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Statistical refinement of
patient-centered case vignettes
for digital health research
Marvin Kopka* and Markus A. Feufel

Division of Ergonomics, Department of Psychology and Ergonomics (IPA), Technische Universität
Berlin, Berlin, Germany
Digital health research often relies on case vignettes (descriptions of fictitious or
real patients) to navigate ethical and practical challenges. Despite their utility, the
quality and lack of standardization of these vignettes has often been criticized,
especially in studies on symptom-assessment applications (SAAs) and self-
triage decision-making. To address this, our paper introduces a method to
refine an existing set of vignettes, drawing on principles from classical test
theory. First, we removed any vignette with an item difficulty of zero and an
item-total correlation below zero. Second, we stratified the remaining
vignettes to reflect the natural base rates of symptoms that SAAs are typically
approached with, selecting those vignettes with the highest item-total
correlation in each quota. Although this two-step procedure reduced the size
of the original vignette set by 40%, comparing self-triage performance on the
reduced and the original vignette sets, we found a strong correlation (r= 0.747
to r= 0.997, p < .001). This indicates that using our refinement method helps
identifying vignettes with high predictive power of an agent’s self-triage
performance while simultaneously increasing cost-efficiency of vignette-based
evaluation studies. This might ultimately lead to higher research quality and
more reliable results.
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1 Introduction

In the field of digital health research, short case vignettes—that involve either fictitious

or real medical scenarios—have become a widely accepted methodology (1–3). In contrast

to detailed vignettes used in medical education, vignettes in digital health research are

often brief and designed for specific tools or research objectives. The reliance on

vignettes is primarily due to practical constraints: direct involvement of patients may be

unfeasible and challenging due to ethical concerns, comparability across patients can be

limited, and specific research scenarios may present additional barriers to using real

patients (4, 5). To mitigate these constraints, researchers frequently use case vignettes as

proxies to conduct these studies. However, the vignettes used in digital health research

are often developed in an unstandardized way and without theoretical foundation (6–9).

Particularly in research focused on symptom-assessment applications (SAAs), many

studies have adopted a set of vignettes developed by Semigran et al. in 2015 (6). This

vignette set—which was derived from diverse medical resources—has not only been

used in studies examining the self-triage (deciding if and where to seek care)

performance of SAAs and laypeople but also in the evaluation of large language models
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(LLMs) (10–13). Although these vignettes marked a significant step

in evaluating SAAs, they have also been criticized. Key concerns

include the development process (e.g., scenarios based on

medical textbooks may not reflect ecologically valid descriptions

of real patients), and the lacking validation of these vignettes

(i.e., all developed vignettes are used without any quality

assessment) (8, 9, 14). This criticism raised not only questions

about the suitability of vignettes for accurately estimating the

self-triage performance of human and digital agents, but also

whether some vignettes might be better suited for evaluations

than others (9). For example, it may be unclear which cases are

easier or more difficult to solve and whether vignettes have

incremental predictive power or could be omitted. It is also

unclear if the predictive power of a vignette differs between

human and digital agents and if different vignette sets might be

needed for each agent. Thus, it is no surprise that Painter et al.

recommend creating guidelines to identify which vignettes to

include in accuracy evaluations (8).

The problems associated with existing vignettes highlight an

urgent need for a more systematic and theory-driven approach to

developing case vignettes. Ecological psychology and test theory

provide a framework for addressing these challenges (15). By

applying test-theoretical approaches, researchers can identify

vignettes with high predictive power for assessing the

performance of SAAs and other digital tools. In a previous study,

we have shown that test-theoretic metrics can be readily applied

to case vignettes in digital health research and that the current

sets of vignettes [e.g., the one suggested by Semigran et al. (6)]

are problematic in this regard (9). In another study we have

outlined a method based on Egon Brunswik’s concept of

representative design to develop vignettes with high ecological

validity (16).

