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Biofuser: a multi-source data
fusion platform for fusing the
data of fermentation
process devices
Dequan Zhang1, Wei Jiang2, Jincheng Lou2, Xuanzhou Han2 and
Jianye Xia1,2*
1State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology,
Shanghai, China, 2Engineering Biology for Biomanufacturing, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, Tianjin, China
In the past decade, the progress of traditional bioprocess optimization technique
has lagged far behind the rapid development of synthetic biology, which has
hindered the industrialization process of synthetic biology achievements.
Recently, more and more advanced equipment and sensors have been applied
for bioprocess online inspection to improve the understanding and optimization
efficiency of the process. This has resulted in large amounts of process data
from various sources with different communication protocols and data formats,
requiring the development of techniques for integration and fusion of these
heterogeneous data. Here we describe a multi-source fusion platform (Biofuser)
that is designed to collect and process multi-source heterogeneous data.
Biofuser integrates various data to a unique format that facilitates data
visualization, further analysis, model construction, and automatic process
control. Moreover, Biofuser also provides additional APIs that support machine
learning or deep learning using the integrated data. We illustrate the application
of Biofuser with a case study on riboflavin fermentation process development,
demonstrating its ability in device faulty identification, critical process factor
identification, and bioprocess prediction. Biofuser has the potential to
significantly enhance the development of fermentation optimization techniques
and is expected to become an important infrastructure for artificial intelligent
integration into bioprocess optimization, thereby promoting the development of
intelligent biomanufacturing.
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1 Introduction

Bioprocess optimization is a critical technology in the field of microbiology and, in

conjunction with synthetic biology, serves to validate the capacity of high-yield strains

constructed via synthetic biology, providing crucial direction for further refinement of

such strains. When integrated with industrial production, bioprocess optimization has

been shown to lead to significant increases in product output, as well as reductions in

production costs. Recent years have witnessed substantial progress in synthetic biology,

with the introduction and refinement of high-throughput technology resulting in

improved yields of high-yield strains (1). At the same time, bioprocess optimization has

also advanced with the use of high-throughput parallel bioreactors (2–5), which have
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facilitated reductions in the time and cost required for biological

process optimization. The use of off-gas mass spectrometry has

enabled more precise acquisition of off-gas data (6), while the

availability and accumulation of various process measurement

instruments and sensors have broadened the range of process

parameters (5, 7, 8). However, the heterogeneity of multi-source

data poses significant challenges for biological process researchers

in terms of data processing and represents a considerable obstacle

to the automation and intelligence of biological processes (9).

The challenge of processing multi-source heterogeneous data in

biological processes arises from differences in data collection

methods, data formats, and data presentation across sources.

Effective methods for data acquisition, preprocessing, and fusion

are essential to address this challenge. These processes demand

the comprehensive application of knowledge from various

disciplines, including computer science, biology, chemistry,

chemical engineering, and related fields. Several tools

(see Table 1) have been developed to address these difficulties,

such as the Inventory of Composable Elements (ICE) (10), which

is used to manage seed information, replacing the inefficient

recording methods and improving update and search efficiency.

The Experiment Data Depot (EDD) (11) is used for the

recording of experimental data and metadata, aggregating data

from devices and manual inspection through various protocols,

enabling automatic data collection and visualization. The

Automated Recommendation Tool (ART) (12, 13) can provide

model prediction and experimental recommendation for

synthetic biology, combining biology and machine learning to

promote the development of synthetic biology. These tools

provide valuable support for the development of synthetic

biology (14) and are powerful examples of cross-disciplinary

research. However, these tools are not specifically designed for

bioprocess optimization. Moreover, they are nothing more than

simple combination of data from devices and lack the fusion

data used in biological process analysis. Therefore, there is a

need for the development of specialized tools and platforms for

bioprocess optimization that can effectively integrate multi-source

heterogeneous data and facilitate intelligent biomanufacturing.

