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Introduction: Dysarthria, a motor speech disorder caused by muscle weakness or
paralysis, severely impacts speech intelligibility and quality of life. The condition is
prevalent in motor speech disorders such as Parkinson’s disease (PD), atypical
parkinsonism such as progressive supranuclear palsy (PSP), Huntington’s disease
(HD), and amyotrophic lateral sclerosis (ALS). Improving intelligibility is not only an
outcome that matters to patients but can also play a critical role as an endpoint in
clinical research and drug development. This study validates a digital measure for
speech intelligibility, the ki: SB-M intelligibility score, across various motor speech
disorders and languages following the Digital Medicine Society (DiMe) V3 framework.
Methods: The study used four datasets: healthy controls (HCs) and patients with PD,
HD, PSP, and ALS from Czech, Colombian, and German populations. Participants’
speech intelligibility was assessed using the ki: SB-M intelligibility score, which is
derived from automatic speech recognition (ASR) systems. Verification with inter-
ASR reliability and temporal consistency, analytical validation with correlations to
gold standard clinical dysarthria scores in each disease, and clinical validation with
group comparisons between HCs and patients were performed.
Results: Verification showed good to excellent inter-rater reliability between ASR
systems and fair to good consistency. Analytical validation revealed significant
correlations between the SB-M intelligibility score and established clinical
measures for speech impairments across all patient groups and languages.
Clinical validation demonstrated significant differences in intelligibility scores
between pathological groups and healthy controls, indicating the measure’s
discriminative capability.
Discussion: The ki: SB-M intelligibility score is a reliable, valid, and clinically relevant
tool for assessing speech intelligibility in motor speech disorders. It holds promise
for improving clinical trials through automated, objective, and scalable assessments.
Future studies should explore its utility in monitoring disease progression and
therapeutic efficacy as well as add data from further dysarthrias to the validation.
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Introduction

Dysarthria is a motor speech disorder resulting from weakness

or paralysis of speech-related muscles (1). It leads to decreased

speech intelligibility, frequent communication breakdowns, and a

reduced quality of life. Speech intelligibility is reduced in many

types of dysarthria, including typical Parkinson’s Disease (PD)

(2–5), atypical parkinsonism such as progressive supranuclear

palsy (PSP) (4, 6, 7), Huntington’s disease (HD) (8, 9),

amyotrophic lateral sclerosis (ALS) (1, 10), and multiple sclerosis

(MS) (11, 12).

Reduced intelligibility of patients’ speech often leads to

communication difficulties and affects social participation and

quality of life in general (13, 14). Hence, communication deficits

and perceived intelligibility of their speech represents a major

concern for patients with motor speech disorders (15, 16).

Speech intelligibility is a construct depending on (a) a speaker

(sender) who produces an acoustic signal within, e.g.,

conversational speech, and (b) a listener (receiver) who receives

the signal and interprets it; the success of the interpretation is a

direct function of the intelligibility (17) (see also Figure 1).

Although a major concern, speech intelligibility is not necessarily

dependent on disease severity, duration, or motor phenotype and

patients’ own perceptions of the severity do not necessarily

reflect objective measures (18). Improved intelligibility is often a

primary goal of speech therapy, especially for individuals with

dysarthria, and can be a valuable endpoint for clinical research

and drug development (19).

Accordingly, measuring speech intelligibility is a clinically

relevant assessment for monitoring a dysarthric patient’s status

and tracking the effectiveness of treatments (20). The common
FIGURE 1

Conceptual model of intelligibility; being a receiver/listener-focused me
dysarthrias within the sender: articulation, phonation, resonance, prosody, a
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method for assessing speech intelligibility is perceptual evaluation

by trained personnel—often clinicians. Standard clinical

assessments for disorders associated with dysarthria, such as the

Movement Disorder Society Unified Parkinson’s Disease Rating

Scale (MDS-UPDRS) (21), the Unified Huntington’s Disease

Rating Scale (UHDRS), and the revised amyotrophic lateral

sclerosis functional rating scale (ALSFRS-R) (22), are based on

clinician-rated questionnaires and assess, among other symptoms,

speech intelligibility. However, these assessments require patient

and clinician presence and can be subject to observer bias,

pointing to a need for more objective automated methods for

assessing speech disorders.