The current paper takes these efforts a step further by detailing

how to refine any existing vignette set using test-theoretical metrics

to increase internal validity. This procedure allows selecting only

those vignette subsets that best satisfy test-theoretical criteria and

can thus predict performance. This refined set aims to make case

vignettes studies more cost-efficient by reducing the number of

vignettes required while simultaneously identifying and

maintaining the vignettes that most effectively predict the

performance of different diagnostic agents.
2 Method

2.1 Study design

This study presents a two-step procedure based on test theory

to refine an existing set of case vignettes to test the self-triage

performance of different agents. Specifically, our goal is to refine

the full set and arrive at a validated subset of vignettes for each

agent. To validate the presented vignette-refinement procedure,

we compare the performance of the original and the refined set

of vignettes based on data collected from laypeople, SAAs and

LLMs in a previous study (16).
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2.2 The original vignette set and data

The original vignettes were developed with the RepVig

Framework according to the principles of representative design

as outlined in Kopka et al. (16). That is, the vignettes were

selected through random sampling of actual patient descriptions,

where individuals presented symptoms in their own words and

asked whether and where to seek medical care. These vignettes

were left unaltered to reflect patients’ real experiences, rather

than modifying them for medical plausibility. The full vignette

set was developed to reflect the natural base rate of symptoms

that SAAs are approached with, using symptom clusters for

stratification as reported by Arellano Carmona et al. (17).

A total of 198 laypeople (from Germany with no medical

training, who were sampled from the online platform Prolific)

evaluated the urgency of these case vignettes (20 vignettes each,

resulting in a total of 3,960 assessments). Additionally, the

dataset encompasses evaluations from 13 SAAs, each tested

across all vignettes by two research assistants without a

professional medical background. Since not every SAA gave a

recommendation for each case, only cases where the SAA

provided advice were included in the analysis. Furthermore, for

LLMs, the lead author collected data on five LLMs (GPT-4,

Llama 2, PaLM 2, Pi, Claude 2) that were openly available and

offered a chat interface. For obtaining advice from these LLMs,

we used a one-shot prompt developed by Levine et al. (13).
2.3 Statistical refinement

To refine the vignettes, we applied test-theoreticalmetrics in afirst

step: item difficulty (ID, how difficulty vignettes were to solve for any

one agent) and item-total-correlations (ITC, how solving a given

vignette correlates with solving other vignettes of the same acuity)

(9, 18, 19). These metrics were calculated for the full vignette set.

For each agent, vignettes with an ID of zero were excluded because

they were unsolvable for the corresponding agent, and thus offered

no insight into differences in self-triage performance. Vignettes

with a low ID (i.e., solved by only few agents) were not excluded, as

their inclusion provides insights into the capabilities of those few

agents that do solve them. Similarly, vignettes with negative ITC

values were removed because they negatively correlate with self-

triage performance, rendering them unsuitable for performance

evaluation according to test theory standards (18).

In a refined vignette set, the natural base rates should reflect real-

world conditions to ensure a representative distribution of symptom

clusters, preventing any one cluster from disproportionately

influencing evaluation results. If the natural base rates are

representative in the original set already (e.g., in this study), the

base rates should be maintained; otherwise, they should be

adjusted. In a second step, we thus evaluated the relative

proportion of the smallest remaining symptom cluster and adjusted

all other clusters to match this proportion to ensure that the base

rates in the refined vignette set remained unaltered. For instance, if

the smallest quota retained 3 out of 5 vignettes, this corresponds to

60% of the original size. Consequently, we adjusted the size of all
frontiersin.org
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other quotas to reflect this proportion and included 60% of vignettes

in the other quotas as well. In each quota, we retained the vignettes

with the highest ITCs as these have the highest predictive power.
2.4 Validation

Finally, to validate the refined set, we compared the degree of

association between performance estimates derived from the

subset with those derived from the full set. We used common

metrics for self-triage performance evaluations: accuracy,

accuracy for each self-triage level, safety of advice, inclination to

overtriage, and—this metric can only be calculated for SAAs—

the capability comparison score, which is a score that allows

capability comparisons between SAAs that were tested with

differing vignette sets (9). We calculated these metrics using the

symptomcheckR package (20) for every person, every SAA, and

every LLM using both the full and the refined vignette sets and

assessed the degree of similarity between these outcomes using
FIGURE 1

ID (left) and ITC (right) for each full vignette and agent. Red points represen
Green points show vignettes that are included in the refined vignette set.
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Pearson correlation. Following a review by Overholser and

