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Development and validation of
a machine learning model
integrated with the clinical
workflow for inpatient discharge
date prediction
Mohammed A. Mahyoub1,2, Kacie Dougherty1, Ravi R. Yadav1,
Raul Berio-Dorta1 and Ajit Shukla1*
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Science and Industrial Engineering, Binghamton University, Binghamton, NY, United States
Background: Discharge date prediction plays a crucial role in healthcare
management, enabling efficient resource allocation and patient care planning.
Accurate estimation of the discharge date can optimize hospital operations
and facilitate better patient outcomes.
Materials and methods: In this study, we employed a systematic approach to
develop a discharge date prediction model. We collaborated closely with
clinical experts to identify relevant data elements that contribute to the
prediction accuracy. Feature engineering was used to extract predictive
features from both structured and unstructured data sources. XGBoost, a
powerful machine learning algorithm, was employed for the prediction task.
Furthermore, the developed model was seamlessly integrated into a widely
used Electronic Medical Record (EMR) system, ensuring practical usability.
Results: The model achieved a performance surpassing baseline estimates by up
to 35.68% in the F1-score. Post-deployment, the model demonstrated
operational value by aligning with MS GMLOS and contributing to an 18.96%
reduction in excess hospital days.
Conclusions: Our findings highlight the effectiveness and potential value of the
developed discharge date prediction model in clinical practice. By improving the
accuracy of discharge date estimations, the model has the potential to enhance
healthcare resource management and patient care planning. Additional research
endeavors should prioritize the evaluation of the model’s long-term applicability
across diverse scenarios and the comprehensive analysis of its influence on
patient outcomes.
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1 Introduction

A key aspect of optimal healthcare delivery is the ability of hospitals and clinicians to

achieve both patient-centered care and efficient resource utilization (1, 2). These objectives

are interrelated: Early hospital discharge can have positive clinical implications for

patients. Evidence has shown that patients who experience prolonged hospital stays

have increased susceptibility to hospital-acquired infections, pressure ulcers, and

nutritional deterioration (3–5). A potential benefit of discharging patients when they no
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longer require hospital-level care is the prevention of complications

associated with prolonged hospitalization. Additionally, timely

discharge is crucial for ensuring the availability of patient beds

for those in the Emergency Department (ED) who need them

(6). The timely transfer of critically ill patients from the ED to

an appropriate inpatient unit is essential for optimal patient

outcomes. Previous studies have shown that prolonged ED

boarding times can lead to increased hospital length of stay and

higher mortality rates for these patients (7). A phenomenon that

occurs infrequently but has serious implications for patient safety

is the departure of patients who need hospital care from

emergency departments without being seen by a physician. This

can happen when EDs are overcrowded due to inefficient patient

flow processes. Patients who leave without being seen may

experience adverse outcomes that could have been prevented or

mitigated by timely medical attention (8).

One of the factors that affects the quality and cost of care is

patient flow, which refers to the efficient use of resources and

time during the patient’s stay in the hospital (9, 10). A common

practice for planning the discharge of patients is to rely on the

clinicians’ estimates of the discharge date. However, this practice

has some drawbacks, such as consuming the clinicians’ time that

could be spent on other tasks or direct patient care, and having

low accuracy (11, 12). A possible alternative is to apply machine

learning models to predict the discharge date of patients based

on their length of stay (LOS) in the hospital. Several studies have

proposed and developed different LOS models for this purpose

(11, 13–18). However, most of these studies have focused on the

model development stage, using retrospective data, creating

features for LOS prediction, training, and evaluating different

models, without considering how to implement them in practice.

The majority of published articles in healthcare machine learning

have failed to showcase successful implementations of proposed

models, resulting in a substantial gap between theoretical

concepts and practical applications. This underscores the pressing

need for practical research that addresses the entire life cycle of

predictive models, spanning from their initial conceptualization

to their effective integration into operational systems (19, 20).

This article introduces a practical machine learning model that

combines various clinical data sources, such as demographics,

complaints, and medical problems, to predict the discharge date

for patients. By enabling early and proactive discharge planning,

this model offers significant benefits. The key contributions of

this paper are as follows:

• It develops a machine learning model that is tailored for

discharge date prediction and can be seamlessly integrated

into the clinical workflow.

