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Impacts on study design when
implementing digital measures in
Parkinson’s disease-modifying
therapy trials
Jennie S. Lavine*, Anthony D. Scotina, Seth Haney,
Jessie P. Bakker, Elena S. Izmailova and Larsson Omberg*

Research & Development, Koneksa Health, New York, NY, United States

Introduction: Parkinson’s Disease affects over 8.5 million people and there are
currently no medications approved to treat underlying disease. Clinical trials
for disease modifying therapies (DMT) are hampered by a lack of sufficiently
sensitive measures to detect treatment effect. Reliable digital assessments of
motor function allow for frequent at-home measurements that may be able to
sensitively detect disease progression.
Methods: Here, we estimate the test-retest reliability of a suite of at-home
motor measures derived from raw triaxial accelerometry data collected from
44 participants (21 with confirmed PD) and use the estimates to simulate
digital measures in DMT trials. We consider three schedules of assessments
and fit linear mixed models to the simulated data to determine whether a
treatment effect can be detected.
Results: We find at-home measures vary in reliability; many have ICCs as high as
or higher than MDS-UPDRS part III total score. Compared with quarterly in-clinic
assessments, frequent at-home measures reduce the sample size needed to
detect a 30% reduction in disease progression from over 300 per study arm to
150 or less than 100 for bursts and evenly spaced at-home assessments,
respectively. The results regarding superiority of at-home assessments for
detecting change over time are robust to relaxing assumptions regarding the
responsiveness to disease progression and variability in progression rates.
Discussion: Overall, at-home measures have a favorable reliability profile for
sensitive detection of treatment effects in DMT trials. Future work is needed to
better understand the causes of variability in PD progression and identify the
most appropriate statistical methods for effect detection.

KEYWORDS
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1 Introduction

Parkinson’s Disease (PD) is a slow-progressing neurodegenerative disease that affects

over 8.5 million people worldwide and is currently the fastest growing neurodegenerative

disease in the world (1). Hallmarks of PD include slowness of movement and rigidity, and

the impacts are felt in many aspects of everyday motor function including gait, eating,

speech, and dressing. Currently available PD medications address symptoms but do not

treat the underlying disease. Recent advances in drug development show promise for

disease modifying therapies (DMTs) but evaluation of these treatments is hampered

by outcome measures such as the Movement Disorder Society-Unified Parkinson’s

Disease Rating Scale (MDS-UPDRS), which requires large sample sizes and/or long
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term follow-up to detect modest treatment effects, especially given

that existing symptomatic treatment can mask underlying

progression (2). Digital at-home measures, which allow for more

frequent assessment, are a promising option for detecting

treatment effects in shorter timeframes and/or with a smaller

number of participants.

Digital measures are currently recommended as exploratory

endpoints in randomized controlled trials (RCTs) (3). For use as

primary and secondary endpoints, and regardless of whether the

measure is considered a biomarker or a clinical outcome

assessment, a better understanding of their reliability and

responsiveness to disease progression is necessary to determine

their optimal context of use and assessment schedule. Clinimetric

properties of digital tools have been assessed in a wide range of

studies to determine how they can be useful in PD (see

Supplementary Table 1 and references within). Multiple studies

of digital measures derived from at-home app-based assessments,

such as finger tapping and timed walk tests, demonstrate

associations with aligned in-clinic assessments and high test-

retest reliability [(4–7), Supplementary Table 1]. The reliability of

many of these measures is as good as or better than test-retest

reliability for MDS-UPDRS part III scores (8).

In current clinical trials for novel DMTs for PD, the MDS-

UPDRS or one of its subparts is the gold standard outcome

measure (3). Composed of four parts, each of which consists of

multiple items scored ordinally from 0 to 4 (where 0 is no

symptoms and 4 is severe symptoms), the items comprise

patient-reported outcomes and clinician assessments (9). Parts II

and III relate to motor function, measuring patient perception

and clinician ratings of motor impacts respectively. These parts

have excellent test-retest reliability as measured by intraclass

correlation coefficients (ICCs) across spans of 1−2 weeks [ICCs

for part II: 0.96, part III: 0.93 (8)]; however, it remains

challenging to detect changes in early disease burden, especially

in the face of symptomatic treatments (2). One explanation for

this apparent conundrum is that there are three fundamentally

different sources of variability in measurements of PD motor

function: measurement error, short-term clinical fluctuations, and

long-term variability in underlying disease progression.