As the field of automated speech analysis is growing in clinical

research and healthcare applications, there is increasing potential

for digital automatic assessments of speech-related symptoms in

motor speech disorders (23, 24). Digital dysarthria assessments

are better suited for automated patient-administered screening or

stratification at low cost to accelerate clinical trials (24–26).

Furthermore, a high level of automation can easily scale up

outreach to draw unbiased and representative trial populations

beyond established clinical sites and hospital networks. In

addition, within clinical trials, digital markers deliver objective

high-frequency data to guide interventional clinical trial decision-

making and make evaluation more efficient (27).

Previous studies have demonstrated how commercially available

automatic speech recognition (ASR) systems could be a feasible

platform for automatic measures of intelligibility in patients with

motor speech disorders (19, 28). As commercial ASR systems are

developed majorly on typical—presumably non-dysarthric—

speech, the recognition accuracy of such a system should be an

inverse model of the intelligibility of the speaker (29–31).
asure and being affected by impaired speech subsystems underlying
nd respiration.
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However, although promising results have been published in

feasibility studies, there has not been any comprehensive

validation work including multiple pathologies and multiple

languages and following a systematic validation framework. The

Digital Medicine Society (DiMe) V3 framework (verification,

analytical validation, and clinical validation) (32–34) defines

validation cases that digital measures should comply with to be

considered fit-for-purpose for clinical trials and eventually

medical devices, such as digital diagnostics. This framework has

gained in importance in recent years and can be regarded as an

industry standard for digital measures in this field.

In this study, we present a validation following the DiMe V3

framework for a digital measure for intelligibility, the ki: speech

biomarker score for motor speech disorders intelligibility (ki: SB-

M intelligibility score). We validate the SB-M intelligibility score

in individuals with motor speech disorders, including PD, PSP,

HD, and ALS, in multiple languages, including German, Czech,

and Colombian Spanish, representing the Germanic, Slavic, and

Romance language families.
Methods

Data

Four different datasets were used in the analysis: (1) Czech data

from N = 39 patients with HD (35), N = 43 patients with PD (36),

N = 16 patients with ALS (37), N = 17 patients with PSP (6), and

N = 46 healthy controls (HCs); (2) Colombian data from N = 50

HCs and N = 50 patients with PD (38); and (3) German data

(39) from N = 98 patients with PD. For detailed information on

the initial cohorts, reading texts, and data collection process, we

refer to the initial publications cited; however, for better

readability for this manuscript, a short description will be given

in the following sections. Compare also Table 1.
Czech data
Participants read an 80-word long paragraph in the respective

language, which was phonemically balanced and well-established in

clinical research (3). Recordings were conducted in a quiet room

with low ambient noise, using a condenser microphone placed

approximately 15 cm from the subject’s mouth. Each participant

had one recording session with the speech-language pathologist,
TABLE 1 Demographic information of the samples and as essential clinical in

German Colombian

PD DE PD CO HCs CO
N 98 (32 F) 50 (25 F) 50 (25 F)

Age (years) 62.7 (±8.23) 61.02(±9.44) 60.98 (±9.46) 6

MDS-UPDRS, UHDRS,
NNIPPS, ALSFRS-R

37.43 (±10.89) 37.66 (±18.32) — 20

Clinical scale speech items 0.80 (±0.90) 1.34 (±0.82) — 0

ki: SB-M intelligibility score 0.82 (±0.18) 0.73 (±0.18) 0.86 (±0.11) 0

CO, Colombian Spanish; CZ, Czech; DE, German.

ALSFRS-R: note that ALSFRS-R has an inverse relationship to disease severity, unlike

items: MDS-UPDRS item 3.1, UHDRS dysarthria score, NNIPPS speech item, ALSFRS-R
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without time limits. Participants were briefed on the speaking tasks

and recording process. Each participant provided written informed

consent. The collection of the Czech data was approved by the

Ethics Committee of the General University Hospital in Prague,

Czech Republic (approval number 6/15 Grant GACR VFN).

Colombian data
Participants read 10 sentences of increasing complexity (38).

