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Feature evaluation of
accelerometry signals for
cough detection
Maha S. Diab* and Esther Rodriguez-Villegas

Wearable Technologies Lab, Department of Electrical and Electronic Engineering, Imperial College
London, London, United Kingdom
Cough is a common symptom of multiple respiratory diseases, such as asthma
and chronic obstructive pulmonary disorder. Various research works targeted
cough detection as a means for continuous monitoring of these respiratory
health conditions. This has been mainly achieved using sophisticated machine
learning or deep learning algorithms fed with audio recordings. In this work,
we explore the use of an alternative detection method, since audio can
generate privacy and security concerns related to the use of always-on
microphones. This study proposes the use of a non-contact tri-axial
accelerometer for motion detection to differentiate between cough and non-
cough events/movements. A total of 43 time-domain features were extracted
from the acquired tri-axial accelerometry signals. These features were
evaluated and ranked for their importance using six methods with adjustable
conditions, resulting in a total of 11 feature rankings. The ranking methods
included model-based feature importance algorithms, first principal
component, leave-one-out, permutation, and recursive features elimination
(RFE). The ranking results were further used in the feature selection of the top
10, 20, and 30 for use in cough detection. A total of 68 classification models
using a simple logistic regression classifier are reported, using two approaches
for data splitting: subject-record-split and leave-one-subject-out (LOSO). The
best-performing model out of the 34 using subject-record-split obtained an
accuracy of 92.20%, sensitivity of 90.87%, specificity of 93.52%, and F1 score
of 92.09% using only 20 features selected by the RFE method. The best-
performing model out of the 34 using LOSO obtained an accuracy of 89.57%,
sensitivity of 85.71%, specificity of 93.43%, and F1 score of 88.72% using only
10 features selected by the RFE method. These results demonstrate the ability
for future implementation of a motion-based wearable cough detector.
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1 Introduction

Chronic Respiratory Diseases (CRDs) are common health conditions that affect the

respiratory tract airways and lungs, resulting in various symptoms such as dyspnea

(difficulty breathing), chest pain, cough, sputum, and others. Some diseases that fall

under the CRD umbrella are chronic obstructive pulmonary disease (COPD), asthma,

pneumonoconiosis, interstitial lung disease, and pulmonary sarcoidosis. These are

incurable yet treatable conditions that require continuous monitoring of the disease’s

progression and an adjustable treatment plan. Among those conditions, the two main

contributors to the global burden of chronic respiratory diseases are asthma and
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COPD (1), with the latter being the third cause of death worldwide

(2). Moreover, global health metrics in 2019 concluded that CRDs

were responsible for 71.31 million years of life lost (YLLs) and 32.4

million years of healthy life lost due to disability (YLDs) (1).

To help ease this global health burden inflicted by CRDs and to

limit patients’ deterioration, possible solutions include early

detection and continuous monitoring of the disease to allow for

proper treatment plans and on-time interventions when needed.

To achieve this, many researchers targeted the detection and

monitoring of respiratory diseases by leveraging the potential of

data-driven artificial intelligence (AI) algorithms. The studies

focused on the use of medical symptoms as an indicator to the

presence of a respiratory health problem—detection— and as a

measure of the progression of the respiratory condition—

monitoring. Some of the symptoms that have been analyzed and

studied include respiratory sounds produced due to illness, such

as wheeze, stridor, crackle, and gasp (3), and the symptom that

has been the center of attention most recently is coughs.

The use of sophisticated machine learning (ML) and deep

learning (DL) algorithms for the detection and the diagnosis of

respiratory diseases from cough sounds has become a research

focus in the last few years. Researchers have employed linear ML

methods such as linear regression (LR) (4–6), non-linear ML

methods including both support vector machine (SVM) (7–9)

and k-nearest neighbors (kNN) (10–12), ensemble methods such

as random forest (RF) (13, 14), and XGBoost (15), and more

complex DL methods such as artificial neural network (ANN)

(16) and convolutional neural network (CNN) (17, 18) to detect

cough sounds. These studies targeted the use of audio recordings

to detect the presence of cough events achieving an accuracy or

sensitivity above 90%. Similar algorithms were also used for the

diagnosis of different respiratory conditions, with more recent

studies focusing on the diagnosis of COVID-19 from audio

recordings such as the case in Imran et al. and Wei et al.

(19, 20) using CNN models to differentiate between COVID-19,

pertussis, and bronchitis. In addition, these advances in cough

detection and diagnosis algorithms were then taken a step

further to provide a portable, ubiquitous solution by

implementing them within a mobile App. This provided a cost-

effective, easy-to-use solution that witnessed a rise in its use

especially during the COVID-19 pandemic. Some of these mobile

Apps are COVID-19 sounds app (21) used for data collection,

AI4COVID-19 (19), and QUCoughScope (22) for both data

collection and diagnosis.

Though the use of the conventional audio-based method for

cough detection and diagnosis has resulted in acceptable

performance, it is dependent on capturing the audio during a

cough event. This requires the use of always-on microphones

that are always recording/listening to conversations and personal

information in the wait for a cough event. As such, the

dependency on audio for cough detection presents both privacy

and security issues where private conversations could be

maliciously used. In addition to the privacy invasion, another

disadvantage of this portable solution is phone battery depletion,

since the App has to be working in the background at all times.

Therefore, an alternative solution to the audio-based method is
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needed for the implementation of a portable wearable

cough detector.

In this work, we investigate the use of motion-based detection in

place of the audio-based detection method. The rationale behind this

is explained by the fact that the audible cough sound that is commonly

used for detection is the result of a physical motor pattern of the body.

The forced expulsive pattern of cough can be broken down into three

phases: (i) inspiratory phase— characterized by typical inspiration

(drawing of air into lungs); (ii) compression phase—glottis is

completely closed and thorax is compressed to increase subglottic

pressure; (iii) expulsive phase—glottis opens rapidly resulting in

high-pressure airflow (23, 24). These motions leading to a cough

can be captured using an accelerometer worn close to the body,

allowing the collection of data related to coughing.