Multi-source data fusion has emerged as a powerful approach

for analyzing complex biological systems by integrating diverse

types of data to provide a more comprehensive understanding of

biological processes. Over the years, a range of technical

approaches have been developed to address the challenges of
TABLE 1 Comparison of tools for data management and fusion in biological

Tool Field Data
source

Data
collection

Data
preprocessing

ICE Seed management Simple Manual None

EDD Experimental data
recording

Simple Auto, manual None

ART Model prediction in
synthetic biology

Simple Auto, manual None

Biofuser Fermentation process
optimization

Complex Auto, manual Filtering, filling,
normalization
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combining data from multiple sources, including network-based

methods (15), machine learning methods (16), matrix

factorization methods (17), deep learning methods (18), and

integrated methods (19). These methods have demonstrated

varying levels of success in a range of applications, from drug

discovery to cancer research. Despite their promise, however,

each method has its own strengths and limitations, and the

development of new approaches that can better leverage the

strengths of each method while overcoming their limitations is a

critical need in the field of biological process research. In this

context, it is important to identify the key challenges and

opportunities for advancing the field of multi-source data fusion

in biological process development. One key challenge is the

development of methods for integrating data from diverse

sources, including transcriptomic, proteomic, and metabolomic

data, as well as data from sensors and other monitoring devices.

This requires the development of new algorithms and

computational tools that can effectively process and integrate

these different types of data. Another challenge is the need for

more robust methods for data preprocessing, quality control, and

normalization to ensure that the resulting integrated data are

accurate and reliable. These methods must be able to handle

missing data, outliers, and other sources of noise and must be

scalable to handle large datasets. Finally, there is a need for more

sophisticated methods for data analysis and interpretation,

including the development of new machine learning algorithms

and other computational tools that can identify patterns and

relationships in the integrated data and provide insights into the

underlying biological processes.

In this work, we propose Biofuser (see Figure 1), a multi-source

fusion platform that has been designed for the real-time collection,

preprocessing, and fusion of fermentation process data. The

platform collects data that is categorized as online data, at-line

data, and offline data mainly from auto-collection through specific

communication protocols or from manual input through user

interface (see Figure 2). The first method employs computer

communication technologies, such as Modbus protocol, Object

Linking and Embedding for Process Control protocol (OPC),

Message Queuing Telemetry Transport protocol (MQTT), while

the second method involves manual input. The collected data

undergoes preprocessing, which includes data filtering, mean

filling, interpolation filling, zero filling, and data normalization

based on the unique characteristics of each data source. Biofuser
processes.

Data fusion Key advantage References

None Efficient recording and updating of seed
information

(10)

None Automatically aggregates experimental
data from different protocols

(11)

Simple data
combination

Provides predictive models and
experimental recommendations for
synthetic biology

(12)

Multi-source
data fusion

Real-time fusion of multi-source
heterogeneous data for fermentation
processes

This study
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FIGURE 1

Overview and crucial capabilities of Biofuser. Biofuser collects data from different data sources, stores them into database, and is capable of data
visualization, device faulty identification, critical factor identification, process factor identification, process data prediction, and downloading data
for other analysis techniques.
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applies biological fermentation experience and theory to the data

from different sources to generate fused parameters. Unlike EDD,

Biofuser has been specifically designed for the fermentation

process, storing the original data from the equipment and

displaying the fused data on the front-end. By leveraging its

specialized design, Biofuser can more effectively integrate and fuse

multi-source heterogeneous data, providing valuable insights into

the fermentation process and supporting bioprocess optimization.
2 Methods

2.1 Core components of Biofuser

Biofuser is composed of two components, namely real

architecture components and logical architecture components.

The former includes devices, communication protocols, database,

Django, model, view, and template. The real architecture
Frontiers in Digital Health 03
component is responsible for collecting and storing data from

various sources, managing communication protocols, and

providing a user interface for data visualization and analysis.

The latter includes data acquisition, data preprocessing, and

data fusion. It is responsible for processing the collected data,

ensuring data quality and consistency, and integrating the data

from multiple sources into a uniform format. By combining

these two components, Biofuser can effectively integrate multi-

source heterogeneous data and provide valuable insights into the

fermentation process optimization.

• Data sources: Data sources can be categorized as online, at-line,

and offline based on their collection method and characteristics.

Online data sources are continuously collected with a high

frequency, such as data from sensors installed in a bioreactor.

At-line data sources require special processing and have an

irregular collection frequency. Examples of at-line data sources

include off-gas mass spectrometry, which measure the
frontiersin.org
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FIGURE 2

Modules of Biofuser for source data collection and output. A series of simultaneous experiments will be described in Biofuser as an example. There are
two types of data collection: communication protocol based automatic import and manual import. Protocol based import method import data
directly into the database by the upper computer in the laboratory depending on the data generating devices’ communication protocols, such as
OPC, MQTT, and Modbus. Manual import is implemented through a user interface inputting field which allow the system user input data.
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composition of off-gas and it always not aligned with the

corresponding online data of the same process. Offline data

sources require manual processing or inspection, such as

samples taken from the bioreactor at different time points for

analysis in a laboratory.

