the initial significant feature set (up to seven

features), even redundant features could be instrumental in our

model’s prediction capacity. Therefore, while minimizing

redundancy is a standard practice to avert model bias, our

analysis showed that preserving these features could be beneficial

for maintaining the predictive strength of the models.

Moreover, we explored the potential of incorporating

gyroscope data instead of accelerometer data, given that our IMU

sensors capture both types of measurements. Section S5 in

the Supplementary Material provides a detailed analysis. The

analysis, however, affirmed the superior performance of

accelerometer data in terms of correlation with actual balance

scores and lower MAE, leading us to prioritize accelerometer

data in our primary analysis. The preference for accelerometer

data is further supported by advantages such as lower power
ocations.

XGBOOST

er of trees Maximum depth Feature subsampling rate
30–190] [3–9] [0.1–0.4]

30–190] [3–9] [0.1–0.4]

30–190] [3–9] [0.1–0.4]

50–190] [3–9] [0.1–0.4]

30–190] [3–9] [0.2–0.4]

30–170] [3–9] [0.1–0.4]

30–150] [5–6] [0.3–0.4]

30–190] [3–9] [0.2–0.4]

70–110] [3–9] [0.1–0.4]

30–130] [3–9] [0.3–0.4]
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TABLE 6 Subject-wise One-Leave-Out and 5-fold cross-validation performance using various sensor placements and machine learning models.

Methods Sensors One-Leave-Out 5 Fold

Validation Test Validation Test

MAE + SD r MAE + SD r MAE + SD r MAE + SD r
MLR Ankle 0:27+ 0:05 0:90 0.25 + 0.21 0.91 0:29+ 0:13 0:90 0.51 + 0.07 0.58

Lumbar 0:23+ 0:06 0:94 0.23 + 0.15 0.92 0:28+ 0:13 0:94 0.50 + 0.06 0.55

Sternum 0:28+ 0:06 0:91 0:29+ 0:20 0:88 0:30+ 0:07 0:94 0:51+ 0:07 0:56

Wrist 0:43+ 0:12 0:77 0:40+ 0:33 0:71 0:54+ 0:13 0:78 0:49+ 0:08 0:54

Arm 0:42+ 0:15 0:78 0:38+ 0:36 0:75 0:36+ 0:18 0:76 0:52+ 0:07 0:55

SVR Ankle 0:21+ 0:07 0:91 0.27 + 0.22 0.88 0:40+ 0:07 0:93 0.34 + 0.05 0.84

Lumbar 0:25+ 0:06 0:93 0.24 + 0.18 0.90 0:45+ 0:12 0:89 0.31 + 0.03 0.85

Sternum 0:29+ 0:07 0:88 0:30+ 0:20 0:87 0:33+ 0:02 0:85 0:39+ 0:10 0.86

Wrist 0:38+ 0:19 0:81 0:31+ 0:20 0:84 0:36+ 0:06 0:80 0:47+ 0:12 0:68

Arm 0:33+ 0:09 0:78 0:34+ 0:29 0:77 0:44+ 0:08 0:62 0:47+ 0:10 0:63

XGBOOST Ankle 0:18+ 0:02 0:91 0.26 + 0.15 0.94 0:19+ 0:02 0:91 0.27 + 0.04 0.89

Lumbar 0:15+ 0:02 0:95 0.23 + 0.15 0.96 0:13+ 0:01 0:97 0.23 + 0.03 0.92

Sternum 0:20+ 0:02 0:90 0:30+ 0:15 0:88 0:20+ 0:02 0:85 0:29+ 0:06 0:89

Wrist 0:20+ 0:03 0:92 0:32+ 0:20 0:90 0:19+ 0:05 0:92 0:33+ 0:09 0:81

Arm 0:20+ 0:03 0:93 0:30+ 0:24 0:88 0:19+ 0:02 0:95 0:35+ 0:12 0:71

The bold values represent the optimal outcomes achieved by machine learning algorithms, as determined through both One-leave-out and 5-fold cross validation.
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consumption, cost-effectiveness, and broader accessibility, making

them a preferable option for continuous health monitoring.