Accelerometer sensors have been mostly used in applications

related to human activity recognition (HAR) such as fitness

tracking, with limited research targeting the use of an

accelerometer as a cough sensor. One of the few studies using

motion-based cough detection was presented in Mohammadi

et al. (25) using a dual-axis contact accelerometer placed at the

patient’s neck to capture epidermal vibrations. A total of 35

features composed of temporal, time–frequency, frequency, and

information-theoretic were extracted from the accelerometry

signals. A binary genetic algorithm (BGA) was used for feature

selection together with an SVM model to differentiate between

voluntary cough and rest, achieving an accuracy of

99:26+ 0:12%. Other works targeting the use of only

accelerometry signals were presented throughout multiple works

(26–28) comparing the performance of cough detection in

accordance to the position of the sensor. A total of five different

positions were examined: chest, stomach, arm—using a tri-axial

accelerometer attached by an elastic belt, ear using a headset with

a fastened accelerometer on one side, and finally shirt pocket

using a tri-axial accelerometer of the phone placed freely and

firmly in the pocket. Raw data of the x, y, and z axes were used

to train a CNN model to detect cough events. The best

performance was achieved at the ear and chest positions with an

accuracy of 97% for both (26). Further development used

spectral summation of the tri-axial signal together with a CNN

model to boost the performance demonstrating up to

approximately 99% accuracy in the ear position and 98.2%

accuracy at the chest (27). A different approach was used in

Vyas and Doddabasappla (28), where spectrum spread of only

the y and z axes were used as input to kNN and SVM models

comparing only three positions (chest, stomach, and pocket). The

SVM model outperformed the kNN model in detecting cough

events, with the best accuracy being achieved in the pocket

position at 96.1%, followed by the chest at 94.3%, and then the

stomach at 94%. Other studies that are worth mentioning have

used an accelerometer together with other sensors, such as in

Otoshi et al. (29), that used a strain sensor around the neck with

a tri-axial accelerometer around the epigastric region. Another

study used a tri-axial accelerometer with an ECG front-end

placed around the chest for cough detection (30).

In the reviewed cases of accelerometer-based cough detection,

the used accelerometer was a contact sensor that required direct
frontiersin.org
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attachment to the user’s skin either around the neck, chest,

stomach, or ear. The only case with a non-contact accelerometer

was the use of a phone placed freely in a shirt’s pocket. In both

cases, considering the end-user’s need for continuous

monitoring, the use of a contact-based sensor is most likely to

present discomfort in the long run, while the use of a phone or

other non-contact accelerometer with free placement in the

pocket is not practical and is prone to error due to inconsistent

positioning and added noise from the movement of the sensor

within the pocket.

This leads to the main purpose behind this work: to the

authors’ best knowledge, there have not been any evaluation

studies of time-domain features extracted from non-contact

accelerometry signals for motion-based cough detection.

Therefore, the first objective of this research study—an

extension of our previous studies (31, 32)—is investigating the

use of a non-contact accelerometer for motion-based cough

detection using data collected from multiple subjects. The

second objective is to evaluate the ability of time-domain

features to distinguish between cough and non-cough

movements. This focus on time-domain features is because the

extraction of these features does not require the additional step

of computing the signal’s frequency components as the case is

for frequency-domain features. Hence, the computation of time-

domain features requires less computational time and space/

memory. The third objective of the study is to compare

different feature importance methods used for feature selection

and use their feature ranking results to select the top features.

Finally, the fourth objective of the study is to build a simple

binary classification model for motion-based cough detection

using different number of selected features based on different

ranking methods, to find the best model with optimum

performance and number of features.

The rest of the paper is organized as follows: the materials used

for data acquisition and methods for pre-processing and data

preparation are covered in Section 2, together with the

description of the extracted time-domain features and the feature

evaluation methods used. The data distribution of the extracted

features and the results of the feature importance ranking are

presented in Section 3, as well as the performance metrics used

and the results of the classification models for cough detection.

Finally, the results are discussed, and the different models’

performances are compared, based on the number of features

and the type of ranking method used, in Section 4, with some

concluding remarks.
2 Materials and methods

To correctly classify and differentiate between cough and

non-cough samples from accelerometry signals, a set of

features was extracted for evaluation and comparison. The

computed features were chosen based on the results of the

literature review of related accelerometer-based activity

recognition research, with a focus on time-domain features.

The reason behind these targeted time-domain features is to
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based on only time-domain extracted features, which require a

minimum amount of time and space for computation

compared to frequency-domain features. In this section, the

methods used for data collection, pre-processing, feature

extraction, and feature evaluation are discussed.
2.1 Data collection

A total of five subjects (three males and two females) with an

average age of 27:6+ 3:1 years participated in the experiment.

The study was approved by the Imperial College Research Ethics

Committee (ICREC ref.: 6669400), and written informed consent

was obtained from all subjects. The subjects had a Nordic

Thingy:53—a multi-sensor IoT prototyping platform—clipped to

their shirt’s collar. Accelerometry signals were recorded while

subjects were seated for both cough and non-cough events,

resulting in a total of 180 recordings (90 cough and 90 non-

cough) each of 10 s duration, at a sampling frequency of 62.5 Hz.

Four subjects recorded 20 cough sessions and 20 non-cough

sessions, while one subject recorded 10 cough sessions and 10

non-cough sessions. The cough sessions required subjects to

cough throughout the 10 s recording continuously and

repeatedly. Non-cough sessions involved the subject resting,

talking, and/or using a mobile phone.
2.2 Data pre-processing

The acquired accelerometer recordings were composed of tri-

axial signals in the x-axis, y-axis, and z-axis indicating sideways

movement (right–left), vertical movement (up–down), and

outward movement (forward–backward), respectively. The first

step in the pre-processing stage was the computation of the

accelerometer vector magnitude by combining the raw x, y, and

z accelerometry signals using (1). The magnitude vector describes

the overall movement and is commonly used in processing

accelerometer data. After the computation of the magnitude,

each recording became composed of four vectors

(accX, accY , accZ, Mag), which were then filtered using a fourth-

order Butterworth Bandpass filter (0.5–15 Hz) to filter out

movements below 0.5 Hz and any DC offset; and to eliminate

the frequencies above 15 Hz, where no peaks were observed in

cough recordings.

Mag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
(1)

The implemented pre-processing pipeline is summarized in

Figure 1, where after filtration the data were split into training

and testing. Records were split based on subjects, where 80% of

records from each subject were kept for training and the

remaining 20% recordings from the same subject were kept for

testing, with a balanced division between cough and non-cough

recordings. The division of recordings is visualized in Figure 2.
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FIGURE 1

Block diagram summarizing the pre-processing steps implemented on the acquired tri-axial accelerometry signals.