On the timescale of days to a few weeks, there is no expectation

of change in underlying disease severity, yet measures vary from one

time point to the next due to measurement error and day-to-day

fluctuations in symptoms. Measurement error may be present in

clinician ratings due to, for example, interrater reliability (10, 11)

and in at-home digital assessments due to, for example, variability

in the setting in which patients use the digital devices assessments

(12). Also on a short time scale, clinical variability results from

day-to-day and diurnal symptom fluctuations including those

induced by levodopa and other symptomatic treatment

medications (13). These types of variability can be quantified with

the ICC, standard error of measurement (σm), and minimum

detectable change (MDC) in cross-sectional studies and have been

established for both in-clinic and at-home assessments.

In contrast, long-term variability in underlying disease

progression arises from PD being a heterogeneous disease. When

averaged over individuals, the progression of PD motor
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manifestations as measured by MDS-UPDRS or digital assessments

can be approximated as linear over the span of a year or two

(2, 14). However, PD’s motor manifestations do not change at a

constant rate across months within (2, 15) or between (16, 17)

individuals. The causes of inter- and intra-individual variability in

disease progression are not well known and may include differences

in underlying disease etiology, seasonality, stress, climate, and

changes in living situation (15, 16). Variability in progression rate is

harder to estimate because it is only apparent at long timescales;

however, it is detectable in longitudinal MDS-UPDRS data such as

those collected in the PPMI study (18) and has been disentangled

from measurement error by Evers et al. (15).

Digital assessments can help overcome the challenges posed to

clinical trials by all three of these types of variability by allowing for

more frequent measures. Including repeat measures reduces the

standard error of endpoint estimates such as the rate of change

from baseline. In contrast with clinician-observed outcome

assessments, which are typically captured infrequently due to the

burden and cost of clinic visits, the schedule of assessments for

digital measures can be driven by study designs that yield the

highest power for detecting the treatment effect.

Multiple outcome measures have been considered from

assessments completed using digital tools. These include

individual measures, such as number of taps or gait speed

derived from a mobile app-based assessment, and summary

statistics of a burst of the same assessment, such as the median

of 6 tapping assessments completed over the course of seven

days. There is a trade-off between these two outcome measures:

individual measures can be completed more frequently, but

median values of bursts have higher test-retest reliability (7).

While digital measures have been used in clinical trials as

exploratory endpoints, it remains unclear under what conditions

they will outperform in-clinic assessments and how best to

distribute assessments across the length of the trial to detect the

treatment effect. We undertook analyses to address these gaps with

the following objectives: (1) Estimate measurement error in a variety

of at-home digital assessments spanning gait, tapping, and tremor,

which are part of a neuroscience toolkit developed by Koneksa

Health for use in clinical trials. The measures, derived from raw

triaxial accelerometry sensor data (19), were applied to data

collected in the Objective PD sub-study of the mPower study (20).

(2) Simulate various DMT study designs that implement individual

measures and bursts using at-home digital assessments vs. in-clinic

MDS-UPDRS. We use the Gaussian state space framework

developed by Evers et al. (15), which explicitly models measurement

error and variability in disease progression rates. (3) Assess the

power to detect a treatment effect in the various scenarios by fitting

linear mixed effects models to the simulated measures.
2 Methods

2.1 Data

The data used in this study to estimate reliability of digital

assessments derive from the ObjectivePD sub-study (20), which
frontiersin.org
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recruited 44 participants (21 with confirmed PD diagnosis, 23

healthy controls). Participants were followed for 6 months and

seen in clinic three times at 0, 3 and 6 months. During the

entire 6 months, they were also asked to complete daily digital

health measures administered through the mPower mobile

application (20). These assessments consisted of (1) speeded

finger tapping alternating between the index and middle

finger, (2) a 30-s walk test with the phone in the pocket, and

(3) three tremor assessments including resting, postural and

hand-to-nose tremor. Each participant in the ObjectivePD

sub-study performed on average 182 tapping sessions, 147

gait assessments, and 134 tremor sessions throughout the 6

months study timeframe. Additional details of the

measures are available in prior publications (20, 21) and

Supplementary Table 2.
2.2 Reliability measure estimation

We estimated measurement error and test-retest reliability of

at-home digital measures using a linear random intercept model.