Recordings were collected in a soundproof booth at the Clinica

Noel in Medellin, Colombia, using a dynamic omnidirectional

microphone and a professional audio card. This study was in

compliance with the Helsinki Declaration and was approved by

the ethics committee of the Clinica Noel in Medellin, Colombia.

Written informed consent was signed by each participant.

German data
Participants read an 80-word long paragraph in the respective

language, which was phonemically balanced, well-established, and

taken from the German protocol version of the Dysarthria

Analyzer (40). Speech data were collected in the Department of

Neurology of the University Hospital Cologne in a room with

low ambient noise using a condenser microphone headset to

keep the mouth-to-microphone distance constant at

approximately 7 cm from the mouth. Each participant provided

written informed consent. The data collection was approved by

the local ethics committee (protocol code: 23-1461-retro).

After the reading task, patients in all three cohorts underwent a

range of clinical assessments (different for each study and cohort),

of which the following are important for this study: the MDS-

UPDRS (21), UHDRS (41), Natural History and Neuroprotection

in Parkinson Plus Syndromes—Parkinson Plus Scale (NNIPPS)

(42), and ALSFRS-R (22).
Automatic speech recognition and
intelligibility score

To calculate the automatic intelligibility scores, we first ran the

audios from the reading passage and reading sentences (in

Colombian Spanish) through SIGMA the ki: proprietary speech

processing library, which—besides other preprocessing and

feature extraction steps—also interfaces with commercially

available ASR systems; for verification, we selected two different
formation.

Czech

PD CZ HD CZ PSP CZ ALS CZ HCs CZ
43 (19 F) 39 (20 F) 17 (6 F) 16 (11 F) 46 (21 F)

3.0 (±9.92) 48.28 (±13.4) 66.76 (±4.8) 60.0 (±10.66) 51.54 (±14.05)

.88 (±10.92) 26.51 (±11.47) 67.12 (±26.7) 35.06 (±6.97) —

.81 (±0.63) 0.81 (±0.46) 1.88 (±0.7) 2.75 (±0.86) —

.81 (±0.07) 0.67 (±0.17) 0.54 (±0.28) 0.58 (±0.29) 0.85 (±0.04)

the other scales where higher scores mean greater severity. Clinical scale speech

speech item from the bulbar score.

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1440986
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Tröger et al. 10.3389/fdgth.2024.1440986
providers: Google Speech API (43) and Amazon Transcribe (44).

Based on the transcripts and the target reading texts, we

calculated the word error rate (WER, error between the number

of target words in the reading text and that in the ASR

transcripts) and word accuracy (WA, similar to [28]). From

those raw measures, we then derived an automatic proxy for the

intelligibility of the speech—the ki: SB-M intelligibility score.
V3 framework

The V3 framework established by the DiMe Society (32)

provides a unified evaluation framework for digital measures. V3

includes three distinct phases in sequential order: verification,

analytical validation, and clinical validation. For all the three

phases, different data have to be collected and statistically

analyzed to provide the necessary results.
Verification
Verification entails the systematic evaluation of sample-level

sensor outputs against prespecified criteria. The ki: SB-M

intelligibility score relies on ASR. Therefore, the most critical

part of the sensor output and preprocessing pipeline is the

automatic transcription of speech. The ki: SB-M intelligibility

score uses a proprietary speech processing pipeline leveraging

commercial ASR providers. To verify the performance at this

stage, we calculated intraclass correlation coefficients (ICCs) for

the WER and SB-M intelligibility score between Google and

Amazon ASR. Previous studies and our own work have shown

that error rates on a low level, such as phoneme error rate, do

not necessarily model losses of perceptual intelligibility (45). We

performed verification across the whole data sets except for the

German PD data due to a lack of consent from patients.