FIGURE 2

Detailed process for the data partitioning visualized in Figure 1 under the “Data Records Split” block for cough detection.
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Afterward, each recording was segmented into windows of size 2s

and a sliding window of 200ms resulting in a total of 42 segments/

samples per recording. Window segmentation of training and

testing records resulted in a total of 6,048 balanced training

windows and 1,512 balanced testing windows. Following record

segmentation, each window—composed of four signals—was

centered by subtracting the mean of the corresponding signal

vector as given in Equation 2, where v0 is the raw signal

window, v is the resultant centered window, and i corresponds

to the accelerometer signal vector within a window

(i ¼ accX, accY , accZ, Mag).

v(i) ¼ v0
(i) � v0

(i) (2)
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2.3 Feature extraction

The audible cough sound made by a subject is the result of a

chest motor pattern that is captured by the acquired

accelerometer recordings. An example of the acquired

accelerometry signal for a cough and a non-cough window

(before centering) from each of the five subjects is presented in

Figure 3. The cough accelerometer signal displays a non-periodic,

random behavior that can be used, once detected, to differentiate

it from the less random non-cough accelerometry signals. Hence,

time-domain features measuring the distribution, dispersion, and

randomness of the signal were computed to distinguish between

cough and non-cough signals.
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FIGURE 3

An example illustrating a cough and a non-cough 2 s window of the captured accelerometry signal from each of the five subjects.
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TABLE 1 List of extracted features for evaluation.

Feature type Size Feature names
Minimum 4 Min X , Min Y , Min Z , Min Mag

Maximum 4 Max X , Max Y , Max Z , Max Mag

Difference 4 Diff X , Diff Y , Diff Z , Diff Mag

RMS 4 RMS X , RMS Y , RMS Z , RMS Mag

Skewness 4 Skewness X , Skewness Y , Skewness Z , Skewness Mag

Kurtosis 4 Kurtosis X , Kurtosis Y , Kurtosis Z , Kurtosis Mag

IQR 4 IQR X , IQR Y , IQR Z , IQR Mag

Variance 4 Var X , Var Y , Var Z , Var Mag

Entropy 4 Ent X , Ent Y , Ent Z , Ent Mag

MAD 4 MAD X , MAD Y , MAD Z , MAD Mag

Correlation 3 Corr xy , Corr yz , Corr xz

Total features 43

Diab and Rodriguez-Villegas 10.3389/fdgth.2024.1368574
Following the pre-processing stage, the time-domain

features were extracted from the centered windows. A set of

statistical features was computed from each of the signals

(accX, accY , accZ, Mag) to describe the captured movement

during cough and non-cough events. All computations were

performed in Python using pandas, scipy.stats, and

EntropyHub libraries. The list of the time-domain features

used is summarized in Table 1 and a brief description is given

as follows:

Minimum (Min) is the minimum amplitude value of the

accelerometer signal within a window.

Maximum (Max) is the maximum amplitude value of the signal

within a window.

Difference (Diff) is the amplitude range calculated by subtracting

the minimum value from the maximum value of the signal

within a window.

Root mean square (RMS) is the square root of the arithmetic mean

of the squared values of the signal within a window. The RMS

feature can evaluate the signal amplitude and energy in the

time domain. For our centered windows (mean = 0), the RMS

is also equal to the standard deviation, hence only RMS as a

feature was computed.

Variance (Var) is the measure of the data dispersion of the

accelerometer signal within a window from the mean, which is

also the standard deviation squared.

Interquartile range (IQR) is the measure of dispersion and spread

of the accelerometer signal within a window, computed by the

difference between the 75th and the 25th percentile. It is

similar to standard deviation and variance in measuring the

dispersion of the signal; however, it is more robust against

outliers.

Median absolute deviation (MAD) is another measure of the data

dispersion that is also more robust against outliers. It computes

the median of the absolute deviation from the median of the

signal within a window.

Skewness is the measure of the symmetry of the distribution of the

accelerometer signal within a window. A normal distribution has

a skewness of 0, while a negative skewed distribution indicates a

distribution with the tail in the negative side, and a positive

skewed distribution has a tail in the positive side.
Frontiers in Digital Health 06
Kurtosis is another measure for the distribution shape of the signal

within a window describing the peak of the distribution. Using

Fisher’s definition of kurtosis—the normal distribution of

kurtosis is 0, if the value is less than 0 the distribution has a

flatter shape, while if greater the distribution has a sharper

shape.

Entropy (Ent) is the mean of the computed approximate entropy

of the signal within a window. It is used to measure the signal

randomness and disorder.

Correlation (Corr) is the measure of the pairwise correlation

between the tri-axial signals within a window: Corr(accX and

accY), Corr(accY and accZ), and Corr(accX and accZ).

2.4 Feature importance scoring methods

With the extraction of a total of 43 features from the

accelerometry signals, the importance and contribution of

individual features toward cough classification must be

evaluated. This evaluation ranks the features based on their

importance, which later guides the process of feature

selection for the final classification model. There are various

feature selection methods found in the literature that can be

used to rank the feature’s importance. In this study, we

implemented a total of 11 feature ranking methods

using only the training windows. The implemented methods

and the description of their feature evaluation approaches are

as follows:
2.4.1 Model-based feature importance
Model-based feature importance method is dependent and

specific to the machine learning algorithm used. Under this

method, three tree-based models were used to rank the feature

importance using the built-in importance function of the

following models: XGBoost, decision tree (DT), and random

forest. The XGBoost model computes feature importance based

on “gain,” which is the improvement in the model’s accuracy

when a feature is added to the branch. While both DT and RF

models compute importance score based on the reduction of the

Gini impurity, where Gini is the criterion used to evaluate the

quality of a split.
2.4.2 Principle component analysis
Principal component analysis (PCA) is a common method

used for dimensionality reduction rather than feature

selection. However, the first principal component (PC1)

returned by the analysis can be used to score the importance

of features. The rationale behind this is that plotting the

cumulative explained variance for each component produced

by our training data shows that the first component (PC1)—

using a single feature, can explain over 80% of the variance in

the dataset. Hence, the values of PC1 loadings were used to

rank the features based on the correlation between the features

and the principal component.
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2.4.3 Leave-one-out
As the name suggests, this method iteratively leaves one feature

out at a time and evaluates the effect of its removal on the model’s

accuracy. The importance was measured as the difference between

the base accuracy and the new accuracy without the feature; the

greater decrease in the model’s accuracy reflected the weight and

importance of a given feature. Thus, higher importance and

ranking were given to features with a greater decrease in the

model’s accuracy when eliminated.

2.4.4 Permutation
In the permutation importance method, feature ranking was

based on the effect a feature had on the model’s performance

after having its values randomly shuffled. Once a feature was

shuffled, the new accuracy was measured and compared to the

baseline accuracy; this process was repeated 10 times for each

feature and the mean value was measured. The greater the drop

in accuracy indicated a higher ranking of the feature. This

method was implemented using the permutation importance

function in the sklearn:inspection library, with 10 repetitions for

each feature permutation.