We assessed the test-retest reliability of measures derived from

individual at-home assessments and measures that summarize

multiple at-home assessments completed within a 7-day period

with their median. Specifically, at-home measurements

assessed longitudinally per participant were grouped by

fortnight, and a linear model was fit per digital measure with

random intercepts for participant and participant-by-fortnight

interaction. In contrast with conventional methods for

calculating test-retest reliability that rely on two parallel

assessments (e.g., assessments taken on the same participant

over a short period of time, or assessments collected from two

raters at the same point in time), assessment of test-retest

reliability with a longitudinal model uses all measurements

collected during the study and are robust to missing data (22).

Furthermore, test-retest reliability in this context can be

interpreted as the consistency between measurements collected

during any 2-week period. Implicit in this calculation is the

assumption that underlying disease progression between

observations within a fortnight will be minor (8). This analysis

was performed separately for measures that summarized bursts

and measures that represented individual assessments. Model

residuals were plotted to assess whether the model was an

appropriate choice.

For each fitted model, we extracted the measurement

error associated with a particular measure as the residual

variance, σ2m. Test-retest reliability, assessed with the intraclass

correlation coefficient, is extracted from the fitted model; it is

the proportion of the overall variability in a digital measure

explained by the participant effect and the participant-by-

fortnight interaction effect.

We calculated the minimum detectable change (MDC)

associated with each digital measure following Weir (23) as:

MDC ¼ 1:96� ffiffiffi

2
p � sm
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2.3 Model for simulating digital and in-clinic
data

We generated simulated study data from a Gaussian state space

model of PD progression and measurement (Figure 1) that showed

a good fit to longitudinal MDS-UPDRS data from the PPMI cohort

(15), see Supplementary Text for further discussion of the

modeling framework). In brief, unobserved underlying disease

severity, θ, is simulated for a study population of size n by

randomly drawing n initial values from a normal distribution.

Each participant’s disease severity is updated to the next time

step by adding the mean trend, τ, (i.e., the underlying disease

progression rate) plus Gaussian noise representing variability in

the progression process (σT). The rate of disease progression, τ, is

the only parameter that differs between placebo and DMT study

arms. The updating procedure is repeated for each participant

across the length of a simulated trial with Q observed timepoints.

Observed values, y, are then simulated from the time series of

underlying disease severity, θ, by adding normally distributed

measurement error, v, representing a combination of inter- and

intra-rater reliability and short-term fluctuations that are not

related to underlying disease progression. The updating process

is encapsulated in the following equations, for i [ {1, 2, . . . n}

and t [ {1, 2, . . .Q}.

yt,i ¼ ut,i þ vt,i, vt,i � N(0, sm)

ut,i ¼ ut�1,i þ wt,i, wt,i � N(t, sT)

The elements of clinical study design included in the

simulations were the number of participants per study arm,

schedule of assessments, and study duration. For simulations of

in-clinic MDS-UPDRS part III scores, all parameters were taken

from estimates described in Evers et al. (15).

For simulations of digital at-home measures, measurement

parameters were estimated from the mPower data (i.e., starting

mean, μs, starting standard deviation, σs and standard error of

the measurement, σm, as described above for individual

assessments). Bursts were simulated by drawing 6 individual

assessments per burst and taking the median. Unfortunately, we

lack empirical estimates of the trend and trend variance (τ and

σ2T) from at-home assessments because we do not have sufficient

longitudinal data on digital measures to disentangle measurement

error from progression variability.

Because τ and σ2T represent the trend and trend variance in

underlying disease progression, respectively, we began by

assuming that these are independent of measurement type and

scale with the mean value of a measure, which allowed us to

estimate them from the in-clinic measures. That is, τdigital = τclinic
(μdigital/μclinic) and σT,digital = σT,clinic (μdigital/μclinic). However,

while in-clinic and at-home assessments both measure

underlying motor function, they do so in somewhat different

ways, and we therefore relaxed this assumption and considered

the robustness of our results to the possibility that at-home

measures may be less responsive than in-clinic measures by
frontiersin.org
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FIGURE 1

Conceptual model and simulation framework. (A) Visual representation of the Gaussian state space model used for simulations. (B) Three stochastic
realizations of the model, using in-clinic MDS-UPDRS part III parameters (see Table 1). Underlying disease progression is represented by gray lines in
(B) and ut,i in (A) The variability in progression rates between individuals and across time within individuals arises from the variability in the trend,
simulated by dt,i and result in the unobserved underlying disease states (gray lines). The observed measurements (i.e., MDS-UPDRS scores, digital
assessment scores, etc.) are represented by yt,i in (A) and points in (B) The vertical distance between the gray line and its associated points
represents the variability induced by the measurement process, 1t,i . (C) The three main study designs considered: (1) quarterly clinic visits, (2)
bursts of 6 assessments 8 times per year, and (3) weekly individual assessments.
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reducing τdigital to varying degrees relative to in-clinic measures.