• Communication protocols: Compatibility with the data

source’s supported protocol, including common industrial

protocols such as OPC and Modbus, which is crucial for

effective data acquisition.

• Database: A relational database has been designed (ER diagram

of the data base is shown in Figure 3) to store data acquired

from different sources as well as user-defined data. This

database provides data support for the Django server.

• Django: Django is a web development framework built on the

Python programming language. It is structured around three

principal components, which form the main framework: the

model component, view component, and template component.

• Model component: It represents the data structure of the

application, defining the fields and relationships between the

data. It is responsible for handling data storage, retrieval, and

manipulation, and provides an interface for accessing the data

from the view and template components.

• View component: The view component handles the logic of the

application, processing requests from the user and returning

appropriate responses. It interacts with the model component

to retrieve and manipulate data, and with the template

component to generate the appropriate HTML pages to be

displayed to the user.

• Template component: The template component is responsible for

the presentation of the application, defining the layout and design

of the user interface. It interacts with the view component to access

the data to be displayed, and generates the appropriate HTML

code to be rendered in the user’s web browser.
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2.2 Key function of Biofuser

User and experimental metadata are crucial components of a

bioprocess management system. Proper management of user and

experimental metadata can help ensure data security and

integrity, and enable efficient collaboration and decision-making

in bioprocess development and optimization.
2.2.1 User management
User management in a bioprocess management system is an

important aspect of ensuring data security and integrity. The

system should allow users to register and fill in their basic

information, account, and password, which should be encrypted

using secure algorithms like Message-Digest Algorithm 5

(MD5). Only authorized users should have access to the system,

and the account and password should be the only credentials

required for login. Additionally, to enable sharing of user

information between projects, a grouping function should be set

up (see Figure 4), allowing users in the same group to view the

group accessed data. To prevent data leakage, the users in the

same group are divided into responsible and ordinary users,

and only responsible users have the access for downloading

data. Ordinary users do not have the ability to delete their

accounts and only administrators have permission to delete a

user account.
2.2.2 Experimental management
Experimental management in the bioprocess management

system is designed according to batches (see Figure 3). At batch

experiment design stage, metadata of the design like strain

information, medium composition, operation conditions, control

strategy were organized as an individual table in the database.
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FIGURE 3

Entity relationship (ER) diagram of Biofuser background database. ER diagram has two relationship lines: user line and data line. User line is designed to
set data access permissions. Different users have different permissions such as viewing, editing, exporting, and importing. Centered on batch, data line
is designed to series all data before and after fermentation.
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FIGURE 4

Key structure and functions of Biofuser. (A) Overall diagram for the structure of Biofuser. Initially, Biofuser collects data from diverse data sources by
means of different communication protocols. Subsequently, the collected data is fused based on the characteristics of the devices, protocols, and data
itself. Finally, the processed data is categorized into online data, at-line data, and offline data, and stored in a relational database. Finally, Biofuser
retrieves data from a relational database and performs in-depth data fusion to integrate the collected data into a cohesive dataset, which is
subsequently transmitted to the application end. (B) Illustration the main fusion of different data source. (1) Do averaging and replacing for off-gas
measurement of each measuring channel (At-line data). (2) Do aligning of data from online bioreactor primary variables (Online data) and off-gas
spectrometry variables (At-line data). (3) Do interpolating of Offline data to fuse it with aligned Online and At-line data.
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Frontiers in Digital Health 06 frontiersin.org

https://doi.org/10.3389/fdgth.2024.1390622
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Zhang et al. 10.3389/fdgth.2024.1390622
Users that create the batch experiment have access to the

corresponding experiment data, and the connectivity was stored

in the experiment data.

2.2.3 Data input
There are two input modes for data entry (see Figure 2) in

Biofuser, which are designed to accommodate different types of

data. The first input mode is for data that can be imported

directly from the device, specific protocols are used for data

import. The second input mode is for data that cannot be

directly imported by the device, such as strain information,

medium composition, manual measurement data, etc. This type

of data was imported through a user interface designed by Django.