• It integrates the predictive model with a widely adopted

electronic medical record system in the United States.

• It goes beyond previous studies by evaluating the model after its

deployment, a step that is often overlooked in similar research,

providing valuable insights into the model’s real-world

performance and effectiveness.

This paper is organized as follows. Section 2 delves into the

materials and methods employed in this research. It encompasses
Frontiers in Digital Health 02
an explanation of the data sources utilized, the methods

employed for data collection, and an outline of the model

development and deployment process. In Section 3, the results

and findings of the study are presented. This includes an analysis

of the model’s performance during both the development and

deployment stages, providing insights into its effectiveness and

reliability. Lastly, in Section 4, the paper concludes by

highlighting the main contributions and outcomes of the

research, summarizing the key findings and implications derived

from the study.
2 Materials and methods

2.1 Methodology overview

We present a systematic and rigorous approach to develop a

predictive model for inpatient discharge date, as illustrated in

Figure 1. Our approach consists of five phases. In the first phase,

we define the healthcare problem and analyze the underlying

process. In the second phase, we identify the relevant data

elements and validate them with clinical teams. Then, we map

the data elements to the clinical database and retrieve them for

further analysis. Next, we preprocess and transform the data for

modeling purposes. In the third phase, we develop and evaluate

various machine learning models and select the best one to

proceed to the fourth phase, where we deploy and integrate the

model within the electronic medical record (EMR) system.

Finally, in the fifth phase, we monitor the model’s performance

after deployment, assess its operational impact and evaluate its

effect on the healthcare process under investigation.
2.2 Conceptualization

In this phase, we engaged in multiple discussions with the

clinical team to gain a comprehensive understanding of the

current discharge planning procedures and discharge processes.

Additionally, we sought insights into the interdisciplinary rounds

and the role of the estimated discharge date. To guide the

modeling process, we focused on addressing several key questions:

• What should be the prediction window? Should it be dynamic

or static?

• What is the optimal time window for generating static

predictions?

• Where should the model scores be recorded to facilitate

integration into the clinical workflow, specifically during

interdisciplinary rounds?

The primary conclusions from these discussions are as follows:

• The model should facilitate early discharge planning; thus, static

predictions are preferred.

• The model should provide discharge date estimates for patients

within the first 18 h of admission.

• Model scores should be incorporated into a data column in the

patient list reviewed during interdisciplinary rounds.
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FIGURE 1

Research methodology overview.
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Additionally, we reviewed a range of studies in the literature

(see Section 1) to evaluate the current advancements in discharge

date prediction and to identify relevant data elements that could

enhance our modeling process. This review helped us understand

existing methodologies, highlight gaps in current approaches, and

compile a comprehensive list of data features that could improve

the accuracy and applicability of our predictive model.
2.3 Data

We identified the data based on the clinical team’s input and

the relevant literature (11, 13–18). We then mapped the collected

data to the corresponding fields and tables in our EMR system

(Epic). Next, we developed an SQL query to extract the dataset

from the Clarity database. We also performed a temporal

analysis to select only the data elements that were available

before the model run (18 h after inpatient admission). The final

list of data elements included: age, marital status, sex, admission

date, admission source, problems, complaints, and MS Geometric

Mean Length of Stay (MS GMLOS).

The raw data underwent a comprehensive preprocessing

pipeline to prepare it for machine learning modeling.

Considering the negligible proportion of missing values, rows

containing any nulls were removed entirely. The categorical

feature “marital status” was transformed into a binary feature,

assigning a value of 1 to married patients and 0 otherwise. Sex

was similarly encoded using two binary features: “Is_Male” and

“Is_Female”. The admission date was utilized to create situational

binary features indicating admission on Friday, Saturday, and

Sunday (“Is_Friday”, “Is_Saturday”, “Is_Sunday”).

One-hot encoding was applied to the “admission source”

variable, generating 27 binary features corresponding to the 27

unique admission sources. “Problems” and “complaints”

underwent similar preprocessing. For each patient, all complaints

were concatenated into a single text string, which was then

cleaned by removing extra spaces and punctuation, converting to

lowercase, and tokenizing into words. Subsequently, unique

words were extracted, with each word represented by a binary

feature: 1 if present in the complaint, 0 otherwise. After

eliminating highly sparse features, 64 binary features remained
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for complaints. The same approach was applied to problems,

resulting in 727 features. In total, the preprocessing steps yielded

814 features suitable for machine learning analysis. In our

approach, we utilized the XGBoost machine learning algorithm,

which naturally learns the ranking of features during model

training. XGBoost constructs numerous decision trees, with each

tree performing splits based on the features that most effectively

reduce the overall loss (prediction errors). Features that are more

predictive are selected more frequently across the trees, leading to

highly important features contributing more significantly to the

final predictions.