We modeled the effect, e, of a DMT as a reduction in the

progression rate, τ, such that the progression rate in the

treatment arm is eτ, where 0 < e≤ 1.
2.4 Study designs

We considered three core study designs (Figure 1C): (1) in-

clinic MDS-UPDRS every 3 months, (2) 48 digital at-home

assessments per year clustered into 8 bursts of six assessments

each, and (3) 48 digital at-home assessments per year evenly

spaced across the study duration. We additionally assessed the

robustness of our results to study designs with different

clustering of bursts by grouping the 48 assessments into 4, 6, 12

and 24 bursts.
2.5 Progression rate estimation from
simulations & power calculations

We used these simulations to determine the statistical power

of a clinical trial to detect treatment effect. Statistical power

measures the sensitivity of a study to an effect of interest and

is used here to compare the sensitivity of different longitudinal

study designs to detect reduced PD progression induced by a

DMT. After simulating data for placebo and treatment arms,
Frontiers in Digital Health 04
we assessed the power to detect a treatment effect by fitting a

linear mixed effects model to the simulated observations, y,

with fixed effects for time, study arm and their interaction,

and a random intercept for participant. A first-order

autoregressive, AR(1), process was used to model the residual

covariance structure between observations within participants

following model selection. Model residuals were examined to

assess goodness of fit.

For every set of parameters, 1,000 simulations were run and

statistical power was calculated as the proportion of assessments

for which the coefficient of the interaction term for treatment-

arm-by-time had a p-value <0.05, as determined from a

t-distribution with the appropriate degrees of freedom using the

R package nlme (24). An additional criterion for trial success is

included in the supplement; in these simulations, in addition to a

p-value <0.05, the mean difference in change between the

treatment and placebo group across the study duration must

exceed the MDC for the measure of interest.
2.6 Software

ICC calculations were performed using Python 3.11 and

simulations and power calculations were carried out in R 4.2.1

(25). The code used for analysis and simulations is available

upon request.
frontiersin.org
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TABLE 1 Parameters used in main simulations (Figure 2).

Parameter MDS-UPDRS part III
score [values from
Evers (15)]

Digital at-home
step length
(meters)

τ 2.63 year−1 (13% year−1) 0.04–0.07 (8%–13% year−1)

σT 5.58 year−1 0.15 year−1

σm 3.94a 0.06b

aIndependent estimate from Martinez-Martin (8): 4.3.
bEstimated from mPower data.

FIGURE 2

Test-retest reliability per digital at-home measure and study design.

Lavine et al. 10.3389/fdgth.2024.1430994
3 Results

3.1 Reliability of at-home digital PD
assessments

We assessed the reliability of at-home digital measures

obtained from (1) a 30-s walk test (“gait measures”), (2) a

speeded finger tapping assessment (“finger tap measures”), and

(3) a tremor assessment (“tremor measures”). Figure 2

summarizes the test-retest reliability as measured by ICCs for

each at-home digital measure, separated by whether they were

considered individually or an average across multiple measures

taken within a 7-day period. Measurements obtained from bursts

are summarized by calculating the median value per burst. A

median of 6 measurements (mean = 4.6, standard deviation = 2.6)

were included in each burst calculation. Most measures obtained

from individual or burst assessments exhibited good-to-excellent

reliability (26). However, several measures showed poorer

reliability overall (e.g., log step time discrepancy, log tap interval

symmetry, and tap correctness, collected during individual

assessments; log tap interval change collected during burst

assessments). The modeling approach used for estimation

appeared reasonable based on Q-Q plots and other visualizations

of residuals (Supplementary Figure 1). The MDC varied across

measures, ranging from less than 10% of the mean (e.g., postural

tremor displacement) to over 150% of the mean (e.g., change in

tap interval) (Supplementary Tables 2, 3).