2.2.4 Data fusion
Biofuser employs three distinct methods for data fusion

(see Figure 4). The first method involves the integration of

communication protocols between different data sources through

the use of synchronous acquisition or asynchronous processing,

allowing for classification of the fused data as Online, At-line, or

Offline data. The second method utilizes the nearest time
FIGURE 5

Device faulty identification. (A) The process of diagnosing abnormalities in the
collected by Biofuser is utilized to compute the mean CO2 concentration in
the aforementioned mean value. If all the predetermined criteria are met, th
deemed to require correction. (B) Device faulty identification based on the av
for the mean CO2 concentration in the air detected by the tail gas mass spe
below 0.02 is considered an anomaly in the equipment. (C) Device faulty ide
CO2 concentration data obtained from the air samples collected by the tai
specified time interval exceeds 0.1, the equipment is classified as anomalou
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alignment and Lagrange linear interpolation filling techniques to

fuse data from different time intervals. The third method aligns

offline data with online data through first aligning the former to

the corresponding time of the latter and then applying

interpolation filling. These data fusion techniques enable the

integration of data from diverse sources and lead to the

computation of novel parameters via the fusion process. For

example, data from the off-gas mass spectrometer and

bioreactors are merged into Oxygen Uptake Rate (CER), Carbon-

dioxide Escape Rate (OUR), and Respiratory Quotient (RQ).
2.2.5 Data output
Biofuser transmits data through a particular Application

Program Interface (API). The operation data of the device is

transmitted out for device faulty identification (see Figure 5).

The fused data were sent out in batches for critical factor

analysis (see Figure 6) and biological process factor analysis

(see Figure 7). The fused data is sent out in the form of data

stream for biological process data prediction (see Figure 8). In

addition, Biofuser can export data to CSV and XLSX formats.
off-gas mass spectrometer. Initially, the off-gas mass spectrometer data
the air. Subsequently, the coefficient of variation is determined based on
e tail gas mass spectrometer is deemed to work normally; otherwise, it is
erage value. Two threshold values, namely 0.02 and 0.05, are established
ctrometer. Any detected mean CO2 concentration that is above 0.05 or
ntification based on CV. The coefficient of variation is evaluated using the
l gas mass spectrometer. If the coefficient of variation calculated over a
s.
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FIGURE 6

Spearman correlation analysis to identify critical process factors. (A) Correlation analysis of fermentation process factors and product TRY. Different
colors represent the p-value between titer, rate, and yield with other bioprocess parameters, including CER, air flow rate, OUR, agitation speed, base
flow rate, RQ, pH, temperature, acid flow rate, and dissolved oxygen. The numerical values in the figure represent the correlation coefficients between
these parameters, with white font indicating negative correlation and black font indicating positive correlation. (B) Spearman correlation coefficient of
fermentation process factors and product TRY. The color-coded bars represent the Spearman correlation coefficients between titer, rate, and yield,
and various fermentation process parameters.
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FIGURE 7

Principal component analysis for bioprocess factor analysis. (A) Shows the first PCA method for processing fermentation process data. Plot (a) shows
the scoring diagram of PCA (PC1 and PC2). The data from each batch were flattened into one row and concatenated to form a new matrix. Then, PCA
was applied to reduce the dimensionality of the data to two dimensions (PC1 and PC2). Finally, the scores plot was generated using the reduced
matrix. The scores plot is a visual representation of the similarity between different samples based on their PCA scores. Plot (b) and (c) present the
OUR and biomass of each batch, respectively. (B) Shows the second PCA method for processing fermentation process data. Plot (d) shows the
PCA scores (PC1, PC2, and time) at each time point. The multi-batch data was reduced to two dimensions (PC1 and PC2) through dimensionality
reduction. Then, a Savitzky-Golay filter was utilized for smoothing. Finally, the smoothed data was combined with time to form a three-
dimensional score plot. Plot (e) shows the loading data after PCA dimensionality reduction. Plot (f) and (g) present the top view and the
fermentation process data plot of batch 5 for plot (d), respectively. Plot (h) and plot (i) depict the sectional plot of plot (d) at 37 h and the
fermentation process data plot of each batch, respectively.