In addition, we computed ICCs between repeated tests for data sets

in which participants performed two repeated reading passages (all CZ

data sets). Although tests are executed in quick succession, this can

provide first insights into the retest reliability of the measures. Based

on the current state of the art in the field, we considered an ICC of

0.40 (fair correlation) acceptable for verification (46).
Analytical validation
Analytical validation evaluates performance to measure a

certain concept of interest (similar to construct validity). The ki:

SB-M intelligibility score is related to speech impairments

resulting in reduced speech intelligibility. For the analytical

validation, we compared the ki: SB-M intelligibility score against

established clinical anchor measures for speech impairments or

dysarthria in the respective populations. Depending on the

pathology, these measures differ: PD→MDS-UPDRS→ speech

item, HD→UHDRS→ dysarthria item, PSP→NNIPPS→ speech

item, and ALS→ALSFRS-R→ speech item (please note that in

direct comparison with the other clinical scales, the ALSFRS-R

has an inverse relationship to disease severity, meaning patients

lose points as the disease progresses). For the comparison with

the clinical anchors, we computed Spearman’s rank correlation
Frontiers in Digital Health 04
coefficient between the ki: SB-M intelligibility score and the

respective speech impairment measure.

Clinical validation
Clinical validation evaluates the ability to validly measure

clinically meaningful change within an intended scenario,

including a specified clinical population. The ki: SB-M

intelligibility score is built to measure clinically meaningful

change in the intelligibility of speech in dysarthrias. To cover a

significant range of dysarthrias, we included clinical validation on

the following pathologies: PD, HD, PSP, and ALS.

We performed Kruskal–Wallis test group comparisons in the

ki: SB-M intelligibility score between the different diagnostic

groups (HC vs. pathology). In addition, we analyzed Spearman’s

rank correlation between the ki: SB-M intelligibility score and the

respective global clinical staging measure: MDS-UPDRS, UHDRS,

NNIPPS, and ALSFRS-R.
Results

Verification

For verification of the SB-M intelligibility score, we report

reliability between the SB-M intelligibility score based on two

different ASR methods and reliability between successive

performances of the reading task and calculation of the SB-M

intelligibility score.

Inter-rater reliability for ASRs
We compared different ASRs (Google and Amazon) as the

basis for the SB-M intelligibility score. For most of the

pathological groups, the ICC between both ASR methods showed

a good to excellent performance (ICC equal or above 0.30).

However, for Colombian PD data, the ICC was only fair and for

Czech PD poor; both were still highly significant. The overall HC

ICC (across all languages) was also only poor. For details,

compare Table 2. WERs showed similar trends to the final

intelligibility score, with the following pattern: HCs < PD <HC,

PSP = ALS.

Consistency
Consistency over a short period of time (i.e., the same day in

the same assessment reading the paragraph twice) was calculated

based on repeated paragraph reading in all groups except the

Colombian group, which read multiple sentences of increasing

difficulty and not one overall homogenous paragraph. The ICCs

for consistency were above 0.70, representing a good to excellent

agreement. Compare also Table 2.
Analytical validation

For the analytical validation, we compared the ki: SB-M

intelligibility score against established clinical anchor measures

for speech impairments or dysarthria in the respective
frontiersin.org
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TABLE 2 Agreement between two different ASR methods—Google Speech API and Amazon Transcribe—and the resulting SB-M intelligibility score and
raw word error rate.

HC overall HC CZ HC CO PD CO PD CZ HD CZ PSP CZ ALS CZ
Google SB-M intelligibility score 0.862 (0.182) 0.853 (0.039) 0.859 (0.200) 0.733 (0.273) 0.810 (0.073) 0.675 (0.173) 0.537 (0.281) 0.590 (0.283)

Amazon SB-M intelligibility score 0.968 (0.088) 0.900 (0.041) 0.980 (0.090) 0.917 (0.177) 0.882 (0.050) 0.775 (0.126) 0.666 (0.28) 0.714 (0.238)

ICC SB-M intelligibility score 0.295 (0.0) 0.180 (0.008) 0.283 (0.0) 0.486 (0.0) 0.290 (0.0) 0.702 (0.0) 0.841 (0.0) 0.869 (0.0)

Google word error rate 0.167 (0.184) 0.238 (0.038) 0.160 (0.2) 0.303 (0.276) 0.288 (0.084) 0.437 (0.154) 0.540 (0.231) 0.479 (0.237)

Amazon word error rate 0.058 (0.113) 0.198 (0.042) 0.032 (0.106) 0.121 (0.202) 0.22 (0.066) 0.372 (0.143) 0.425 (0.228) 0.364 (0.193)

ICC consistency — — — — 0.75 0.858 0.955 0.982

CO, Colombian Spanish; CZ, Czech.