We repeated our investigation using the lumbar and ankle

sensors for the One-Leave-Out method. However, combining

lumbar and ankle sensors did not enhance performance as

expected, resulting in a lower testing r of 0:62 and MAE of 0:43

for MLR, 0:62 and 0:42 for SVR, and 0:95 and 0:27 for

XGBOOST. This could be due to the increased complexity and

potential redundancy in the data when combining sensors, which

might not linearly translate to improved predictive accuracy.

Furthermore, we computed the MAE for each condition

individually from the lumbar sensor data. The findings indicate

that within eyes-open conditions (i.e., EOSS and EOFS), the MLR

model achieved the lowest MAE of 0:17 vs. an MAE of 0:20

obtained using XGBOOST. Conversely, during the eyes closed

conditions (i.e., ECSS and ECFS), the XGBOOST model exhibited

the minimum MAE of 0:26 vs. 0:29 using the MLR model. Such a

difference in performance could be attributed to the nature of the

data and the models’ strengths. MLR, being a linear model, may

perform better when the relationship between the input features

and the output is more linear, which might be the case in eyes-

open conditions. In contrast, XGBOOST, a more complex and
FIGURE 8

Mean absolute percentage error (MAPE) of the XGBOOST model for m-CTS
solid surface; EOFS, eyes open on foam surface; ECFS, eyes closed on foam
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non-linear model, could better capture the subtler, more complex

patterns in the eyes-closed conditions, where maintaining balance

might depend on less obvious or non-linear relationships in the

data. The closed-eye conditions likely introduce more variability

and complexity in the balance data, which non-linear models like

XGBOOST are better equipped to handle.

Figure 8 presents the Mean Absolute Percentage Error (MAPE)

for the XGBOOST model in the One-Leave-Out method across

different conditions—EOSS, ECSS, EOFS, and ECFS—for sensor

locations including ankle, lumbar, sternum, wrist, and arm. MAPE

was chosen as the evaluation metric over MAE due to the varying

ranges of balance scores among these conditions, facilitating more

effective result comparisons, as detailed in Table 4. ECFS, EOFS,

and ECSS conditions show notably low MAPE values, with ECFS

achieving the lowest MAPE in the range of 0.18–0.26. This

suggests the models excel in predicting balance scores under these

challenging conditions, showcasing their proficiency in scenarios

where maintaining balance is considerably more difficult.

Figure 9 illustrates the correlation between ground truth and

predicted AV scores for EOSS, ECSS, EOFS, and ECFS from the

XGBOOST One-Leave-Out methods applied to lumbar and ankle

sensor data. The plot reveals a high concentration of predictions,
IB conditions—EOSS, eyes open on solid surface; ECSS, eyes closed on
surface.

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1366176
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 9

Scatter plots comparing predicted AV scores of the XGBoost method from wearable sensor data to ground truth AV scores across multiple m-CTSIB
conditions. Each plot corresponds to a different condition, with data points color-coded for clarity. The dashed lines indicate the bounds of a 95%
confidence interval. The abbreviation i/s indicates inches/second.
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FIGURE 10

Distribution of actual vs. predicted m-CTSIB scores of the XGBOOST from One-Leave-Out cross validation.
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marked by color-coded data points with distinct markers, aligning

closely with the r ¼ 1 line, depicted as a purple dashed line. This

pattern suggests that the models demonstrate robust performance

in the AV score prediction. Notably, predictions from the lumbar

sensor placement are generally superior to those from the ankle,

as evidenced by the data points’ proximity to the 95% prediction

band (indicated by the black dashed lines), being more distant in

the case of the lumbar.

To visualize the distribution of both actual m-CTSIB scores

and predicted scores from our model, refer to Figure 10. This

figure presents histograms comparing the ground truth m-CTSIB

scores with the scores predicted by our XGBOOST model

using the One-Leave-Out method for the ankle and lumbar

sensors. The alignment between these two distribution sets

underscores the predictive accuracy of our model across

various conditions.
4 Discussion

Our study investigated wearable sensors for objective m-CTSIB

balance score estimation under various sensory conditions defined

by the test. This objective emerged from recognizing the need for

advanced tools to capture the nuanced effects of different sensory

inputs on balance. Traditional balance assessments often lack the

granularity to dissect these influences comprehensively, leading to a

gap in our understanding and management of balance impairments.