Zhang et al. 10.3389/fdgth.2024.1390622
3 Results and discussion

3.1 Construction methodology of Biofuser

Biofuser is a bioprocess management system that focus on

automating the collection, preprocessing, and fusion of

fermentation process data obtained from laboratory devices. By

automating these processes, Biofuser significantly reduces the

amount of time required for manual processing and prevents

human calculation errors, resulting in more accurate and reliable

data. In addition, Biofuser stores data in a structured manner,

which facilitates future intelligent development. By leveraging

machine learning and other advanced analytics techniques, the

system can provide valuable insights into the fermentation process.
Frontiers in Digital Health 09
In the following section, we will provide an overview of the

construction methodology of the Biofuser. As illustrated in

Figure 4, Biofuser primarily consists of two main parts. Firstly,

the platform collects data from the laboratory equipment and

stores it in the database. Subsequently, it retrieves the stored data

from the database, processes it, and transmits the data to the

user interface for visualization or further data analysis.

3.1.1 Data transmission from devices to database
Biofuser is designed to be able to communicate with as more

bioprocess instruments as possible, currently, bioreactors (Bioflo &

Celligen 310 and Bioflo & Celligen 115, New Brunswick Scientific,

USA, providing primary online variables, like pH, DO,

temperature, impeller rotation speed, air flow rate, etc. of the
frontiersin.org
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FIGURE 8

Bioprocess data prediction. (A) Is a schematic diagram of the connection process between Biofuser and ANN. The output data stream of Biofuser is
processed into the input data of ANN, and the corresponding biological process parameters are output through the ANN model. (B) Shows the loss
function diagram of ANN model in the case. The loss function of the training set and the verification set converge. (C) Shows predicted and test values
of a batch of experimental data. In the early stage of fermentation, the predicted value was similar to test values. At the later stage of fermentation,
predicted values were 11.0%–19.4% lower than test values.
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bioprocess), off-gas mass spectrometry (MAX300-LG, Extrel, USA,

providing off-gas content composition for calculating oxygen

uptake rate and carbon dioxide evolution rate of the bioprocess),

balances (DEFENDERTM 5000 - D52XW and DEFENDERTM

3000, OHAUS, USA, providing online broth weight and feeding

bottle weight of the bioprocess), and house-made sensors that

integrated to monitor the bioprocess system (providing extra

information about the bioprocess, like off-gas humidity, back

pressure of the bioreactor head space, etc.) are now supported by

Biofuser. And Biofuser communicates with the instrument with

various communication protocols, and now it supports OPC DA/

UA, Modbus RTU/TCP, MQTT. Biofuser store the acquired

online data from different protocols with a uniform format and

does preprocessing for further fusing of data with different time

frequency or with different precisions. In addition to these online

data acquiring port, Biofuser also supplies user interface for

manual input of offline data of the bioprocess.

As shown in Figure 4A, the Biofuser collects data from

fermentation process equipment according to the corresponding

protocols. The collected data is then processed, converted, and

categorized into online data, at-line data, and offline data, based on

the data types and values provided in the protocols, and stored in a

relational database. Due to differences in equipment data formats

and communication protocols between manufacturers, integrating

devices from different vendors typically requires additional

processing to handle the heterogeneous technical details. For

example, the measured data of MAX300-LG, the off-gas mass

spectrometry, is encoded as integers with Equation 1 for facilitating
Frontiers in Digital Health 10
storage, and the encoded integer was transmitted through Modbus

TCP protocol, and should be decoded back when received.

TransmittedValue ¼ MeasuredValue � ScaleLo
ScaleHi� ScaleLo

� FullScale (1)

where TransmittedValue indicates the data transmitted under Modbus

TCP. TransmittedValue is the preset minimum detection value, ScaleHi

is the preset maximum detection value, and FullScale is the maximum

transmission value. Biofuser performs decoding after received the

signal and then store it into the database.

Data from different sources must be integrated properly (see

Figure 4A, steps 1 and 2). The online data from bioreactor is

collected every minute, while the measurement frequency for

each channel (one channel corresponding to one bioreactor) off-

gas spectrometry is around 20 min. As a result, Biofuser first

should interpolate the off-gas data for synchronizing data from

the two different sources. For offline data sources, which are

always generated with frequency of 2–4 h, Biofuser will first store

the data directly, and align with online data through

interpolation methods when doing further data analysis.
3.1.2 Data transmission from database to
application endpoint

As shown in Figure 4B, Biofuser integrates online data, at-line

data, and offline data. At-line raw data, e.g., off-gas data measured

by mass spectrometry, is replaced with section-averaged value.
frontiersin.org
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Specifically, the at-line data gaps are first filled by averaging

adjacent points (step 1). It is then interpolated using Lagrange

methods with the online data time points as align points

(step 2). Finally, all data streams are Lagrange-interpolated as

needed to preserve the online time points (step 3). This process

synchronizes the heterogeneous data inputs while prioritizing the

online data timing.

