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A comparative study in class
imbalance mitigation when
working with
physiological signals
Rawan S. Abdulsadig* and Esther Rodriguez-Villegas

Wearable Technologies Lab, Department of Electrical and Electronic Engineering, Imperial College
London, London, United Kingdom
Class imbalance is a common challenge that is often faced when dealing with
classification tasks aiming to detect medical events that are particularly
infrequent. Apnoea is an example of such events. This challenge can however
be mitigated using class rebalancing algorithms. This work investigated 10
widely used data-level class imbalance mitigation methods aiming towards
building a random forest (RF) model that attempts to detect apnoea events
from photoplethysmography (PPG) signals acquired from the neck. Those
methods are random undersampling (RandUS), random oversampling
(RandOS), condensed nearest-neighbors (CNNUS), edited nearest-neighbors
(ENNUS), Tomek’s links (TomekUS), synthetic minority oversampling technique
(SMOTE), Borderline-SMOTE (BLSMOTE), adaptive synthetic oversampling
(ADASYN), SMOTE with TomekUS (SMOTETomek) and SMOTE with ENNUS
(SMOTEENN). Feature-space transformation using PCA and KernelPCA was
also examined as a potential way of providing better representations of the
data for the class rebalancing methods to operate. This work showed that
RandUS is the best option for improving the sensitivity score (up to 11%).
However, it could hinder the overall accuracy due to the reduced amount of
training data. On the other hand, augmenting the data with new artificial data
points was shown to be a non-trivial task that needs further development,
especially in the presence of subject dependencies, as was the case in this work.

KEYWORDS

class imbalance, machine learning, physiological signals, sudden unexpected death in
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1 Introduction

Class imbalance is one of the most challenging problems when training machine

learning models, especially when data acquisition is expensive. The problem of class

imbalance arises when some classes (or categories) have significantly smaller number of

samples compared to others, leading to a model that is less likely to detect those

minority classes due to the insufficient number of samples in the training set needed

for proper learning. This problem presents itself in various domains and applications

including but not limited to security, finance, environment, agriculture, and health (1–

4). Typically, class imbalance is mitigated either at the model level by adapting and

adjusting the training procedure based on the different data samples and training

progression, or at the data level by modifying the class distributions in such a way as to

allow for improved class separability, typically via resampling (5–7). Resampling

techniques are widely used in the literature. Those include undersampling techniques
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that attempt to change the distribution of the majority classes such

as random undersampling (RandUS), condensed nearest-neighbors

(CNN), edited nearest-neighbors (ENN), and Tomek’s links

(Tomek), as well as oversampling techniques that change the

distribution of the minority classes such as random oversampling

(RandOS), synthetic minority oversampling (SMOTE),

Borderline-SMOTE (BLSMOTE), and adaptive synthetic

oversampling (ADASYN). In addition to hybrid resampling

techniques where a combination of undersampling and

oversampling methods are applied in unison.

A study investigating the effectiveness of rebalancing

imbalanced datasets prior to developing predictive models,

analyzed the effect of four resampling techniques on 17 different

datasets obtained from the UCI Machine Learning Database

Repository, employing eight classical machine learning classifiers.

The study concluded that, in general, oversampling was found to

perform better than undersampling, due to the reduced number

of data points when performing undersampling which could take

away useful information from the training process (8). On the

other hand, a later extensive review of the available methods for

learning from imbalanced datasets showed that no specific

method was found to consistently outperform the rest, and that

their performance differs greatly depending on the type of data

and application (3).

When it comes to building machine-learning models for

medical applications, class imbalance is a typical challenge where

the positive class of concern (the event or the condition)

represents a rare or infrequent occurrence in the data, while the

negative class (the absence of the event or condition) represents

the majority of occurrences in the data. Diabetes diagnosis is an

example application where class imbalance can occur, and a

recent study attempted to tackle this problem in order to

improve the performance of machine learning models (9). In that

work, the dataset consisted of many nominal patient attributes

such as BMI, age, and marital status. ENN, SMOTE,

SMOTEENN and SMOTETomek were investigated, and it was

found that undersampling using ENN resulted in superior

improvements, especially in terms of recall, while the hybrid

methods produced less but comparable improvements. Another

recent study attempted to mitigate the effect of class imbalance

on apnoea detection using SMOTE, SVM-SMOTE, Kmeans-

SMOTE, SMOTEENN, SMOTETomek among other methods,

including ensemble-based methods, concluded that using a

combination of random undersampling and duplicative

oversampling gave superior improvements (10). The data in that

work was obtained from the St. Vincent’s University Hospital/

University College Dublin Sleep Apnea Database, and the

features used were the SpO2 level, SpO2 drop, duration of the

event in addition to the BMI and the Epworth sleepiness score.