Moreover, wearables support remote monitoring, enabling healthcare

professionals to evaluate patients’ balance remotely, which is

particularly useful in diverse healthcare scenarios (41, 42).
4.1 Key findings and observations

Our main finding was that wearable sensors combined with

machine learning could effectively estimate AV scores during m-

CTSIB tests. The most notable performance was achieved using

data from the lumbar sensor with the XGBOOST method,

resulting in a low MAE of 0.23 using One-Leave-Out and 5-fold
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cross-validation and a high correlation of 0:96 and 0:92 using

One-Leave-Out and 5-fold cross-validation, respectively (Table 6).

However, when considering specific scenarios, we found that MLR

was more suitable for eyes-open conditions, while XGBOOST was

better suited for eyes-closed conditions. This distinction suggests

the benefit of employing different models tailored to the specific

sensory conditions of the m-CTSIB test, optimizing the balance

assessment’s accuracy and reliability. Despite the promising results,

our study also acknowledged limitations, particularly the higher

MAPE observed in simpler tasks like the EOSS condition

(Figure 8). This was attributed to the low base values of m-CTSIB

scores in these tasks, where small predictive errors could

disproportionately inflate the error percentage. However, this

limitation does not detract from the utility of our models in more

complex conditions, which are of greater clinical interest for

identifying balance impairments related to cognitive decline or

neurological conditions.

Another main observation was that the lumbar and dominant

ankle sensors were the most effective in estimating m-CTSIB

balance scores. In contrast, dominant arm and wrist sensors were

the least effective (Table 6). This pattern reflects the biomechanical

realities of balance control. Lumbar and ankle regions are central

to maintaining postural stability, directly influencing the body’s

center of gravity and subtle balance adjustments, which aligns with

prior studies (43, 44). In contrast, the arm and wrist play a more

secondary role in overall balance, contributing less to core postural

stability. This highlights the importance of sensor placement in

areas most integral to balance for more accurate and reliable

assessments. Interestingly, combining data from the lumbar and

ankle sensors did not enhance performance. Besides the

practicality concerns of requiring two sensors for assessment, this

outcome suggests that a single, well-placed sensor might be more

efficient for balance evaluation.

Our feature analysis emphasized that movement variability

significantly impacts balance performance. Specifically, a higher

standard deviation indicates increased instability, marking it as a

critical factor across all sensor placements (Figure 6). Moreover,

the temporal characteristics of movement, including transition

smoothness and body part coordination, play essential roles in
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balance control. While our analysis did not identify significant

frequency-domain features due to predominant stable and

consistent movement patterns within various frequency bands, it

is critical to acknowledge that dynamic balance assessment

involving activities like walking or stepping might necessitate

incorporating frequency-domain features for a thorough analysis

(45). We also found that the ML movements strongly correlated

with m-CTSIB AV scores. This aligns with existing research,

which suggests that balance adjustments primarily involve ML

movements (46). This finding underscores the importance of

these directional movements in maintaining and assessing

balance, providing critical insights into postural control dynamics.
4.2 Comparative literature review

Table 7 provides an overview of prior research endeavors using

wearable sensors and machine learning methodologies to estimate

balance test outcomes. As depicted in Table 7, variations exist in

sensor placement, machine learning models employed, participant

numbers, and the most noteworthy outcomes achieved in each

study. Despite its importance (21, 22), our study represents the first

to estimate m-CTSIB AV scores objectively using wearable sensors

and machine learning, distinguishing it from previous research that

primarily focused on the BBS and one instance on the TUG test.

Our participant number is comparable to other studies, reinforcing

the validity of our findings. Unique to our approach was the

exploration of five different sensor placements, with a detailed

report on the most effective single placement, unlike other studies

that did not conduct as extensive a placement analysis.
4.3 Clinical implications and biomechanical
insights

The clinical implications of our study are significant, offering a new,

objective approach to balance assessment using wearable sensors and

machine learning. By not depending on specialized equipment, such

technology promises enhanced practicality for a broad audience,

including older adults and those with mobility challenges.

Additionally, it enables healthcare professionals to evaluate remote

balance, openingnewpossibilities invarioushealthcare contexts. (41, 42).

Our findings reveal a significant reliance on ankle strategies for

managing minor balance disturbances, a correlation that is
TABLE 7 Comparison of our study with previous studies.