Tröger et al. 10.3389/fdgth.2024.1440986
populations. We found significant correlations between the

intelligibility score and the respective dysarthria anchor score for

DE PD (r =−0.46, p < 0.01, d = 1.03), CO PD (r =−0.39, p < 0.01,
d = 0.85), CZ PD (r =−0.32, p < 0.05, d = 0.67), and CZ HD

(r =−0.37, p < 0.05, d = 0.80). Probably owing to the small

sample size, statistically we only found a trend in CZ PSP

(r =−0.42, p < 0.10, d = 0.92) and CZ ALS (r = 0.32, p = 0.21,

d = 0.68), although effect sizes were medium to large. Compare

also Figure 2.
Clinical validation

For the group comparisons, we found significant differences,

with the ki: SB-M intelligibility score being significantly lower for

the respective pathological group for all cohorts: HC CO > PD

CO (H = 17.425, p < 0.001, η2 = 0.17), HC CZ > PD CZ
FIGURE 2

Scatter plots for the correlations between the intelligibility score and respecti
DE PD correlation with the MDS-UPDRS speech item; CO PD correlation wit
speech item; CZ PSP DE PD correlation with the NNIPPS speech item; CZ H
with the ALSFRS-R speech item (note that ALSFRS-R has an inverse relatio
mean greater severity). DE, German; CO, Colombian Spanish; CZ, Czech.
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(H = 13.304, p < 0.001, η2 = 0.14), CZ HC > CZ HD (H = 44.437,

p < 0.001, η2 = 0.52), CZ HC > CZ PSP (H = 29.696, p < 0.001,

η2 = 0.46), and CZ HC > CZ ALS (H = 18.565, p < 0.001,

η2 = 0.29). For description, please see Table 2, and a graphical

overview of the group differences is provided in Figure 3.

Post hoc group comparisons revealed that the intelligibility

scores were comparable for the CZ HD, PSP, and ALS groups,

and the CZ PD and CO PD groups. However, German PD

showed significantly better intelligibility than the other patient

groups, actually performing on a par with the other language

HC groups.
Discussion

This study aimed to validate the ki: speech biomarker for

motor speech disorders intelligibility score (ki: SB-M
ve speech dysarthria clinical anchor score. From upper left to lower right:
h the MDS-UPDRS speech item; CZ PD correlation with the MDS-UPDRS
D correlation with the UHDRS dysarthria score; and CZ ALS correlation

nship to disease severity, unlike the other scales in which higher scores
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FIGURE 3

Boxplots of the SB-M intelligibility score for all groups. Blue, PD; white, HC; purple, HD, PSP, and ALS. Asterisks denote a significant post hoc group
comparison. CO, Colombian Spanish; CZ, Czech.
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intelligibility score) using the DiMe V3 framework, covering

verification, analytical validation, and clinical validation across

multiple languages and dysarthria pathologies. Making use of off-

the-shelf ASR systems, we took a state-of-the-art approach to

automatically measure speech intelligibility in dysarthrias (19, 28,

47). On a conceptual level, we went beyond the aforementioned

studies, as we followed the DiME society V3 framework for

assessing the readiness of digital measures for clinical research

and also included multiple pathologies from the dysarthria

spectrum as well as two different ASR systems.

We ran verification on the SB-M intelligibility score, calculating

it based on two different automatic speech recognition systems:

Google Speech API and Amazon Transcribe. Overall, the ICC

indicated good to excellent agreement between the two ASR

systems for most pathological groups. However, discrepancies

were noted in the Colombian PD and Czech PD data, in which

the ICC was only fair to poor, respectively. Poor stability of

ASR-based intelligibility measures has been reported previously,

especially for typical and mildly impaired severity groups,

specifically decreasing their ability to measure changes in the

early phases of motor speech disorders (19). The discrepancy

might be due to the rather small variance and very good speech

recognition, performing almost at an HC level of 0.80, whereas

HD, PSP, and ALS have intelligibility scores of 0.70–0.50, with

much bigger variances. In these cases, we assume that already

small word-level differences inflate discrepancies between ASRs

and might cause low ICCs. Especially with the advent of ever-

improving ASRs, which also push the needle in dysarthric speech

recognition alongside other underrepresented groups, this issue

has to be watched closely.