The results of that study suggest that adjusting the distributions

of the classes using simple methods can be superior to the other

more sophisticated methods available, in certain applications.

Detecting Apnoea occurrences in real-time is particularly

important for the prevention of Sudden Unexpected Death in

Epilepsy (SUDEP). A retrospective study (MORTEMUS) that

comprehensively evaluated data obtained from various epilepsy
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monitoring units revealed the circumstances that proceeded to

the tragic SUDEP events. The study showed the presence of

transient apnoea episodes which developed within 3 min after a

generalized tonic-clonic seizure, pointing to cardiorespiratory

dysfunction that eventually led to terminal apnoea and cardiac

arrest, tragically ending the life of the patient (11). This could

suggest that the ability to immediately detect and alert when an

apnoea event occurs can help prevent further complications and

potentially save lives, highlighting the importance of developing

accurate and reliable apnoea detection methods. The speedy real-

time apnoea alert requires quick responses to physiological cues,

and bypassing the need for obtaining calibrated measurements

such as SpO2 [as seen in previous studies (10, 12, 13)] could

allow for increased speed of response, since SpO2 is measured by

calibrating photoplethysmography (PPG) readings. The raw PPG

waveform is rarely used to detect apnoea, however, it was proven

to be feasible especially when obtained from the neck since it

becomes strongly modulated by respiration (14). Indeed it was

shown in a later study that it was possible to detect apnoea

events using PPG signals without the need for obtaining SpO2

measurements that pose a significant time delay (15).

The focus of this work is to carry out an extensive comparative

evaluation of the most widely used data-level undersampling,

oversampling, and hybrid algorithms for class rebalancing. This

was done while using the detection of apnoeas from PPG signals

as the target application.
2 Materials and methods

In this work, ten well-known and widely used class rebalancing

methods were examined in the classification task of detecting

apnoea vs non-apnoea PPG segments, where PPG signals were

acquired from the neck. Four of these are undersampling

methods, four more are oversampling methods, and two hybrid

methods which perform both undersampling and oversampling.

PPG signals were preprocessed, features were extracted and

classes were annotated. An optional step was examined where

dimensionality reduction using PCA was applied to the feature

space, in an attempt to provide the class rebalancing methods

with a different and possibly better spatial domain to operate.

Random forest (RF) was the classification model of choice due to

its extensive use in literature and frequent superiority over other

classical machine-learning algorithms. The following subsections

provide further description of the methodology behind this work.
2.1 Data acquisition

PPG data was obtained using an in-house customized device

integrating a reflectance PPG sensor (MAX30102, MAXIM

integrated) that emits red and IR light (650–670 nm and 870–

900 nm, respectively) with an NRF5232 microcontroller (Nordic

Semiconductor) along with a rechargeable 3.8 V 80mAh lithium

polymer battery. The PPG data was sampled at 400 Hz and

transmitted wirelessly via Bluetooth low energy (BLE) to a locally
frontiersin.org
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TABLE 2 Time-domain features extracted from PPG pulses.

Feature Description
Pulse amplitude The vertical distance between the onset and the systolic peak

of a PPG pulse.

Pulse width The duration of time (in seconds) between the onset and the
offset of a PPG pulse.

Pulse height
difference

Difference in amplitude between successive PPG pulse peaks.

Pulse distance Difference in time (in seconds) between successive PPG pulse
peaks.

Trough difference Difference in onset amplitude of successive PPG pulses.
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developed data acquisition iOS app. The device was placed

approximately 1 in above the suprasternal notch on the neck

using a double-sided adhesive tape which is shaped in a way not

to obstruct the PPG light trajectory. This setup was followed in

previous work (16).