Study Balance test # Participants Be
Similä et al. (47) BBS 49 Lu

Shahzad et al. (48) BBS 23 Lu

Tang et al. (27) BBS 30 Hi

Choi et al. (26) TUG 37 Fo

Our study m-CTSIB 34 Lu

ML, machine learning; KNN, k-nearest-neighbors; BBS, Berg balance scale; TUG, timed

support vector regression; LLS, linear least squar regression; RR, ridge regression.
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particularly strong at the ankle sensors. This observation is in

harmony with the work of Horak (49) and Nashner (50), who

have documented the preference for ankle strategies when

dealing with small shifts on a stable platform, utilizing the distal

muscles for effective postural control. Nashner’s further

discussions highlight the activation of hip strategies in response

to larger balance disruptions, indicating a sophisticated balance

control system that adapts based on the scale of the challenge.

Additionally, the effectiveness of the ankle musculature in

maintaining balance with minimal energy and swift responsiveness

is especially relevant for those with balance disorders, such as

Parkinson’s disease (51, 52). This underscores the importance of

considering both the nature of the perturbation and the

individual’s physiological state when selecting balance strategies.

These insights are crucial for devising targeted balance assessments

and rehabilitation programs, affirming the value of our study in

enhancing the understanding and treatment of balance

impairments through tailored interventions.
4.4 Study limitations and future work

While our study has successfully demonstrated the potential of

wearable sensors and machine learning in balance assessment, it

has also highlighted areas for future enhancement. The sample

size, though adequate for initial exploration, was limited, and a

gender and hand dominance imbalance was noted, which may

affect the representativeness of the results.

In addressing the complexities of upper limb movements within

our study, we implemented rigorous Falltrak II data collection

protocols to standardize participant posture and minimize

potential variations. Despite these measures, the unique challenges

posed by the degrees of freedom in arm movements remained.

Future investigations could benefit from a more diverse and larger

cohort to validate and extend our findings. Furthermore, to ensure

our models’ resilience against varied movement patterns, we plan

to test them rigorously with different types of motion distortions.

This will help refine the models to be more adaptable and reliable

across a wider spectrum of real-world scenarios.

We also acknowledge that the proprietary nature of normative

databases used in commercial systems restricts the direct

comparison between raw AV and PL scores and established

stability scores. Moving forward, rather than relying on
st sensor placement (#) ML model Best results
mbar (1) KNN MAE=3:53

mbar (1) LLS
Lasso

MAE=1.44
r=0.90

p and foot (3) SVR MAE=6:07

ot (2) RR MAE=0.87

mbar (1) MLR
SVR
XGBOOST

MAE=0:23
r=0.96

up and go; m-CTSIB, modified clinical test for sensory interaction and balance; SVR,
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partnerships with external platforms or proprietary normative data,

we will focus on leveraging our models’ raw AV and PL data. This

approach will allow us to create a more precise and transparent

framework for balance assessment. Specifically, we aim to utilize

these predicted balance scores as foundational data for

developing predictive models tailored to various applications,

such as early detection of cognitive impairments or Alzheimer’s

disease. Through this refined focus, our research is poised to

make a meaningful contribution to advancing the field, offering

novel insights and tools for the early identification and

intervention of balance-related health issues.
5 Conclusion

Our study introduced a new method for accurately estimating AV

scores during m-CTSIB balance tests, employing wearable sensors

and machine learning techniques. By gathering detailed motion

data from 34 participants under four distinct sensory conditions,

we applied MLR, SVR, and XGBOOST machine learning models

on a comprehensive subset of features derived from the wearable

data to estimate their corresponding ground truth m-CTSIB AV

scores. Our findings underscored our approach’s high accuracy and

strong correlation with ground truth AV balance scores,

particularly highlighting the exceptional performance of the

XGBOOST model. Data from lumbar and dominant ankle sensors

demonstrated the highest performance in balance score estimation,

highlighting the importance of strategic sensor placement for

capturing relevant balance adjustments and movements. Our

findings pave the way for more precise and convenient balance

assessments. This approach has immense potential to enhance

balance performance assessment and management in various

settings, including clinical environments, rehabilitation, and remote

monitoring, offering a significant advancement in healthcare.
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