2.4.5 Recursive feature elimination
In this method, the feature selection function was given a fitted

trained model to evaluate and rank features by recursively

considering a smaller set of features. This process of feature

pruning was repeated until the number of required features was

reached. In this study, the method was repeated for four different

numbers of selected features, setting the desired number of

features to 10, 20, 30, and, finally, 43, i.e., using all features.

2.4.6 Correlation
The pairwise correlation was measured between the individual

features and the binary target (cough, non-cough). Having both

numerical and categorical variables, Spearman’s correlation

method was computed, and the absolute value was used to rank

the feature importance.
3 Results

The extracted features were initially assessed for their ability to

uniquely identify and separate cough events from non-cough

events. This assessment was performed by inspecting individual

feature’s distribution based on target class (cough, non-cough).

Box and whisker plots were chosen for the visual summary of a

feature’s distribution. Figures 4–7 present the 43 features box and

whisker plots. Features extracted from the accelerometer x-axis

are given in Figure 4, accelerometer y-axis in Figure 5,

accelerometer z-axis in Figure 6, and accelerometer magnitude in

Figure 7. It is clear that some features can distinguish between

both classes, while other features have some overlap but can still

be used to separate the two categories. In a few cases, the

features have very close distribution indicating their redundancy

for the classification problem.
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The visual inspection of the feature distribution indicated

the feasibility of using these extracted features for cough

detection. As a result, the importance of each individual

feature was ranked using the previously discussed feature

ranking methods. Some methods, as mentioned earlier, were

used multiple times with different parameters. Therefore, a

total of 11 feature importance ranking methods were utilized.

The features were ranked from 1 to 43, with 1 indicating the

highest importance and 43 the lowest. A summary of the

ranking is visualized in the heat map shown in Figure 8. The

color index represents feature significance, with darker cells

indicating higher ranking.
3.1 Performance metrics

The feature ranking results for feature selection were evaluated

by assessing their performance on the test data set. The

performance metrics included accuracy (ACC), sensitivity (SN),

specificity (SP), positive predictive value (PPV), negative

predictive value (NPV), false positive rate (FPR), false negative

rate (FNR), false discovery rate (FDR), and F1 score. These

performance metrics are computed as given in Equations 3–11:

ACC ¼ TP þ TN
TP þ FP þ FN þ TN

(3)

SN ¼ TP
TP þ FN

(4)

SP ¼ TN
TN þ FP

(5)

PPV ¼ TP
TP þ FP

(6)

NPV ¼ TN
TN þ FN

(7)

FPR ¼ FP
TN þ FP

(8)

FNR ¼ FN
TP þ FN

(9)

FDR ¼ FP
TP þ FP

(10)

F1 ¼ 2(PPV)(SN)
PPV þ SN

¼ 2TP
2TP þ FP þ FN

(11)

In these equations, TP (True Positive) represents the number of

correctly identified coughs, TN (True Negative) is the number of

correctly labeled non-coughs, FP (False Positive) is the number

of non-coughs misclassified as coughs, and FP (False Negative) is

the number of coughs mislabeled as non-coughs.
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FIGURE 4

Box and whisker plot summarizing the distribution of data for 11 extracted features from the accelerometer x-axis.
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3.2 Evaluation of feature importance

To evaluate which set of features provided by these methods

perform better in distinguishing cough motions, their

performance on the classification problem was assessed. The

same classifier model, a binary Logistic Regression model, was

used for all cases using two evaluation approaches for data

splitting into training and testing. In the first performance

evaluation approach, the data were split as was shown earlier in

Figure 2, using 80% of the records from each subject for training

and the remaining 20% for testing. The model was trained on

the training dataset using the “top” features chosen by each

ranking method. The classifier’s performance was then evaluated

on the test dataset using the same set of “top” features selected

in the training process. This process was repeated for each of the

11 methods for comparison with the base model, which used all

43 features.

In the second performance evaluation, the model was trained

and tested using a leave-one-subject-out (LOSO) data split

approach for cross-validation. Using this approach on the

collected data from five subjects set the model’s cross-validation

folds to 5, where in the i fold, the ith subject was used for

testing, while the remaining subjects were used for training. The

average results across the five folds were then computed and

used for the model’s performance evaluation. Similar to the first
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approach, this process was also repeated for each of the 11

methods using the “top” features chosen by each ranking method

for comparison with the base model using all 43 features.

The logistic regression model was used to also evaluate the

trade-off between the number of selected features and model

performance on the test data set. The process was repeated for

three cases for the number of selected features, using 10, 20, and

30 features, respectively, from each ranking method for both

performance evaluation approaches. Therefore, a total of 66

models (33 models/approach) with their performance metrics

were evaluated and compared to the baseline model using all

features. The results of the performance metrics of all the

classification cases using the first approach of subject-record-split

are summarized in Table 2 and visually demonstrated in Figure 9

for the six performance metrics. The results of the performance

metrics of all the classification cases using the second approach

(LOSO) are summarized in Table 3 and Figure 10.
4 Discussion

In this study, the use of accelerometry signals acquired from a

non-contact tri-axial accelerometer sensor was investigated for

their ability to differentiate between cough and non-cough

events based on motion. This included the extraction of
frontiersin.org
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FIGURE 5

Box and whisker plot summarizing the distribution of data for 11 extracted features from the accelerometer y-axis.
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time-domain-related features, the exploration of individual feature

distribution based on class, the ranking of the feature’s importance

using multiple feature selection methods, and finally the evaluation

of classification performance based on the number of selected

features chosen by each ranking method using two data splitting

approaches: subject-record-split and LOSO.

The visualization of feature distribution using the box plots

given in Figures 4–7 provided a primary insight into the

feasibility of using detected motion to distinguish cough events.

The 11 features extracted from the accX given in Figure 4

presented distributions where the majority of the features have

different median, upper quartile, and lower quartile values

between both classes of cough and non-cough. This observation

indicated that at least 50% of the data points of a particular

feature have distinct values for each class, such as Min X, and

Diff X. However, there are three features (Skewness X,

Kurtosis X, and Ent X), which presented an overlap in their

distribution, where though they had different median values for

each class, their lower and upper quartile values overlap. In this

case, differentiating between cough and non-cough events by

simply depending on these features alone would be tricky.