Sowinski (21), we interpreted a correlation above 0.90 as very

high, between 0.70 and 0.90 as high, between 0.40 and 0.70 as

moderate and below 0.40 as low or negligible.
3 Results

3.1 Refinement

Step 1 for laypeople: All (45/45) vignettes from the full vignette

set have an ID greater than zero. Thus, no vignettes were excluded

because of the ID. Six vignettes have an ITC below zero and were

excluded, see Figure 1.

Step 2 for laypeople: The biggest reduction occurred within

the “other pain” symptom cluster, which was reduced from 5

cases to 3 cases. This reduction corresponds to a 60%

retention rate. Consequently, we adjusted the size of all quotas

to reflect this new size, reducing them to 60% of their original
t vignettes that do not satisfy test-theoretic criteria and were excluded.
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TABLE 1 New quotas for refined vignette sets for laypeople and SAAs after
excluding vignettes that did not satisfy test-theoretic criteria. The clusters
are based on Arellano Carmona et al. (17).

Symptom
cluster

# of vignettes
in full set

# of vignettes in
refined set

Musculoskeletal pain 5 3

Joint pain 3 2

Headache 1 <1, joined with other clusters

Chest pain 1 <1, joined with other clusters

Other pain 5 3

Gynecological 5 3

Tumors/lumps/masses 4 2

Edema 2 1

Skin issues 2 1

Gastrointestinal 2 1

Impaired sensations 3 2

Urinary tract problems 3 2

Upper respiratory
symptoms

1 <1, joined with other clusters

Other 8 5

TABLE 2 Correlations of metrics for laypeople for the refined vs. the
original vignette set.

Metric Correlation coefficient p value
Average accuracy 0.846 <.001

Accuracy for emergenciesa 1 <.001

Accuracy for non-emergencies 0.747 <.001

Accuracy for self-care 0.951 <.001

Safety of advice 0.845 <.001

Inclination to overtriage 0.834 <.001

aIncluded the same two cases as the full set.

TABLE 3 Correlations of metrics for SAAs for the refined vs. the original
vignette set.

Metric Correlation coefficient p value
Average accuracy 0.995 <.001

Accuracy for emergenciesa 0.577 .04933

Accuracy for non-emergencies 0.989 <.001

Accuracy for self-care 0.986 <.001

Safety of advice 0.970 <.001

Inclination to overtriage 0.974 <.001

Capability comparison score 0.997 <.001

aIncluded only one out of two original cases. Correlation is unreliable, because estimates are
either 1 or 0.
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sizes. The new quota sizes are shown in Table 1. In each

symptom cluster, these quotas are filled beginning with the

vignettes that have the highest ITC. For example, in the

cluster “musculoskeletal pain”, this corresponds to the vignettes

1 (ITC1 = 0.312), 4 (ITC4 = 0.249), and 2 (ITC2 = 0.204), as the

other vignettes had lower ITCs with ITC5 = 0.151 and ITC3 = 0.064.

Clusters that only had 1 vignette originally (n = 3 clusters) are

joined together and the two vignettes with the highest ITC in this

joined cluster remain in the filtered set. The refined vignette set can

be found in the Supplementary Table S1.

Step 1 for SAAs: All (45/45) vignettes have an ID greater than

zero and remained in the set, while six vignettes had an ITC below

zero, see Figure 1. These cases were excluded.

Step 2 for SAAs: The biggest reduction (2 vignettes) occurred in

the “other pain” symptom cluster again. Because this represents the

smallest new cluster now, all quotas are reduced to 60% of their

original size (with the same retention rate as for laypeople, see

Table 1). Those quotas are filled again with vignettes with the

highest ITC in each cluster. For “musculoskeletal pain”, this

corresponds to the vignettes 5 (ITC5 = 0.634), 2 (ITC2 = 0.586),

4 (ITC4 = 0.504), as the other vignettes had a lower ITC with

ITC1 = 0.307 and ITC3 = 0.110. The refined vignette set for SAAs

can be found in the Supplementary Table S2.