For burst assessments, test-retest reliability is calculated between
the median of measurements within each burst; for individual
assessments, test-retest reliability is calculated between the
individual measurements.
3.2 Power calculations for at-home
measures & study design implications

Power calculations were carried out by fitting a linear mixed

model to data generated from the Gaussian state space model.

Examination of model residuals suggested a reasonable fit between

the model used for effect detection and that used for data

generation (Supplementary Figure 2). A comparison between

mixed models with and without an autoregressive correlation

structure of order 1 AR(1) indicated a significantly better fit by

AIC values for the AR(1) model (Supplementary Figure 3), and

that model is used for all power calculations presented here.

Based on empirical estimates of measurement error in digital

and in-clinic assessments, and assuming that digital measures

progress at the same rate as in-clinic measures after rescaling to

account for different units, repeated at-home assessments
Frontiers in Digital Health 05
consistently outperformed in-clinic assessments taken once every

3 months, regardless of whether the digital assessments were

implemented in bursts or assessed weekly (evenly spaced), during

a 1-year trial (Figure 3). For 2-year trials, at-home assessments

implemented in bursts perform similarly to in-clinic assessments

taken once every 3 months, assuming equivalent responsiveness.

As the responsiveness of digital measures (i.e., the trend, τ)

decreases compared with clinic MDS-UPDRS Part III total score,

statistical power decreases, regardless of the method of at-home

assessment (collected weekly or within bursts). However, for the

full range of parameters considered in these simulations, weekly

at-home assessments retained higher statistical power compared

to in-clinic assessments performed once every 3 months.
frontiersin.org
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FIGURE 3

Power curves comparing study designs incorporating in-clinic and at-home assessments. The top row shows results for 1-year long studies, the
bottom for 2-year. The left column models a DMT that reduces disease progression rate by 30% and the right column by 50%. In comparing DMT
with placebo cohorts, the effect size for calculating study power is the difference in slopes of the measure over time (MDS-UPDRS Part III score
for in-clinic assessments, Step Length during the 20-s walk test for at-home assessments), assessed using a linear mixed-effects model. Sample
size calculations for in-clinic assessments (red, dashed line) assume responsiveness to progression and measurement error estimated by Evers
et al. (15). The gray, dashed line represents the threshold for 80% power.
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Additionally, the temporal spacing of at-home measures had a

significant impact on statistical power. Study designs incorporating

weekly assessments (48 assessments per year) consistently

outperformed designs incorporating at-home bursts every 6

weeks (8 median bursts per year). Further, we found that a more

even distribution of assessments always increased power under

the assumption that the reliability was the same (Supplementary

Figure 4). For example, 48 individual assessments provided

greater power than 24 bursts of 2, which provided more power

than 12 bursts of 4, and so on.

Based on an 80% statistical power threshold, we can make

several different comparisons in sample size requirements

between different study designs. For example:

• Assuming a 30% progression rate reduction and 100%

responsiveness of the digital measure, a 2-year study would

require approximately 110, 350, and 350 participants per study

arm based on measures obtained weekly at-home, in 6-week

bursts at home, and in-clinic every 3 months, respectively.

• Assuming a 50% progression rate reduction and 100%

responsiveness of the digital measure, a 1-year study would

require approximately 110, 270, and 390 participants per study

arm based on endpoints obtained weekly at-home, in 6-week

bursts at home, and in-clinic every 3 months, respectively.
Frontiers in Digital Health 06
We additionally considered the sensitivity of power calculations

to estimates of trend and measurement error. The results

indicated that in the presence of high variability in progression

rates (σ2T = 30 for MDS-UPDRS part III total score), in the

range estimated for PD (15), measurement error had little effect

on statistical power (Supplementary Figure 5). In contrast, when

progression rates had less variability (e.g., σ2T = 1 or 5), a more

precise measure (e.g., σ2m = 1 or 5) substantially increased

statistical power, especially for infrequent assessments. An

increase in trend error of 20%–40% increases necessary sample

sizes (Supplementary Figure 6), but its impact is less than that of

a 20%–40% decrease in measure responsiveness (Figure 3).
3.3 Responsiveness of at-home measures