Similar observations were made for the data distributions of

features extracted from accY , accZ, and Mag signals. In the case

of accY features given in Figure 5 and accZ features in Figure 6,

8 out of the 11 features of each axis have distinct values for the
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median and quartiles of each class, indicating its possible use in

identifying cough motions. The three remaining features of each

axis presented with overlapped distribution between cough and

non-cough events. These features were the skewness, kurtosis, and

correlation features (Skewness Y , Kurtosis Y , Corr yz, Skewness Z,

Kurtosis Z, and Corr xz). Nevertheless, they can still be helpful if

used together with other features, as they all had different median

values for each class. Especially in the case of Corr xz, where there

is an overlap, it is only with one quartile—the upper quartile of

the cough data with the lower quartile of the non-cough data

points. As for the features extracted from the Mag signal in

Figure 7, they share the same trend as the previous axes, where 8

out of the 10 features have distinct median, lower quartile, and

upper quartile values for each class, while the two features related

to skewness and kurtosis presented distinct median values with

overlap in quartile values. However, it is noticed that the

distribution of data points for the features extracted from the

magnitude signals has a more distinctive distribution separating

the two classes when compared to the features extracted from the

other axes. As observed in the following features (Min Mag,

Max Mag, Diff Mag, RMS Mag, Var Mag, and Ent Mag), the

full range of the non-cough data points overlap only with part of

the whisker of the cough data points, indicating an overlap that is

less than 25%. This was also observed in 4 features extracted from

the accZ (Min Z, Max Z, Diff Z, and RMS Z), reflecting these 10
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FIGURE 6

Box and whisker plot summarizing the distribution of data for 11 extracted features from the accelerometer z-axis.
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features’ higher potential in distinguishing cough events. As for the

presence of outliers, it was expected as data were collected from a

total of five subjects, where it is highly unlikely to have exactly

similar coughing motions from all subjects of different genders,

hence the presence of outliers.

A qualitative analysis of the extracted features was

implemented using the 11 feature ranking methods to evaluate

each feature’s importance toward cough identification. It is

noticed from the heat map in Figure 8—summarizing the

ranking of all features based on method—that features extracted

from the magnitude signal rank higher than other features. The

Diff Mag ranked first by four methods and ranked second by

another two methods. Min Mag also had one of the top rankings

showing a fully dark row across all methods similar to Diff Mag.

Other features that ranked first were the Max Z by the RFE_10

and RFE_20 methods as well as the Corr xy by permutation and

the Corr xz by LOO method. Corr xy also ranked second by

four other methods (XGBoost, DT, RFE_10, and RFE_20)

reflecting its importance, where half of the methods ranked it in

the top two features. As for the least important features, it is

perceived that the upper half of the heat map, relating to features

extracted from the accX and some of the accY features, are

lighter in color with a ranking above 20. Still, there are some

anomalies in this observation, such as the rank 3, 5, and 6 for
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RMS X by XGBoost, DT, and permutation methods, respectively,

as well as the first rank given to Min X by both methods. A

simplified summary of the ranking results is given in Table 4,

where the feature ranking is set to three groups indicating the

rank in the top 10 (rank 1–10), top 20 (rank 11–20), or top 30

(rank 21–30). This summary focuses more on the presence of a

feature in a top category rather than its specific ranking, which

helps simplify the analysis and comparison of the feature

rankings by the different methods. For example, it is noticed that

all ranking methods place Min Mag in the top 10 set of features;

thus, from this observation, it can be assumed that Min Mag is

the most important feature.

Overall, the feature importance methods resulted in different

rankings across the features. This is expected as the ranking

methods measure feature importance in different ways. Model-

based methods (XGBoost, DT, and RF) depend on the built-in

importance of measuring the decrease in impurity. They have

different biases than other methods, where tree-based models

favor features that minimize the number of splits. While the

PCA method relies on the cumulative explained variance of the

first principal component and its correlation to the features. The

LOO, permutation, and RFE methods measure the importance

based on the drop in the prediction accuracy when a feature is

removed or shuffled. Each of these three methods uses a different
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FIGURE 7

Box and whisker plot summarizing the distribution of data for 10 extracted features from the accelerometer magnitude.
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feature elimination approach, hence the difference in ranking

results. As for the correlation method, it measures the direct

correlation between each feature and the expected output class.

Another observation is the relatively close ranking results

produced by some methods, such as RFE_30 and RFE_43. An

explanation behind this ranking overlap is the algorithm behind

this methodology to rank the features. Both are based on the

recursive feature elimination (RFE) method, but the first was set

for 30 selected features, while the other was set for 43 features.

The ranking behind this method relies on recursively searching

the feature pool to select the best n features and then prune out

the remaining less important features. Thus, when the difference

is only the number of selected features, it is likely to have some

overlap in the ranking results, which is observed in the results of

the four methods based on RFE with n ¼ 10, 20, 30, and 43.

This trend was also observed by the three tree-based ranking

methods—XGBoost, DT, and RF—where the results do not

completely overlap but are very close to each other due to some

similarities in these models’ architectures.

The performance results of the first approach, summarized in

Figure 9 and Table 2 using the subject-record-split, show that the

baseline model using all 43 features had already presented good

performance. However, as one of the objectives of this study is to

assess and examine the trade-off between performance and the

number of features used, our target is to find optimum models
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presenting similar or improved performance to the baseline using

a lower number of features. Examining the use of only 10

features, it is noticed that three models outperformed the

baseline in terms of accuracy with the best score of 0.9107

achieved by the RFE_10 model. In terms of sensitivity, 9 out of

the 11 models achieved better scores with the best being 0.8955

by the RFE_10 model. As for specificity and PPV, the LOO

model was the only one that performed better than the baseline

with 0.9339 for specificity and 0.9305 for PPV. The NPV

improved in eight models while staying the same for the RFE_30

model, with the highest NPV at 0.8986 again by the RFE_10

model, which also reported the highest F1 score at 0.9093. As for

the three remaining metrics, the best scores of FPR and FDR

were achieved by the LOO model at 0.0661 and 0.0695,

respectively, while the best FNR was 0.1045 achieved by the

RFE_10 model. Since FPR is complementary to specificity, FNR

to sensitivity, and FDR to PPV, only the first six metrics are

used for comparison in the rest of the discussion.