This study focuses on the MS Geometric Mean Length of Stay

(MS GMLOS) as the target variable, selected for its efficacy in

streamlining discharge processes and reducing patient excess days.

Unlike the arithmetic mean, prone to skewing by outliers, GMLOS

offers a more accurate depiction of typical patient flow within a

Diagnosis-Related Group (DRG) by calculating the geometric

mean of all lengths of stay. This emphasis on central tendency

makes GMLOS valuable for identifying patients at risk of

prolonged stays and implementing targeted interventions for their

expedited discharge. To adapt MS GMLOS for use in multi-class

classification models, we categorized its continuous values into five

discrete groups: discharged within 1, 2, 3, 4 days, and those with

stays lasting 5 or more days. This transformation enables the

application of classification algorithms to predict the likelihood of

patients falling into these predefined discharge timeframes.

The dataset, following the preprocessing steps outlined above,

comprised 99,561 samples. We allocated 69,692 samples for

training the model, while the remaining 29,869 (30%) samples

were reserved for testing the model’s performance.
2.4 Model development

Using predictive modeling, this study proposes a system to

estimate the discharge date of patients. The system computes a

score for each patient based on their attributes, which reflects

their predicted discharge date. The predictive system’s complexity

can range from a simple linear or nonlinear function to a highly

sophisticated one that requires additional algorithms for

interpretation. As the complexity increases, the system becomes
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more capable of detecting intricate patterns and associations in the

data. For estimating discharge dates, there is a complex and

nonlinear association between the score and patient attributes,

which requires the application of advanced machine learning

algorithms. In particular, this study uses the Extreme Gradient

Boosting algorithm (XGBoost) (21).

XGBoost stands as a contemporary algorithm in predictive

modeling, leveraging the tree-boosting framework. This technique

combines numerous weak learners into a robust learner,

predominantly employing decision trees with constrained depth

or leaf count. Sequential training of these trees aims to rectify the

errors of preceding iterations, culminating in a final prediction

derived through a weighted aggregation of individual tree

outputs. Our study implements the XGBoost package in Python,

renowned for its scalability and efficiency in tree boosting.

XGBoost exhibits notable advantages over alternative boosting

methodologies, including regularization, parallelization

capabilities, and proficiency in handling missing data.
2.5 Model deployment

To optimize the usability of the model for clinicians, we

successfully integrated it into the clinical workflow. Our

integration efforts involved hosting the model on the Epic

Nebula, which is an Epic cloud computing platform (Epic

Systems, Verona, WI, United States). Figure 2 provides an

overview of this integration. To facilitate the integration process,
FIGURE 2

Model deployment and operationalization, adopted from (22).
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we utilized the Epic Slate Environment to configure and

thoroughly test the model artifacts. This setup ensured a smooth

and reliable transfer of data between the Chronicles database and

the cloud-based model for EDD generation. The resulting scores

were seamlessly delivered back to the system, enabling the

placement of the EDD in the patient list to be used during

clinical discussions and patient flow planning. To provide input

data for the model, we customized Epic workbench reports

specifically tailored to the discharge date prediction model. These

reports served as the means through which data was supplied to

the model. Additionally, we established a batch job that executed

the model on an hourly basis. Through our comprehensive

integration process, we successfully embedded the model within

the clinical workflow, allowing for efficient data exchange, EDD

scoring, and EDD integration with patient lists. This seamless

integration enhances the model’s accessibility and usability for

clinicians, ultimately improving patient care and outcomes.
2.6 Integration with clinical workflow

The model scores, specifically the estimated discharge date

(EDD), were transferred from the Epic Nebula cloud back to the

real-time Chronicles database. These scores were recorded in

flowsheet rows and seamlessly integrated into the

interdisciplinary round (IDR) lists as a distinct column labeled

“Model EDD”, positioned alongside the clinical EDD column

populated by clinicians. The Model EDD was generated once the
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data threshold was met, defined as the patient being an inpatient

for 18 h or more. The Model EDD is generated once per patient

when their stay exceeds 18 h. However, the current model

configuration does not update the EDD thereafter.
3 Results and discussion

In this section, we will delineate the results and findings of

our research. Initially, we will evaluate the model following its

development. Subsequently, we will present the results of post-

deployment performance. Lastly, we will highlight the

operational outcomes that have emerged from the model’s

practical implementation.
TABLE 1 Evaluation metrics.