The responsiveness of digital measures to changes in motor

function in PD is not yet well characterized; we therefore

consider the impact of reduced responsiveness of a digital

measure on the sample size needed for 80% power to detect a

30% reduction in progression rate in a treatment arm

throughout a 1-year study (Figure 4). Using at-home

assessments taken weekly would allow for detection of a

modest 30% reduction in the rate of disease progression within
frontiersin.org
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FIGURE 4

Sample size calculation results for a 1-year long DMT trial. The sample size for in-clinic assessments (red, dashed line) assumes responsiveness to
progression and measurement error estimated by Evers et al. (15). Sample size calculations for DHT trials assume measurement error as estimated
from the data (see Figure 2, Step Length) and consider a range of responsiveness of digital measures to underlying disease progression. The
simulations for the blue curve include 48 assessments per year. The cyan curve includes 8 bursts per year, with 6 assessments per burst.

Lavine et al. 10.3389/fdgth.2024.1430994
1 year with fewer than 910 participants per study arm even if the

digital assessments were only 60% as responsive to progression

as in-clinic MDS-UPDRS Part III total score. In the “ideal”

scenario for which digital assessments are as responsive as-

clinic MDS-UPDRS Part III, assuming a 30% reduction in the

rate of disease progression, such a study would require 320

participants per arm compared to 1,150 per arm in a study

that assesses MDS-UPDRS Part III in-clinic every 3 months.
3.4 False positive rate and minimum
detectable change

Finally, we considered the implications of this modeling

approach on the false positive rate. We found that while there

was no strong evidence of bias in the estimates (Supplementary

Figure 7), the probability of finding a significant difference

between study arms when there was none (i.e., type I error)

increased with both assessment frequency and trend variance

(σ2T, Supplementary Figure 8). One way to manage this is to

consider not only statistical but also clinical significance of the

results. Indeed, the problem of type I error is mitigated if a

simulation is considered to demonstrate study success if and only

if the following two criteria are met: (1) the p-value for the

difference in rates of change between treatment arms is <0.05

and (2) the estimated mean difference in the measure is greater

than the minimum detectable change (MDC) (Supplementary
Frontiers in Digital Health 07
Figure 9), though as expected, the probability of study success is

reduced in this scenario.
4 Discussion

We estimated the reliability of a suite of at-home digital

assessments administered on a smartphone to measure motor

function in PD and performed simulations of clinical trial

designs to assess the ramifications of implementing in-home

digital health measures in DMT studies. In agreement with

estimates of the reliability of other digital PD measures, we

found the test-retest reliability for bursts of digital measures were

as good as or better than the reliability of MDS-UPDRS part III

scores. Interestingly, even though individual digital assessments

typically have poorer test-retest reliability than in-clinic or at-

home burst assessments, we found that a study design with

evenly spaced digital weekly assessments outperformed both

alternatives. This result suggests that the key challenge in

measuring PD progression stems not from a lack of sufficiently

sensitive and reliable measurement tools, but rather from the

inherent variability in PD disease burden at points in time that

renders infrequent measurement insufficient.

The result of superiority of frequent at-home assessments to in-

clinic assessments every 3 months is robust to substantially

decreased responsiveness of digital at-home measures compared

with in-clinic (Figure 3). However, the quantitative results
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regarding the necessary sample size were greatly affected by the

responsiveness, and this will be important in future trial design.

This is a difficult parameter to estimate as it requires

longitudinal data. Ongoing and future multi-year studies that

incorporate frequent digital measures in PD will be necessary to

quantify this [e.g., (6, 27, 28)].

The results of this study suggest that evenly spaced assessments

provide greater power than any configuration of an equal number

of assessments distributed in bursts. This may be understood in the

context of information theory; when compressing data using a

logically irreversible process, such as summarizing a burst of

assessments with a median, there is inherent loss of information

as measured, for example, by Shannon entropy (29). The

superiority of evenly spaced assessments also has implications for

the implementation of DHTs in clinical trials. Frequent, evenly

spaced measures require participants to consistently perform

digital assessments across long periods of time. Adherence to at-

home assessment regimens in clinical trials may decrease over

time [e.g., (30)], and methods for maintaining usage will be

important. Additionally, understanding the causes and impacts of

missing assessments will be important.

We note that the results assumed progression rates and

variability estimated in a patient population on standard of care

medications such as levodopa (15). DMT studies are often

longitudinal and conducted in patients in the early stages of PD

[e.g., (31, 32)], which can include treatment-naive participants.