Biofuser produces fused data comprising built-in and user-

defined parameters (Figure 4A). Built-in parameters include those

derived from at-line and online data, such as CER, OUR, and RQ

(Equation 2–4). Calculated offline parameters include rates at three

levels: process level rates (R in the units of amount/time, Equation 5),

reactor level rates (r in the units of amount/volume/time, Equation 6)

and microbe level rates (q in the units of amount/cell amount/time,

Equation 7), and yield coefficient (Y, Equation 8).

CER ¼ Fairin
m

� yN2in�yCO2out
yN2out

� yCO2in

� �
� 600
22:4

(2)

OUR ¼ Fairin
m

� yO2in �
yN2in�yO2out

yN2out

� �
� 600
22:4

(3)

RQ ¼ CER
OUR

(4)

where Fairin is the air inlet flow rate, expressed inml/min.m is themass

of liquid in the fermenter, expressed in kg; yCO2in , yO2in , yN2in , yCO2out ,

yO2out and yN2out are the contents of carbon dioxide, oxygen and

nitrogen at the inlet and outlet of the bioreactor, respectively, and the

unit is %.

d(Mi)
dt

¼ Fi,in � ci,in � Fi,out � ci,out þ Ri þ Ti (5)

ri ¼ Ri

mavg
(6)

qi ¼ Ri

(OD �m)avg
(7)

Yi=j ¼ Ri

Rj
¼ ri

rj
¼ qi

qj
(8)

where d(Mi)
dt is the cumulative amount of substance i in time t;

Fi,in � ci,in is the flow rate of the reactor into substance i;

Fi,out � ci,out is the outflow rate of substance i from the reactor; Ri

is the reaction rate of substance i in the reactor; Ti is the rate at

which i is transferred to other terms; mavg is the mean mass at

time t; and (OD �m)avg is the average amount of (OD �m) at time t.
3.2 Device faulty identification

Faulty device inspections are critical for accurate process

control or process optimization, as signals obtained from Faulty

devices may lead to incorrect decisions. The anomaly detection
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can be implemented by analyzing process data and applying

basic rules. Here we take the off-gas mass spectrometry anomaly

detection as an example, as accurate data from off-gas mass

spectrometers is crucial for deriving key physiological parameters

such as CER, OUR, and RQ value. Biofuser diagnoses off-gas

mass spectrometer abnormalities using two approaches:

(1) Basic characteristic analysis: CO2 content average value

outside 0.02–0.05 range indicates equipment malfunction;

(2) Comprehensive characteristic analysis: High coefficient of

variation (CV > 0.1) for CO2 content average value indicates

malfunction. Figure 5 shows examples of the basic (Figure 5B)

and comprehensive (Figure 5C) methods, identifying time

periods where the spectrometer was diagnosed as abnormal.
3.3 Bioprocess key feature analysis

Key feature analysis utilizing statistical methods is essential for

fermentation process optimization. By identifying the critical

process parameters that significantly impact product titer, rate

and yield (TRY), key feature analysis can help to reduce process

cost and improve process efficiency. Spearman correlation

analysis and principal component analysis (PCA) are two

important statistical methods and are applied to do key feature

analysis based on fermentation process data.

3.3.1 Using spearman correlation analysis to
identify critical process factors

We illustrate the utilization of the Spearman correlation

analysis (see Figure 6) integrated into Biofuser for identifying

critical process factors by presenting a case study involving the

correlation between the TRY of product and process factors in

the optimization of the riboflavin production process.

Efficiently identifying process key parameters that are

significantly correlated with the TRY of product is crucial for

bioprocess optimization. Biofuser provides Spearman correlation

analysis which enables rapid identification of possible critical

factors. Three types of correlation can be found between product

TRY and process variables: (1) Positive correlation, (2) Negative

correlation, (3) No obvious correlation.