When 20 features were selected, the RFE_43 model presented

the best performance across all metrics, outperforming the

baseline model. It increased the baseline accuracy by 0.0192,

sensitivity by 0.33, specificity by 0.0053, PPV by 0.0075, NPV by

0.29, and F1 score by 0.208. Overall, the use of 20 features, in

comparison to 10 features or the baseline, in the majority of the

models improved the classification accuracy, sensitivity, NPV,
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FIGURE 8

Heat map summarizing the results of feature importance ranking based on 11 feature importance methods. DT: Decision Tree; RF: Random Forest;
PC1: first principal component; LOO: Leave-One-Out; PERM: Permutation; RFE_10: Recursive Feature Elimination (RFE) with 10 selected features;
RFE_20: RFE with 20 selected features; RFE_30: RFE with 30 selected features; RFE_43: RFE with 43 selected features; Corr: Correlation method.
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and F1 score; having at least 8 out of the 11 models with scores

above the baseline. As for the specificity and PPV, only two and

three models, respectively, scored slightly higher than baseline.

Regarding the use of 30 features for the classification problem,

the performance metrics of three methods, namely, RFE_10,

RFE_20, and RFE_30, achieved the best accuracy, sensitivity,

NPV, and F1 scores, while the correlation model achieved the

best specificity and PPV scores. It is also noticed that the three
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models RFE_10, RFE_20, and RFE_30 achieved the same

performance, which leads back to the point discussed earlier,

about the close ranking of these methods—where the top 30

features (regardless of rank order) of these models were the

same. This can be easily visualized in the summarized Table 4.

As a measure of the generalizability of the proposed cough

detection method, the LOSO approach was also used for evaluation.

The results of this approach summarized in Figure 10 and Table 3
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TABLE 2 Summary of classification performance results of the first approach, using features selected by the 11 ranking methods under three cases for the
number of features used (n_features ¼ 10, 20, and 30) with the baseline method referring to the use of all 43 features.

Method ACC SN SP PPV NPV F1 FPR FNR FDR
Baseline 0.9028 0.8757 0.9299 0.9259 0.8821 0.9001 0.0701 0.1243 0.0741

n_features ¼ 10
XGBoost 0.8988 0.8876 0.9101 0.9080 0.8900 0.8977 0.0899 0.1124 0.0920

DT 0.8975 0.8849 0.9101 0.9077 0.8877 0.8962 0.0899 0.1151 0.0923

RF 0.9015 0.8770 0.9259 0.9221 0.8827 0.8990 0.0741 0.1230 0.0779

PC1 0.8902 0.8704 0.9101 0.9063 0.8753 0.8880 0.0899 0.1296 0.0937

LOO 0.9094 0.8849 0.9339 0.9305 0.8903 0.9071 0.0661 0.1151 0.0695

Permutation 0.9015 0.8783 0.9246 0.9209 0.8837 0.8991 0.0754 0.1217 0.0791

RFE_10 0.9107 0.8955 0.9259 0.9236 0.8986 0.9093 0.0741 0.1045 0.0764

RFE_20 0.9041 0.8796 0.9286 0.9249 0.8852 0.9017 0.0714 0.1204 0.0751

RFE_30 0.8995 0.8770 0.9220 0.9183 0.8823 0.8972 0.0780 0.1230 0.0817

RFE_43 0.8929 0.8690 0.9167 0.9125 0.8750 0.8902 0.0833 0.1310 0.0875

Correlation 0.9008 0.8783 0.9233 0.9197 0.8835 0.8985 0.0767 0.1217 0.0803

n_features ¼ 20
XGBoost 0.9081 0.8902 0.9259 0.9232 0.8940 0.9064 0.0741 0.1098 0.0768

DT 0.9147 0.8995 0.9299 0.9277 0.9024 0.9134 0.0701 0.1005 0.0723

RF 0.9120 0.8981 0.9259 0.9238 0.9009 0.9108 0.0741 0.1019 0.0762

PC1 0.9001 0.8757 0.9246 0.9207 0.8815 0.8976 0.0754 0.1243 0.0793

LOO 0.8876 0.8505 0.9246 0.9186 0.8608 0.8832 0.0754 0.1495 0.0814

Permutation 0.9041 0.8823 0.9259 0.9225 0.8872 0.9020 0.0741 0.1177 0.0775

RFE_10 0.9041 0.8915 0.9167 0.9145 0.8942 0.9029 0.0833 0.1085 0.0855

RFE_20 0.9041 0.8915 0.9167 0.9145 0.8942 0.9029 0.0833 0.1085 0.0855

RFE_30 0.9180 0.9034 0.9325 0.9305 0.9062 0.9168 0.0675 0.0966 0.0695

RFE_43 0.9220 0.9087 0.9352 0.9334 0.9111 0.9209 0.0648 0.0913 0.0666

Correlation 0.9001 0.8704 0.9299 0.9255 0.8777 0.8971 0.0701 0.1296 0.0745

n_features ¼ 30
XGBoost 0.9048 0.8757 0.9339 0.9298 0.8825 0.9019 0.0661 0.1243 0.0702

DT 0.9193 0.8981 0.9405 0.9378 0.9023 0.9176 0.0595 0.1019 0.0622

RF 0.9187 0.9021 0.9352 0.9330 0.9052 0.9173 0.0648 0.0979 0.0670

PC1 0.9021 0.8783 0.9259 0.9222 0.8838 0.8997 0.0741 0.1217 0.0778

LOO 0.8922 0.8638 0.9206 0.9158 0.8711 0.8890 0.0794 0.1362 0.0842

Permutation 0.9114 0.8902 0.9325 0.9296 0.8947 0.9095 0.0675 0.1098 0.0704

RFE_10 0.9206 0.9021 0.9392 0.9368 0.9056 0.9191 0.0608 0.0979 0.0632

RFE_20 0.9206 0.9021 0.9392 0.9368 0.9056 0.9191 0.0608 0.0979 0.0632

RFE_30 0.9206 0.9021 0.9392 0.9368 0.9056 0.9191 0.0608 0.0979 0.0632

RFE_43 0.9087 0.8849 0.9325 0.9292 0.8902 0.9065 0.0675 0.1151 0.0708

Correlation 0.9114 0.8796 0.9431 0.9393 0.8868 0.9085 0.0569 0.1204 0.0607

The highest scores attained for each case, in all metrics, are emphasized in bold.
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reflected an acceptable performance from the baseline using all 43

features. Although these baseline results were different than those

reported by the subject-record-split approach, this was expected as

the model was tested on unseen subjects and the results did not

show major deviation. A slight drop in accuracy (�0:0176),

sensitivity (�0:0412), NPV (�0:0112), and F1 score (�0:0289)

were noticed while an improvement in specificity (þ0:0061) and

PPV (þ0:0135) in the LOSO baseline model were noticed. In this

approach, it was observed that the increase in the number of

features from 10 to 20 to 30 did not necessarily improve the model’s

performance. In terms of accuracy, sensitivity, NPV, and F1 score, 6

out of 11 models using only 10 features resulted in notably

improved performance, while only 1 model with 20 features and 4

models with 30 features resulted in a slightly improved performance.