In this work, 8 healthy participants were recruited (5 males and

3 females) as part of a study approved by the Local Ethics

Committee of Imperial College London (ICREC reference

number: 18IC4358). Table 1 lists the main details of those subjects.

During the experiment, all participants were directed to hold

their breath at different times following verbal cues, and for as

long as they could without overly forcing their bodies, as that

could lead to involuntary reflexes resulting in non-realistic

artifacts. Subjects signaled the beginning and end of each breath

held by gently raising their hand. This was done to ensure

precise marking of the duration of time the apnoea event was

simulated. During each data acquisition session, artifacts

provoked by the subjects such as talking or excessive movement

as well as any mislabelling of apnoea events were marked

immediately for later elimination. Each subject was asked to hold

their breath between 3 to 10 times, within a � 30-min. data

acquisition run. The duration of each apnoea event in the data

was between 10 to 100 s.

Rise time Duration of time (in seconds) between the onset and the

systolic peak of a PPG pulse.

Skewness Level of asymmetry of a PPG pulse.

Kurtosis Level of non-Gaussian behavior of a PPG pulse.

TABLE 3 Frequency-domain, correlogram and envelope features
extracted from PPG segments.

Feature Description
Spectral entropy The level of irregularity of power in the frequency

domain. This value was calculated for the frequency
ranges [0,1.5] Hz and [1,4] Hz.

Spectral kurtosis The level of peakedness or non-Gaussian behavior in the
frequency domain. This value was calculated for the
frequency bands [0,1.5] Hz and [1,4] Hz
2.2 Data preprocessing

The PPG’s Red and IR channels were downsampled to 100 Hz,

and segmented using a 30 s long overlapping sliding window

shifting by 1 s.

Signals captured within each window were first filtered using a

median filter with a window of 5 samples in order to remove

transient noise in the PPG channels, then a smoothing 2nd order

Savitsky-Golay filter with a window of size 0.25 s. The

independently filtered Red and IR channels were finally

combined by time-wise addition and then standardized, resulting

in a unified signal ready to be used for feature extraction.

Relative power A ratio of the power within a specified range to the total

power across all frequencies. This measure was calculated
for the frequency bands [0,0.8] Hz, [0.8,1.3] Hz and
[1.3,1.8] Hz

Average band power The mean power within a specific range of frequencies.
This measure was calculated for the frequency bands
[0,0.8] Hz, [0.8,1.3] Hz, [1.3,1.8] Hz, [2.2,2.8] Hz and
[3.2,3.8] Hz

Correlogram peaks The value of peak of the autocorrelation function. This
was calculated for the first and second peaks.

Correlogram lags The amount of lag a peak in the autocorrelation function.
This was calculated for the first and second peaks.

Envelope statistics Standard deviation, maximum and minimum values of
the envelope.
2.3 Feature extraction and dataset
construction

A total of 49 features were extracted from each preprocessed

PPG segment, all of which were proposed and evaluated for

processing PPG signals in previous studies (15, 17), Tables 2, 3

list those features and their brief description.

Table 2 lists the time-domain features that were extracted per

PPG pulse, from which the mean, standard deviation and mean
TABLE 1 Demographic details of the participating subjects.

Mean value + std
Age 27+ 2:8 years

Height 175:88+ 8:2 cm

Weight 69:2+ 12:10 kg

BMI 22:45+ 4:26 (kg=m2)
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difference between consecutive pulses were calculated per

window segment. The PPG pulses were obtained using the

approach described in (18) and provided in their GiHub

repository (https://github.com/akrlowicz/ppg-blood-pressure-

estimation). Table 3 shows the frequency-domain, correlogram

and envelop features that were calculated over the window

segments. The envelope features were obtained from the upper

envelope of the PPG signal as described in (15). Features were

standardized before further processing, and standardization

parameters were strictly obtained from the training partition of

the dataset. Each window segment was labeled as apnoea if it
Envelope range The difference of the maximum and minimum values of
the envelope.

Envelope area Area under the envelope’s absolute values calculated
numerically using the trapezoidal method.