In the Spearman correlation analysis plot (see Figure 6A),

significant correlations are clustered in the upper left region,

where product titer, product rate, biomass, CER, air flow rate,

OUR, agitation speed, base flow rate, and dissolved oxygen are

highly correlated. The Spearman correlation coefficient between

biomass and OUR is 0.89, indicating a positive correlation

between OUR and cell growth. Thus, it is feasible to directly

evaluate cell growth online during the fermentation process using

the OUR transmitted by Biofuser. Moreover, there is no

significant correlation between product yield and the

fermentation process.

Balancing carbon utilization in growth and production is a

challenging task to achieve high titer, rate, yield (TRY), and

scalability (20). For high-value products, the significant

correlation between product titer, product rate, and fermentation

process data is critical to improving product yield. For low-value
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but high-demand products, the significant correlation between

product yield, product rate, and fermentation process data is vital

to reducing production costs. Riboflavin is a low-value product,

but the market demand is high. Figure 6B shows the correlation

coefficients between riboflavin’s TRY and fermentation process

data, where fermentation process parameters such as product

titer, product rate, CER, air flow rate, OUR, agitation speed, and

base flow rate are significantly positively correlated, while

fermentation process parameters such as RQ, pH, and acid flow

rate are not significantly correlated with product titer and

product rate, and DO is significantly negatively correlated with

product titer and product rate. Among fermentation process

parameters, DO is coupled with air flow rate and agitation speed,

and normal growth of Bacillus subtilis is accompanied by organic

acid production (21), which is positively correlated with base

flow rate and OUR. Therefore, further research on fermentation

process optimization for riboflavin needs to focus on CER, OUR,

DO, and base flow rate.

3.3.2 Principal component analysis (PCA) for
process factor analysis

PCA has been applied to fermentation process optimization, it

can help to identify key process parameters that influence product

formation (including penicillin, protease, ethanol etc.) during

process (22). The complex fermentation time series data

associated with fermentation processes can make it difficult to

identify these key parameters. To address this challenge, Biofuser

uses PCA analysis among different batches by leveraging the

dimension-reducing property of PCA. Two different kinds of

PCA approaches were applied in Biofuser. The first approach

involved flattening all variables into a single row vector, with

each process variable at each time point take one column for

each batch. The resulting matrix had each row representing a

batch and each column representing a variable value at a specific

time point. The first two primary components, which contained

the most information of each batch, were extracted and used to

represent a batch as a point in the score plot in Figure 7A. The

second approach involved packing all batches data together into

a two-dimensional matrix, with its rows representing variable

values at a specific time point and its columns representing

individual process variables. The first primary component, which

was a linear combination of all process variables, was plotted

against batch time points, with each batch represented as a time

along curves in the plot. The loadings of each process variables

to the primary component are plotted in Figure 7B.

The first PCA method is employed to assist in the rapid

identification of outlier batches and aggregated batches. Outlier

batches may represent abnormal batches in the biological process

optimization, or may represent excellent batches in the

optimization process. Aggregated batches, on the other hand,

represent relatively stable or typical batches. As shown in

Figure 7A, batch two and batch five are outlier batches. Batch

two was contaminated during the fermentation process, which

prevented normal operation of the Bacillus subtilis fermentation.

Batch five experienced limited growth of Bacillus subtilis due to

nitrogen deficiency, which also prevented normal fermentation.
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The second PCA method is used to quickly locate changes in

certain fermentation parameters during the fermentation process

and to compare them across different batches. In a normal and

stable fermentation, the PC1-Time graph should show a smooth

increase or decrease. When a large peak appears (either positive or

negative), it indicates that one or more parameters have undergone

significant changes. As shown in the plot (f) of Figure 7B, batch

five showed significant positive and negative peaks at 55 and 63 h,

respectively. According to the loading data in the plot e, it can be

tentatively concluded that at 55 h, the dissolved oxygen may have a

significant downward trend, while pH, OUR, CER, agitation speed,

air flow rate, and base flow rate may have significant upward

trends. Similarly, it can be tentatively concluded that at 63 h, the

dissolved oxygen may have a significant upward trend, while pH,

OUR, CER, agitation speed, air flow rate, and base flow rate may

have significant downward trends. Finally, the corresponding data

in batch five was located quickly based on the above tentative

conclusions, as shown in plot (g), and the conclusions drawn were

well validated. Using the same method, differences in biological

process parameters that affect different batches can be quickly

identified through PCA analysis. As shown in plot (h), there is a

significant difference in PC1 direction between batch 2 and batch 5

at 37 h of fermentation. By identifying the biological process

parameters that affect this direction in the loading plot [plot (d)],

including pH, OUR, CER, agitation speed, air flow rate, base flow

rate, and DO, it is speculated that these parameters have significant

differences in the batch data, as shown in plot (i), and the

conclusions drawn were well validated.
3.4 Bioprocess data prediction

Fermentation process is one of the important production

technologies in the field of biomanufacturing. The process is

complex, nonlinear, highly uncertain, and time-varying.