Smaller sample sizes may be sufficient to detect DMT effects in

treatment naive individuals, in part because the estimated

progression rate is higher in the absence of medication (2).

However, while participants may be unmedicated at the start of

the study, over the course of a year or more they are likely to

start symptomatic treatment (33). This transition can be

challenging to account for in models of disease progression, and

whether inclusion of covariates such as levodopa equivalent daily

dose (LEDD) is sufficient to account for the changes induced by

starting treatment remains an open question. There is substantial

evidence that digital measures can detect levodopa effects [e.g.,

(20, 34, 35)], but as of yet, little evidence of detecting

progression (14). Further work is needed to identify what clinical

variables will be necessary to disentangle temporary fluctuations

from underlying disease progression.

A key assumption in this study is that progression in both the

treatment and placebo groups, while highly variable, is on average

linear with time. Varying rates of progression with time could

occur due to intrinsic characteristics of the motor function being

measured, a learning effect, or time-dependent treatment effects

of a DMT. Prior studies provide evidence for two of these: linear

models in time are suitable for some but not all digital measures

(14), and learning effects can be detected in at-home measures

[e.g., (36, 37)]. As there are no approved DMTs for PD, the

importance of time-dependent treatment effects remains

unknown, but it is considered in other similar modeling

assumptions (38) and is likely relevant. For measures whose

progression cannot be approximated as linear, a study design

that facilitates treating time as a discrete variable, such as bursts

of assessments, may be beneficial. It should also be noted that
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this study does not model subpopulations within PD that may

have different mean progression rates (16). Further work is

necessary to understand how this type of heterogeneity in a

population may affect the benefits and study design of digital at-

home assessments. Additionally, data collected at higher

frequency can require consideration of autocorrelation and

temporal confounders (39).

One drawback of the mixed effects modeling approach taken in

this study for power calculations is the possibility for false positive

results. While estimates of trend using linear mixed effect models

are largely insensitive to model misspecification (40), the

standard error of the fixed effects may be underestimated in the

presence of misspecified random effects such as autocorrelation

(41, 42). The increased false positive rate with frequent sampling

observed in the simulations can be understood in the context of

the mismatch between the data generation process (i.e., a

random walk with trend) and the model fitting procedure. As

described here, one solution to this problem is to require not

only statistical but also clinical significance. However, this comes

with a loss of power to detect small changes, especially in shorter

time windows. Analysis methods tailored to data that arise from

underlying processes with this type of autocorrelation may be

important in this context (43).

Future work to better understand the biological mechanisms

underlying the progression of motor symptoms in PD can

inform choices of models used for detecting treatment effects. In

this study, the data generating process was chosen because it has

been shown to parsimoniously explain heterogeneity present in

the disease’s dynamics in PPMI data (15), and therefore seems a

reasonable candidate for a mechanistic model. The model

assumes the mean underlying progression rate is the same across

all patients, which we know to be an oversimplification. For

example, certain genotypes progress more quickly than others

[e.g., (44)]. One outcome of this assumption is that the trend

variance reported by Evers (15) may be an overestimate as it

accounts for not only random variation across time but also

consistent variation between individuals that exists among the

PPMI patients.

The mixed model framework used for effect detection has been

used in longitudinal assessments of PD progression, including in

PPMI data (2). However, while the model may appear to be a

reasonable fit based on standard examination of residuals, our

results suggest that care needs to be taken to avoid

overconfidence in detection of small effects. Given the trade-off

between power to detect treatment effect and the false positive

rate that results from fitting misspecified models, future work to

investigate the underlying mechanisms of motor function

progression and the empirical autocorrelation structure of PD

measurements will be important. Digital measures may provide

an important window into the nuances of PD progression and its

variability and allow for empirical examination of temporal

correlation structures in data that can help determine optimal

analysis methods (20). Given the high and increasing burden of

PD around the globe, therapies that can stop or slow its

progression will benefit millions of people (45). As of 2023, there

were 63 ongoing clinical trials for PD DMTs, including 32 phase
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II and 6 phase III (46). For these trials to be successful, in addition

to an effective therapeutic agent, they must utilize measurements

that allow for detection of treatment effect in the face of the high

degree of variability inherent to PD progression. This study

demonstrates that frequent measures enabled by digital health

technologies that can be used consistently in patients’ homes

may increase the power to detect treatment effects in smaller and

shorter trials.
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