Envelope average
power

The mean power of the envelope within certain frequency
ranges. This value was calculated for the frequency bands
[0,0.15] Hz, [0.2,0.5] Hz, [0,0.5] Hz and [0.5,1] Hz

Envelope approximate
entropy

The level of irregularity in the envelope. This was
calculated using Python’s “EntropyHub.ApEn” function.
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carried at least 5 s worth of apnoea annotated samples, otherwise,

it was labeled as non-apnoea.
2.4 Class rebalancing methods

Class imbalance is typically treated either by undersampling

the majority-class data points or oversampling the minority-class

data points in such a way as to lessen or eliminate the difference

in the number of data points belonging to each. Furthermore,

hybrid approaches applying both undersampling and

oversampling are widely used to achieve the same objective, with

potentially cleaner class distributions. In this work, the

implementations provided by the Python library “imblearn” were

used to execute 4 undersampling methods, 4 oversampling

methods and 2 hybrid methods. A brief description of each

method is given below.

2.4.1 Random undersampling (RandUS)
In random undersampling (RandUS), the majority class is

undersampled by randomly selecting a subset of data points by a

factor corresponding to the number of minority class data points.

2.4.2 Random oversampling (RandOS)
In random oversampling (RandOS), the minority class is

augmented by randomly selecting and duplicating data points

from that class, which could be thought of as increasing the

weight of the minority class samples by a factor proportional to

the number of duplicates per data point.

2.4.3 Condensed nearest-neighbors
undersampling (CNNUS)

The objective of the condensed nearest-neighbors

undersampling (CNNUS) method is to only consider the most

influential points from the majority class. It was originally

proposed as a way to reduce the number of data points needed

to be stored in memory for nearest-neighbor classifiers (19).

However, it was then widely used as a class rebalancing

undersampling approach.

The way to determine an influential point that is worth

keeping is by iteratively going over sampled points from the

majority class and using the K nearest-neighbors (KNN)

classification algorithm in order to classify that point with

respect to the minority class points and the remaining majority

class points. In case it was misclassified, then it means that it is

an influential point that needs to be retained. Should it be

classified correctly then it would be considered as a redundant

point and would be removed. K is typically defined as 1,

although it is a tunable parameter.

2.4.4 Edited nearest-neighbors undersampling
(ENNUS)

In the edited nearest-neighbors undersampling (ENNUS)

method, for a majority data point to be kept in the dataset, its K

nearest-neighbors have to also belong to the majority class (20).

Two methods of evaluation are typically used; majority voting or
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complete agreement. The former only requires most of the K

neighbors to share its class while the latter requires all of them

to do so, which makes the latter more strict than the former

while counteracting the possibility of having rare and scattered

minority class points, therefore, the latter was used to represent

the method.

2.4.5 Tomek’s links undersampling (TomekUS)
The Tomek’s links undersampling (TomekUS) method

attempts to remove data points from the majority class that

exhibit a Tomek’s link (21). A Tomek’s link occurs when a

minority-class data point x and a majority-class data point y are

both the nearest-neighbors of each other, such that for any other

data point z:

dist(x, y) , dist(x, z) and dist(x, y) , dist(y, z)

Where dist(a, b) is the distance between point a [ <n and b [ <n,

which is often represented by the Euclidean distance.

2.4.6 Synthetic minority oversampling technique
(SMOTE)

The synthetic minority oversampling technique (SMOTE)

algorithm aims to augment the minority class points by

generating new data points that are composed of a random linear

combination of pairs of minority data points within a certain

neighborhood of K points (22). In this method, the number of

neighbors within the K nearest-neighbors region to be used as

anchors for generation depends on the amount of oversampling

required, therefore, K does not influence the number of

generated data points but the size of the regions from which the

pairs are made.

2.4.7 Borderline-SMOTE (BLSMOTE)
Borderline-SMOTE (BLSMOTE) is a variation of the SMOTE

algorithm which focuses on the minority-class data points closest

to the majority-class region, i.e., borderline, and only those data

points are oversampled (5). Two variations were proposed:

Borderline-SMOTE1 and Borderline-SMOTE2. Borderline-

SMOTE1 oversamples minority points that reside in the

“DANGER” set which is defined by having more majority-class

neighbors than minority-class’s, while the number of majority-

class data points is not equal to the number of neighbors K .