As for specificity, three models with 10 features, four models with 20

features, and two models with 30 features reported improved
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performance. The reported PPV scores noted an improvement in

seven models with 10 features, three models with 20 features, and

only two models with 30 features. It is important to note that the

increase in performance scores of both specificity and PPV were

borderline as noticed in Figure 10, hence they did not affect the

choice of the best-performing model. The best-performing model

out of the 33 models in this approach was the RFE_10 model using

only 10 features reporting the best accuracy, sensitivity, and F1 score

with an increase from the baseline score by 0.0105, 0.0226, and

0.0160, respectively.

The general observation of the models’ performance shown in

Figures 9 and 10 present the following trend, where accuracy,

sensitivity, NPV, and F1 score have similar behavior as the number

of features increases with dependency on the model used, while

specificity and PPV share a closer behavior—both metrics that

consider false positives (FP) in their computation. In the subject-
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1368574
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 9

Performance results of the first approach’s 33 classification cases using 10, 20, and 30 selected features from the 11 ranking methods compared to the
baseline classification model using all the features.
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record-split approach of Figure 9, it can be deduced that only a few

models using 10 or 20 features were able to improve the model’s

performance in terms of lowering FPs, while when the number of

features was increased to 30, the majority of the models (9 out of

11) achieved higher specificity and PPV scores than the baseline. As

for the LOSO approach, it is noticed that more models using 10
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features were able to achieve a slightly better performance than the

baseline, and as the number of features increased, less number of

models were able to improve the performance reaching only two

models using 30 features, one of which achieved the best specificity

and PPV across all 33 models. As for the four other metrics, they

were able to achieve maximum improvement using only 20
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TABLE 3 Summary of classification performance results of the second approach (LOSO), using features selected by the 11 ranking methods under three
cases for the number of features used (n_features ¼ 10, 20, and 30) with the baseline method referring to the use of all 43 features.

Method ACC SN SP PPV NPV F1 FPR FNR FDR
Baseline 0.8852 0.8345 0.9360 0.9394 0.8708 0.8712 0.0640 0.1655 0.0606

n_features ¼ 10
XGBoost 0.8819 0.8271 0.9367 0.9407 0.8681 0.8658 0.0633 0.1729 0.0593

DT 0.8842 0.8336 0.9348 0.9399 0.8717 0.8701 0.0652 0.1664 0.0601

RF 0.8938 0.8545 0.9331 0.9384 0.8813 0.8857 0.0669 0.1455 0.0616

PC1 0.8792 0.8338 0.9245 0.9266 0.8664 0.8679 0.0755 0.1662 0.0734

LOO 0.8865 0.8357 0.9374 0.9416 0.8731 0.8719 0.0626 0.1643 0.0584

Permutation 0.8956 0.8550 0.9362 0.9403 0.8858 0.8845 0.0638 0.1450 0.0597

RFE_10 0.8957 0.8571 0.9343 0.9397 0.8843 0.8872 0.0657 0.1429 0.0603

RFE_20 0.8823 0.8288 0.9357 0.9408 0.8688 0.8674 0.0643 0.1712 0.0592

RFE_30 0.8819 0.8298 0.9340 0.9386 0.8673 0.8687 0.0660 0.1702 0.0614

RFE_43 0.8854 0.8381 0.9326 0.9398 0.8716 0.8746 0.0674 0.1619 0.0602

Correlation 0.8907 0.8550 0.9264 0.9318 0.8799 0.8835 0.0736 0.1450 0.0682

n_features ¼ 20
XGBoost 0.8764 0.8217 0.9312 0.9349 0.8634 0.8604 0.0688 0.1783 0.0651

DT 0.8769 0.8195 0.9343 0.9384 0.8642 0.8590 0.0657 0.1805 0.0616

RF 0.8850 0.8340 0.9360 0.9400 0.8732 0.8697 0.0640 0.1660 0.0600

PC1 0.8763 0.8198 0.9329 0.9357 0.8608 0.8601 0.0671 0.1802 0.0643

LOO 0.8740 0.8121 0.9360 0.9391 0.8617 0.8526 0.0640 0.1879 0.0609

Permutation 0.8780 0.8193 0.9367 0.9398 0.8660 0.8579 0.0633 0.1807 0.0602

RFE_10 0.8811 0.8276 0.9345 0.9386 0.8693 0.8646 0.0655 0.1724 0.0614

RFE_20 0.8811 0.8276 0.9345 0.9386 0.8693 0.8646 0.0655 0.1724 0.0614

RFE_30 0.8864 0.8405 0.9324 0.9364 0.8755 0.8736 0.0676 0.1595 0.0636

RFE_43 0.8835 0.8283 0.9386 0.9422 0.8690 0.8676 0.0614 0.1717 0.0578

Correlation 0.8832 0.8329 0.9336 0.9377 0.8687 0.8707 0.0664 0.1671 0.0623

n_features ¼ 30
XGBoost 0.8765 0.8212 0.9319 0.9349 0.8654 0.8588 0.0681 0.1788 0.0651

DT 0.8833 0.8336 0.9331 0.9368 0.8738 0.8676 0.0669 0.1664 0.0632

RF 0.8858 0.8369 0.9348 0.9385 0.8737 0.8720 0.0652 0.1631 0.0615

PC1 0.8829 0.8310 0.9348 0.9386 0.8685 0.8684 0.0652 0.1690 0.0614

LOO 0.8752 0.8152 0.9352 0.9374 0.8592 0.8572 0.0648 0.1848 0.0626

Permutation 0.8823 0.8298 0.9348 0.9392 0.8717 0.8649 0.0652 0.1702 0.0608

RFE_10 0.8854 0.8386 0.9321 0.9362 0.8743 0.8721 0.0679 0.1614 0.0638

RFE_20 0.8852 0.8383 0.9321 0.9362 0.8740 0.8719 0.0679 0.1617 0.0638

RFE_30 0.8852 0.8383 0.9321 0.9362 0.8740 0.8719 0.0679 0.1617 0.0638

RFE_43 0.8817 0.8269 0.9364 0.9396 0.8671 0.8658 0.0636 0.1731 0.0604

Correlation 0.8765 0.8124 0.9407 0.9432 0.8614 0.8555 0.0593 0.1876 0.0568

The highest scores attained for each case, in all metrics, are emphasized in bold.