For LLMs,we identified nine vignetteswith an IDof zero and seven

vignettes with a negative ITC in step 1, all of which must be excluded,

see Figure 1. However, only six vignettes have a positive ITC and for the

remainder of the vignettes, an ITC could not be determined. Given the

high number of exclusions and the inability to assess ITC for many

vignettes, refining the vignette set for LLMs is unfeasible.

Consequently, the full set must be retained for future evaluations.
3.2 Comparing the refined with the original
vignette set

Themetrics obtained for each person using the refined vignette set

showed a very high correlationwithmetrics obtained using the original
Frontiers in Digital Health 04
vignette set, see Table 2. Similarly, the metrics obtained for each SAA

using the refined vignette set showed very high correlations with

metrics obtained using the original vignette set, see Table 3.
4 Discussion

Overall, our analysis demonstrates that refining a vignette set as

outlined in this study proves feasible. Results using the refined set

show a very high correlation with performance based on the

complete original set, indicating minimal loss of predictive power

despite using fewer vignettes. This approach not only makes

evaluations more cost-efficient by using fewer vignettes, but also

ensures that only vignettes accurately predicting overall

performance are included, thereby yielding more reliable

performance estimates and higher internal validity. This effort

aligns with the call for standardized vignettes and their

refinement (7–9, 22). Answering Painter et al.’s call for guidance

on which vignettes to include in self-triage evaluation studies (8),

our two-step procedure offers a systematic, theory-driven way to

refine an initial set of vignettes and select the most predictive

vignettes out of a full set.

In our data, the ID was less relevant for refining vignettes for

laypeople and SAAs, because at least one person or SAA

managed to solve each case. The ID proved more meaningful for

LLMs, however, which could rarely solve the self-care cases. This

thwarted the refinement process for LLMs, because an ITC value

was impossible to calculate for those vignettes that could not be

solved by LLMs. In the current dataset, this problem might be

due to the small number of LLMs (only five) included and the

resulting low variance. With a higher number of LLMs, a

refinement might be possible, but the number of different LLMs

is currently limited.
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The generated vignette sets vary between laypeople and SAAs.

That is, a set validated for SAAs might not be suitable for assessing

laypeople’s performance. So, researchers must refine the vignette

set and collect data to validate it for each agent they wish to

generalize to. Specifically, research should initially collect data

using the full set and then refine and validate a subset to be used

in follow-up studies with the same agent.
5 Limitations and future directions

Our study comes with limitations that should be addressed in

future studies. For example, we entered data into LLMs only once

and could not account for output variability due to the lack of

established methods. Future studies might explore pooling

algorithms to code varying outputs into a consolidated datapoint

for evaluation studies. Further, we focused on classical test theory to

refine our vignette set, but item-response theory (IRT) could offer

an alternative theoretical framework for the refinement. However,

most models would require bigger sample sizes, which are often not

available due to the limited number of SAAs (15). Until larger

samples of SAAs become available, test theory is the best choice for

refining vignettes for all agents. For laypeople, where larger sample

sizes of more than 200 participants are feasible (23), IRT might

yield different refined vignette sets. Comparing vignette sets refined

through classical test theory and IRT would be a valuable next step.

Additionally, assessing the validity (e.g., convergent and divergent

validity) of case vignette sets presents a further research

opportunity, for example, through external validation.
6 Conclusions

Our two-step vignette refinement procedure offers a significant

advancement for the evaluation of self-triage decision-making and

digital health research at large. By systematically excluding

vignettes that are unsuitable for measuring the constructs (e.g.,

self-triage accuracy) researchers wish to assess, they can avoid

arbitrary selection of vignettes and ensure that only statistically

validated vignettes are included in the test set. This approach can

enhance the internal validity and quality and reduce the costs of

digital health research, lead to more reliable results, and enable

more precise inferences in the long run. If more researchers

apply the presented refinement method, methodological rigor

and research quality will increase, which helps move the field

forward and ultimately contributes to the development of more

effective digital health tools and interventions.
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