Borderline-SMOTE2 differs from Borderline-SMOTE1 in that it

does not only generate new samples based on minority-class

nearest-neighbors pairs, but it also pairs minority-class points

with their nearest majority-class neighbors and forms a random

linear combination that leans towards the minority-class side of

the pair. Borderline-SMOTE1 was chosen to represent this

method in this work.

2.4.8 Adaptive synthetic oversampling (ADASYN)
The adaptive synthetic oversampling (ADASYN) method,

like SMOTE, aims to generate new minority data points along

the lines connecting pairs of minority data points within a
frontiersin.org
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K nearest-neighbors region. Unlike SMOTE, it uses the density

distribution of the majority-class data points around each minority-

class data point to determine the proportion of synthetic data to

generate for each, the higher the density the more synthetic points

it is going to generate (23). The aim is to shift the learning focus to

minority-class points that are harder to learn from based on the

high density of majority-class points that are similar to them.

2.4.9 Hybrid techniques
Since it is common to use oversampling algorithms such as

SMOTE followed by an undersampling method such as

TomekUS and ENNUS (1, 24), two hybrid combinations were

investigated in this work: SMOTE with TomekUS

(SMOTETomek) and SMOTE with ENNUS (SMOTEENN).
2.5 Feature-space transformation: principal
component analysis (PCA)

Principal component analysis (PCA) is a method that applies

singular value decomposition to multivariate data in order to

linearly project it to a lower dimensional space specified by n, in

which most of the variance within the data is explained. PCA is

widely used for dimensionality reduction in order to compress

high-dimensionality data to a lower and potentially more useful

representation, allowing for faster and more efficient training of

machine-learning models. However, the linearity of this method

could hinder its performance when the data of interest exhibits

non-linear correlations. To this end, KernelPCA was later

proposed as the non-linear form of PCA providing more

sophistication to the formation of the principal components (25).

Polynomial, radial basis, sigmoid and cosine functions are used

as kernels for PCA due to the existence of a dot product space

that allows for computing their transformation without explicitly

applying the functions, as described in the original paper (25). In

this work, PCA and KernelPCA were examined with different

numbers of principal components (n ¼ 8, 16 and 32). Kernels

used were 3rd order polynomial function (poly3), radial basis

function (rbf), sigmoid function (sig) and cosine function (cos).
2.6 Model building: random forest (RF)

Random forest (RF) is one of the most popular machine-

learning algorithms due to its robustness and versatility

compared to other classical model types. A random forest is

composed of an ensemble of decision trees working together to

form a model of the training dataset. Each tree in the ensemble

is given a different bootstrapped subset of the training set,

allowing for variations in the formation of the trees. At inference

time, results obtained by each tree are aggregated in order to

arrive at a unified prediction (26). In this work, a random forest

with 100 trees was used, and each tree was allowed to grow until

each leaf node had less than 5 samples, then a split would be

prohibited. Having fixed fitting parameters allows for a clearer

comparative evaluation of the quality of the class separability in
Frontiers in Digital Health 05
the data given by the different methods, as opposed to tuning

those parameters for each case which could cloud the true

effects. The implementation provided by Python’s

“sklearn.ensemble.RandomForestClassifier” was used.
2.7 Evaluation methods

The classification performance was evaluated in two setups

where the training-testing split differs:

• Subject-wise splits where the training and testing sets carried

data points from different subjects. In this case, two subjects

were randomly chosen and their data points were left out for

testing, while the remaining 6 subjects’ data points were used

for training.

• Section-wise splits where each subject’s data was partitioned into

three sections, then randomly choosing one of these sections

and leaving it out for testing. This method was illustrated in

(15). The partitioning was performed before windowing the

data for feature extraction, and the sliding window was only

allowed to traverse locally within the sections. This was done

to prevent intermediate overlapping windows from leaking

information to the testing set.

The class rebalancing methods were only applied to the training

set, as they are meant to improve the training process, while

testing should strictly include genuine data. In the case of

transforming the feature space using PCA or KernelPCA, the

training set was used to determine the transformation parameters

and the same parameters were then applied to the testing set, in

each respective case.