Traditional hard measurement techniques often require

destructive sampling and offline testing, causing certain

interference and damage to the fermentation process, and have

long testing cycles and limited data accuracy (23). In contrast,

soft sensing technology based on multivariate statistical analysis

and modeling methods can achieve comprehensive real-time

monitoring and optimization control of the fermentation process

by online monitoring multiple key parameters (24–26). The

advantage of soft sensor technology is that it can obtain real-

time information on non-measured variables, such as state

changes and abnormal behaviors of the fermentation process,

which can help in rapid warning and adjustment, thereby

improving the production efficiency and product quality of the

fermentation process. Therefore, in the field of biomanufacturing,

soft sensing technology has become one of the main means for

monitoring and controlling the fermentation process. In this

part, the Biofuser connected artificial neural network model

(ANN) model is given as an example to illustrate the application

of Biofuser in the prediction of biological process data.

Biofuser provides a data pipeline for real-time soft sensing, as

shown in Figure 8A. Biofuser organizes the data at each time
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point into a sample feature, uses the feature values as input, predicts

the values through a model, and then integrates the predicted values

into the time series to achieve real-time soft sensing. The online data

obtained from the Bifuser at a specific time, including stirring speed,

dissolved oxygen, feeding rate, pH, temperature, fermentation liquid

weight, airflow rate, acid pump speed, and inspection pump speed,

were merged with the fused values of CER and OUR to form a set

of feature values. The biomass at the same time was taken as the

observed value and combined with the feature values to form a

training sample. Firstly, a training set was constructed using data

from four batches (The fermentation process anomalies were

manually removed, resulting in the expansion of the database to

13,486 entries.), which was then split into an 8:2 ratio with 8 parts

used for model training and 2 parts used for model validation.

Next, a six-layer neural network was used as the soft measurement

model, and the training results are shown in Figure 8B, indicating

that both the training and validation have good loss values.

Finally, the trained soft measurement model was incorporated into

the data pipeline for biomass soft measurement, as shown in

Figure 8C. In the early stage of fermentation (before 34 h), the

model’s predicted values were close to the actual measured values,

showing good prediction performance. However, in the later stages

of fermentation, predicted values were 11.0%–19.4% lower than

actual measured values. The underlying reason for this

phenomenon is that the predicted biomass derived from online

data relies on the optical density at 600 nm (OD600), which can

effectively approximate the number of living cells during the early

fermentation stage and result in a relatively small error in biomass

prediction. However, as cells age and die, the OD600 value may

still be high, leading to an overestimation of biomass in the late

fermentation period.
4 Conclusion

In this paper, we have discussed the challenges in optimizing

biological processes and how these challenges have been

addressed by Biofuser. Specifically, the challenges of data

standardization, data management, multiple and complex

equipment, and limited data sources have been addressed by

Biofuser’s comprehensive relational database system, data

acquisition and processing technology, and data fusion

capability using the Django framework. The importance of

Biofuser in optimizing biological processes can be seen in its

ability to reduce human error and cost, provide stable and

accurate data, and enable the integration of information from

multiple sources to gain a more comprehensive understanding

of biological processes.

Further research on Biofuser is needed to continue to improve

its capabilities. First, research on advanced data acquisition and

processing technologies, such as image recognition and natural

language processing, can help expand the scope of data collection

and improve data quality. Second, research on process analysis

methods can provide more accurate and efficient analysis of

fermentation processes. Finally, the integration of artificial

intelligence can enhance the capability of Biofuser in data
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analysis, prediction, and decision-making, leading to more

efficient and effective optimization of biological processes.

In conclusion, Biofuser has made significant contributions to

optimizing biological processes by addressing the challenges of

data standardization, data management, and limited data sources.

Further research on Biofuser can improve its capability in data

acquisition and processing, process analysis, and integration of

artificial intelligence, leading to more efficient and effective

optimization of biological processes.
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