The validity of Google and Amazon ASRs as commercial

products naturally extends beyond pathological groups. Both ASR
Frontiers in Digital Health 06
systems have shown high accuracy in recognizing speech from

healthy individuals, providing a strong benchmark for

comparison (48). However, ensuring robust performance for

underrepresented groups remains crucial for the broad

applicability and reliability of ASR systems in clinical and

everyday settings. On the level of ASR performance in dysarthric

speakers, our results compare well with other studies in the field.

Gutz et al. (19) found WERs of 10% for mild ALS-related

dysarthria to approximately 50% for moderate cases and

approximately 80% for severe cases. This is in line with our

results for the Czech ALS population, which can be classified as

moderately dysarthric based on the ALSFRS-R speech item and

shows a 40%–50% WER depending on the ASR system.

Consistency was assessed by comparing the intelligibility scores

obtained from repeated paragraph readings. Overall, the ICC values

indicated good to excellent consistency. This is an encouraging

result but has to be further investigated for repeated

measurements of the SB-M intelligibility score assessed longer

timeframes apart, such as a couple of days or weeks.

Analytical validation compared the SB-M intelligibility score

against established clinical anchor measures for dysarthrias

derived from the respective gold standard clinical staging scale.

Significant correlations were observed between the SB-M

intelligibility score and the respective dysarthria anchor scores

for the German PD, Colombian PD, Czech PD, and Czech HD

groups. Although specific items are not designed as stand-alone

assessments of dysarthria and even less as assessments of

intelligibility in principle, we could still demonstrate correlations

between the ki: SB-M intelligibility score and those measures.

These findings support the SB-M intelligibility score’s validity as

a measure of perceived speech intelligibility being associated with

dysarthria on the speaker side, as confirmed by traditional
frontiersin.org
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clinical assessments such as the MDS-UPDRS, NNIPPS, and

ALSFRS-R speech items or the UHDRS dysarthria score. Despite

medium to large effect sizes, statistical significance was not

achieved for the Czech PSP and Czech ALS groups, likely due to

smaller sample sizes. Future studies should aim to include larger

cohorts to increase statistical power and provide more robust

analytical validation.

Our approach to measuring speech intelligibility differs from

other research by using a direct measure based on ASR

performance, rather than classifying speech into different states/

classes of intelligibility. This research is sometimes carried out

using machine learning techniques (49, 50). This line of research

frames intelligibility as a classification problem, requiring labeled

training data to categorize speech into predefined stages. By

contrast, our method leverages the continuous output of ASR

systems as a proxy for intelligibility, offering multiple benefits.

This continuous measure might provide finer granularity and

sensitivity to subtle changes in speech quality over time or

between groups. In addition, using an off-the-shelf ASR

approach eliminates the need for additional machine learning

training, making it more accessible and easier to implement in

various clinical and research settings.

One of the major limitations of the analytical validation we

performed is that we cannot prove this further by comparing

with manual intelligibility ratings by either trained professionals

or human raters in general, as has been carried out by

Gutz et al. in ALS (19). Future studies should add this piece of

analytical validation, leveraging existing methods to rate

intelligibility by multiple trained and/or untrained raters (51). In

addition, our approach presents, in some respect, a black

box approach that directly evaluates dysarthria based on

intelligibility as perceived by a somehow non-transparent ASR

black box. There is a whole research tradition on using carefully

crafted acoustic features to estimate dysarthria and different

subsystems, as mentioned in the introduction. Pursuing a

hybrid approach that taps into ASR-based intelligibility and

traditional acoustic analysis features (e.g., pause rate, articulation

rate, pitch instability, or monotonicity) to evaluate patients’

dysarthrias would increase the impact of such research and be an

important next step.

Clinical validation demonstrated significant differences in SB-

M intelligibility scores between healthy controls and pathological

groups across all cohorts. This finding underscores the potential

of the SB-M intelligibility score as a discriminative tool for

identifying and quantifying speech impairments in individuals

with motor speech disorders. The consistent pattern of lower

intelligibility scores in pathological groups compared with

healthy controls across different languages and disorders further

supports the robustness and generalizability of the measure.