Each examined case was repeated 30 times, with a different

random state in each repetition which influences all the steps

that require random number generation. This includes the

random selection of neighboring pairs in the class rebalancing

methods, the random choices in the training-testing splits and

the random bootstrapping in the RF model. Therefore, each of

the 30 repetitions per case represents a different viewpoint of

that particular case. The results from these repetitions are then

summarized using the median with its 25th–75th percentiles or

the mean with its 95% confidence interval.

The well-known classification evaluation metrics are used in

this work: sensitivity, precision, f1-score, accuracy, ROC-AUC

(the area under the receiver-operator curve). Those metrics were

calculated per class and then averaged, except ROC-AUC which

is only concerned with the positive class.
3 Results

3.1 K value examination

First, the value of K which controls the size of the

neighborhood region used in the different neighborhood-based

class rebalancing methods was examined. K varied from 5 to

200, and the accuracy of the apnoea classification task was
frontiersin.org
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examined when evaluating the models using the testing set under

the subject-wise splitting scheme and the section-wise scheme.

Those results are shown in Figures 1A,B, respectively. The K

parameter influences the working of: SMOTE, BLSMOTE,

ADASYN, ENNUS, CNNUS, SMOTETomek and SMOTEENN,

and hence, only those methods are shown in the figures.

From the results shown in Figures 1A,B, it was evident that a

choice of K ¼ 20 was reasonable across all the relevant methods,

and this value was used in the remainder of this work.
3.2 Class rebalancing methods with feature-
space transformation

Fitting the random forest classifier to the training data, without

and with feature-space transformation using PCA, poly3PCA,

rbfPCA, sigPCA, and cosPCA, each with n ¼ 8, 16 or 32 was

examined and evaluated on their corresponding testing data.

Training data was either kept as it is (Baseline) or modified

using one of the 10 class rebalancing methods, using K ¼ 20
FIGURE 1

Accuracy of the apnoea classification task after applying the relevant class reb
(A) section-wise and (B) subject-wise split. Baseline represents the performan
Shaped points indicate the median value over the 30 repetitions while the b
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whenever needed. Supplementary Tables S1, S2 list the mean

sensitivity, mean precision, mean f1-score, mean accuracy, and

mean ROC-AUC scores and their 95% confidence bounds, when

evaluated using the section-wise and the subject-wise

partitioning, respectively. The highest score (per metric) in each

subsection of the tables was written in bold for clarity. After

considering the results in Supplementary Tables S1, S2, the top 4

class rebalancing methods (in addition to baseline) which

frequently scored highest are visually inspected in bar plots,

those methods were: RandUS, TomekUS, RandOS and SMOTE.

Figures 2, 3 show their respective sensitivity and accuracy

measures in both section-wise and subject-wise splitting

approaches, respectively.

Table 4 lists the number of minority-class and majority-class

data points in the training set, before and after each class

rebalancing method, for the top 4 performing methods as well as

the baseline. Those values were averaged over the different

transformation approaches to avoid redundancy, as they were

found to be identical or very similar across the different feature

transformation methods.
alancing methods as the value of K changes from 5 to 200, in the case of
ce without applying any class rebalancing method, shown for reference.
ars show the 25th–75th percentile range.
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FIGURE 2

Bar plots of the (A) sensitivity and (B) accuracy scores achieved when taking the section-wise splitting approach in the apnoea classification task.
Different colors correspond to different class rebalancing methods, while groups are made based on the feature transformation methods. Bar
heights indicate the mean value while the error bars show the 95% confidence interval.
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4 Discussion and conclusion

Inspecting the results shown in Supplementary Tables S1, S2

shows that there were generally 4 class rebalancing methods that

often outperformed or were one of the best-performing methods

in at least one of the evaluation metrics, across both section-wise
Frontiers in Digital Health 07
and subject-wise splitting schemes. Those were: RandUS,

TomekUS, RandOS and SMOTE.