Diab and Rodriguez-Villegas 10.3389/fdgth.2024.1368574
features in the subject-record-split approach and only 10 features

in the LOSO approach. Therefore, we can conclude that it is

possible to use as low as 10 features for cough detection

following the results presented by the LOSO approach of model

RFE_10 to achieve an accuracy of 0.8957, sensitivity of 0.8571,

specificity of 0.9343, PPV of 0.9397, NPV of 0.8843, and F1

score of 0.8872. We can also use up to 20 features based on the

results of the subject-record-split best-performing model, the

RFE_43 with an accuracy of 0.9220, sensitivity of 0.9087,

specificity of 0.9357, PPV, of 0.9334, NPV of 0.9111, and F1

score of 0.9209. In both cases, though the improvement from

the baseline model is relatively small, it is however achieved

with less than a half (subject-record-split) and/or a quarter

(LOSO) of the total number of features, which will eventually

reflect on the size of the model, computational time, and

space required.
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Examining the list of features selected by the best-performing

models using the summary in Table 4, it is noticed that eight

features are common between the best-performing models of both

approaches. In the LOSO approach using the top 10 features, 5

features were related to the Mag signal, 3 to the accZ signal, and 2

to the correlation between axes Corr xy and Corr xz. As for the

subject-record-split approach using the top 20 features, 10 features

were extracted from the magnitude signal, 8 features from the

accZ signal, and Corr xy and Min X features. Among these

features, the Min Mag can be considered the top feature as it was

ranked in the top 10 by all 11 methods, even though none ranked

it as 1. It is followed by Diff Mag, which was ranked in the top 10

by 10 methods, and Diff Z, which was ranked in the top 10 by 9

methods, and then Max Mag and Corr xy. These five top features

are common between the two best-performing models. As for

features that ranked as least important, IQR Y was only ranked by
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1368574
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 10

Performance results of the second approach’s (LOSO) 33 classification cases using 10, 20, and 30 selected features from the 11 ranking methods
compared to the baseline classification model using all the features.
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two methods, once in the top 20 and another in the top 30, while the

remaining 9 methods ranked it above 30. Similarly, MAD X,

Skew Y , Kurt Y , Kurt Z, and IQR Z, were only ranked by three

methods to be within the top 30 features. Nevertheless, within

these three ranking methods, some ranked within the top 10

features, specifically the accZ features, which were both used in the
Frontiers in Digital Health 16
best-performing model. Therefore, it is not enough to only

evaluate the ranking of features individually, but rather as a set

used for the classification problem.

As this study investigates a relatively new approach to cough

detection that has not been explored before, the results of our

early-stage investigation have some limitations that need to be
frontiersin.org
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TABLE 4 Summary of features used by each ranking method grouped by their ranking into three categories: Top 10 (�), Top 20 (A), and Top 30 (4), where
empty cells indicate a ranking greater than 30.

Feature XGBoost DT RF PC1 LOO PERM RFE_10 RFE_20 RFE_30 RFE_43 Corr
Min_X 4 4 4 � A 4 4 � � 4
Max_X A A 4 � 4 4 4 4 A

Diff_X 4 4 4 4 4 A 4 4 4 4 A

RMS_X � � 4 A � A A 4 4 4
Skew_X A A A A 4
Kurt_X 4 4 � 4 � 4
IQR_X 4 4 A 4
Var_X 4 A A A 4 4 4
Ent_X A 4 4 4 4 4 4
MAD_X 4 4 4
Min_Y 4 4 A A

Max_Y A A A A � 4 4 4 A

Diff_Y A A A A A A A 4 A

RMS_Y � A A 4 4 4 4 4 4
Skew_Y � 4 4
Kurt_Y A � A

IQR_Y A 4
Var_Y A 4 4 4 4 4
Ent_Y 4 A 4 A � A A 4
MAD_Y 4 4 � 4 4
Min_Z 4 � A A A A A �
Max_Z A A � A A A � � A 4 �
Diff_Z � � � � � � A � � �
RMS_Z � 4 A 4 A 4 A A � � �
Skew_Z A A 4 4 4 � �
Kurt_Z � A �
IQR_Z 4 � A

Var_Z A A 4 � A � � A

Ent_Z � � A A 4 A A � � � 4
MAD_Z 4 � � A

Min_Mag � � � � � � � � � � �
Max_Mag 4 � � � � � � � A �
Diff_Mag � � � � � � � � � A �
RMS_Mag � � A � � � A �
Skew_Mag 4 4 4 � 4 4 4 4 A A

Kurt_Mag A � 4 � A 4 A � A A

IQR_Mag 4 4 A � 4 4 A A A

Var_Mag � � 4 A � � A A �
Ent_Mag 4 4 � A 4 A A � A A �
MAD_Mag A A 4 A A

Corr_xy � � � 4 � � � � A A 4
Corr_yz A � A 4 4 4 A A A 4
Corr_xz � � A A � � � A A
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addressed in future work. One of the main limitations is related to

the used dataset, where the data were collected from only five

subjects. Another is that the collected data represent cough and

non-cough events only when the subjects are seated. These

limitations highlight the need for subsequent work to further

collect data from a wider population and under different states

such as walking and/or lying down. In addition, as there were

limited data available, our initial evaluation used a subject-record-

split approach for data splitting. This facilitated the performance

evaluation of the cough detection models using unseen records

from trained subjects for testing the models; this reported good

performance but questioned the generalizability of the models on

unseen subjects. To overcome this issue, the second approach
Frontiers in Digital Health 17
using LOSO was implemented and proved the ability of the

proposed cough detection solution to perform well on unseen

subjects. However, the results from the LOSO approach can be

considered a bit biased as one out of the five subjects had half the

number of total records compared to the other four subjects,

resulting in better performance during its testing fold.

Nevertheless, combining the results from both approaches can

compensate for the limitations of individual approaches.

In conclusion, this study presented an overall evaluation of

different extracted features for motion-based cough detection. It

demonstrated the ability to use as minimum as 10 time-domain

features, extracted from the acquired signals of the non-contact

accelerometer, to distinguish between cough and non-cough
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events and reflected the redundancy of some features. It presented

68 different classification models using two evaluation approaches

for data splitting, based on 11 different feature ranking methods

and 3 sets of number of selected features, which can be used and

modified for future improvement. It also paves the way for

further development, allowing the use of more sophisticated

classifiers and expanding on the type of detected motions such as

walking and standing. Overall, this evaluation study serves the

main purpose of presenting a guide for future research related to

the use of motion-based cough detection.
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