Nevertheless, the experiments presented here still only cover a

fraction of the total spectrum of motor-speech-disorder-related

dysarthrias or dysarthrias in general. However, our data set of

more than 250 patients across four different pathologies and

three languages covers a significant amount in this field of

research; for rare diseases such as ALS or atypical PD in

particular, datasets of that size are rarely reported. In addition,
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we acknowledge that we did not perform specific testing for

cognitive involvement, as the primary aim was to investigate

motor speech deviations that are the main contributors to

reduced intelligibility. Furthermore, we did not measure the vital

capacity of our patients; cohorts such as ALS and PSP may have

respiratory impairments that could significantly contribute to

reduced intelligibility.

In general, we observed better speech intelligibility in patients

with PD than in patients with HD, PSP, or ALS. One reason

could be that in the earlier stages of PD, articulation impairment

is not as pronounced, allowing for relatively clearer speech.

Conversely, HD is characterized by hyperkinetic irregular

articulation, and ALS and PSP are associated with hypertonia,

leading to imprecise consonant production (52). These speech

deficits in HD, ALS, and PSP significantly contribute to reduced

intelligibility. These imprecise consonant and uncontrolled

(sometimes spastic) irregularities in speech are known to hamper

speech intelligibility a lot more than monopitch and

monoloudness, which are typically observed in early PD. In

addition, the spread in intelligibility scores was a lot greater for

HD, PSP, and ALS than for PD, which was also in line with

studies on those diseases showing more heterogeneity in their

behavioral and speech impairment phenotype.

Between the separate PD groups (DE, CO, and CZ), we

observed comparable intelligibility scores in CO and CZ but the

German PD group was significantly more intelligible—actually

performing on a par with the other language HC groups. This

could be related to different recording setups in each study or a

general language difference in the underlying ASR performance.

ASR and the measures derived from it exhibit considerable

variability when applied to different types of dysarthria (53).

Articulatory precision has been identified as the most critical

factor influencing speech intelligibility, surpassing the impact of

prosody (54).

Finally, another limitation to this study is that we compared

intelligibility for audios collected from different studies with

different audio recording settings. Although all studies used

state-of-the-art microphones for audio recording and professional

recording setups—as recommended by recent guidelines (5)—

differences in audio recording setups can always play a role in

head-to-head comparisons; this is especially the case when

comparing our results from CZ directly with CO and DE.

Eventually, the accuracy of an automatic speech intelligibility

measure is highly dependent on recording conditions. Poor

recording environments, such as those with high background

noise or subpar microphone quality, can introduce significant

bias, leading to artificially low intelligibility ratings. This may

result in the erroneous classification of normal speech as

dysarthric. Furthermore, different recording devices and handling

methods introduce substantial variance, which can confound the

measurements and reduce their sensitivity to detect small

changes over time or differences between low dysarthria groups.

However, one of the most promising scenarios in which to

deploy this kind of technology is in at-home environments,

where the patient is monitored in everyday life, always using the

same device and with similar acoustic conditions. This approach
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has shown promising results (55). Future studies in this field

should adhere even closer to a standardized recording setup or

record with multiple devices—one being a standardized

microphone setup next to others.
Conclusion

Overall, this study provides a comprehensive validation of the

ki: SB-M intelligibility score for assessing speech intelligibility in

motor speech disorders across multiple languages and

pathologies. The findings support its reliability, validity, and

clinical relevance, highlighting its potential as a standardized tool

for clinical and research applications. Automated objective

measures of speech intelligibility, such as the SB-M intelligibility

score, can increase the efficiency and accuracy of dysarthria

assessments, reduce observer bias, and facilitate remote

monitoring. This is particularly advantageous for large-scale

international clinical trials, in which high-frequency data

collection and scalability are critical.

Future efforts should complement validation by investigating

the SB-M intelligibility score’s ability to monitor disease

progression and treatment efficacy. Longitudinal studies assessing

changes in the intelligibility score over time and in response to

therapeutic interventions could provide valuable insights into the

clinical utility of this digital measure.
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