It can also be observed from the Supplementary Tables S1, S2

that undersampling methods (especially RandUS) often

outperformed in terms of sensitivity, while they underperformed

in terms of accuracy and f1-score. The reduction in accuracy and
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1377165
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 3

Bar plots of the (A) sensitivity and (B) accuracy scores achieved when taking the subject-wise splitting approach in the apnoea classification task.
Different colors correspond to different class rebalancing methods, while groups are made based on the feature transformation methods. Bar
heights indicate the mean value while the error bars show the 95% confidence interval.
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f1-score could be due to the effect of the amount of data points that

were introduced to the RF model during training and how they

influenced the growth of the individual trees given the

challenging class separability in the data. Undersampling

methods reduce the number of data points belonging to the

majority class and therefore reduce the total number of data

points in the set, consequently reducing the tree depth needed to

fit the training data and therefore leading to increased bias and
Frontiers in Digital Health 08
decreased variance. This can be further illustrated by observing

Figures 2A, 3A which clearly show that RandUS consistently

provided the best sensitivity in each configuration, while

Figures 2B, 3B show that oversampling methods were generally

providing superior accuracy to RandUS, and comparable

accuracy to baseline. However, it is worth noting that TomekUS

did not provide significantly different results from baseline. This

could be due to the limited effect this method imposed on the
frontiersin.org
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TABLE 4 The number of minority-class data points and majority-class data points, total number of data points, and class ratio after applying each of the
class rebalancing methods, in both section-wise and subject-wise splitting approaches.

Method Minoity-class Majority-class Total data points Class ratio (þ :�)

Section-wise

Baseline 2, 112 9, 271 11, 383 23 : 100
RandUS 2, 112 2, 112 4, 224 1 : 1

TomekUS 2, 112 9, 235 11, 347 23 : 100

RandOS 9, 271 9, 271 18, 542 1 : 1

SMOTE 9, 271 9, 271 18, 542 1 : 1

Subject-wise

Baseline 1, 833 8, 321 10, 154 22 : 100
RandUS 1, 833 1, 833 3, 666 1 : 1

TomekUS 1, 833 8, 289 10, 122 22 : 100

RandOS 8, 321 8, 321 16, 642 1 : 1

SMOTE 8, 321 8, 321 16, 642 1 : 1
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training data, as it only removed about 36 data points at most from

the majority class, as seen in Table 4.

On the other hand, the figures also show that feature-space

transformation did not improve the performance of the methods,

and having the original feature-space resulted in higher

performance. This is more likely due to the fact that having

more features often helps ensemble-based machine-learning

models perform better, rather than being due to the quality of

the feature-space itself.

It is important to note that those sampling-based class

rebalancing methods were originally proposed to handle data

points that represent independent samples, and which tend to

form class-dependant clusters, which is often not the case when

handling continuous measurement data where subsets of the data

points are drawn from the same entity (subject in the case of this

work), causing data dependencies that lead to clusters that are

not class-dependant but rather dependant on the entity (subject)
FIGURE 4

MDS plots showing feature data points in a 2-dimensional space. (A) Data p
different subjects are colored differently, as shown in the corresponding leg
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they were drawn from. This is illustrated in Figure 4 which

shows a multidimensional scaling plot (MDS plot) that allows

visualizing high-dimensional feature spaces in 2 dimensions

while preserving the relative distances between data points,

revealing the significant overlap between apnoea and non-apnoea

data points in Figure 4A, and the clear subject-based clustering

of data points in Figure 4B. It is likely that the examined feature-

space transformations failed to combat this issue.

In conclusion, this work demonstrates the difficulty in handling

class imbalance when dealing with physiological data where subject

dependencies occur. Although the classification results in this work

are unlikely to be generalizable given the limited data, however, the

relative comparisons between the performance of the methods

amongst themselves and baseline can still be valid when

applied to broader datasets. They suggest the use of RandUS if

sensitivity is the main concern, which, in this work, achieved 3%

to 11% increase in the sensitivity score compared to baseline.
oints representing apnoea are colored red. (B) Data points belonging to
end.
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Furthermore, artificially augmenting the data in order to increase

the overall classification accuracy was shown to be non-trivial,

and more methods should be investigated and validated to

provide sophisticated alternatives that take subject dependencies

into account.
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