Metric Formula
Recall Recall ¼ tp

tpþ fn
Recall is the ratio of true positives (tp) to the sum of true positives (tp)
and false negatives ( fn). It measures how well the model identifies all
actual positive instances.

Precision Precision ¼ tp
tpþ fp

Precision is the ratio of true positives (tp) to the sum of true positives
(tp) and false positives ( fp). It measures how many of the positive
predictions made by the model are actually correct.

F1-Score F1-Score ¼ 2� Precision�Recall
PrecisionþRecall

FIGURE 3

Model pre-deployment evaluation: F1-score.
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3.1 Model evaluation

In this study, we tackled a multi-class classification problem

(five classes) to predict the estimated discharge date. The model

was evaluated on the hold-out testing dataset comprising 29,869

samples. We assessed the model’s performance using the

F1-score metric (see Table 1). All evaluations were compared

against two baseline predictions:

• Predicting a discharge date of three days (patient is discharged

in 3 days from admission) for each patient, which represents

the legacy process for estimating discharge dates before

deploying the predictive model.

• Randomly assigning a class to a patient, where each class

(representing the estimated discharge date) is assigned with an

equal likelihood of one-fifth.

The F1-score is a widely recognized metric for evaluating

classification models, representing the harmonic mean of

precision and recall. Precision, also referred to as the positive

predictive value, denotes the proportion of true positives among

all positive predictions. Recall, or sensitivity, assesses the model’s

ability to accurately identify positive classes. Together, these

metrics offer a comprehensive evaluation of the model’s

predictive performance. Figure 3 compares the baseline F1 scores

to those of the predictive model.

The 3-day baseline F1-score is 17.57%, signifying a very low

score with minimal utility for solving the classification problem.

The random label assignment method achieved an F1-score of
frontiersin.org
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18.41%. In contrast, the predictive model attained an F1-score of

53.25%, demonstrating significant improvement compared to the

baseline scores, particularly with a 35.68% gain over the current

estimation process (estimating three days for all patients). This

improvement can prove instrumental in optimizing patient flow

and reducing excess days, as will be discussed later.

Several factors may have influenced the observed model F1

score. First, the dataset was limited to a few demographic details,

problem lists, admission sources, and complaints. Expanding the

dataset to include additional variables like vital signs, laboratory

data, and medications could improve model performance.

Second, the data collection window is restricted to 18 h post-

admission to facilitate early prediction, which may exclude

nuanced clinical data emerging later during the patient’s hospital

journey. It is argued that dynamically incorporating more clinical

data elements and generating model scores more frequently

during the patient’s stay would likely improve evaluation scores

as the patient’s discharge time approaches. Moreover, predicting

the discharge date is a multifaceted issue that extends beyond

clinical factors alone. Workflow processes, clinical team

decisions, transportation, and other considerations also influence

discharge date determination. Collecting data on these aspects

can be challenging. Hence, further investigations are

recommended to explore the issue from these perspectives.
3.2 Post-deployment performance

In this study, we assess the post-deployment performance of

the model with respect to addressing the original goal of

reducing excess days relative to the MS Geometric Mean Length

of Stay (MS GMLOS).

We revisit the F1 score to gauge the model’s operational

performance and measure any drift from its pre-deployment

performance. As illustrated in Figure 4A, the model’s overall F1

score is 44.24% (based on operational data collected from

January 2023 to April 2024, totaling 52,885 samples). The model

still demonstrates advantages over the previously used approach

of assigning a standardized three-day estimated inpatient length

of stay. However, a significant 9% drop in the F1 score was

observed compared to pre-deployment. The F1 score remained

relatively stable at around 44% (see Figure 4B).

The decrease in performance can be attributed to several factors.

Firstly, the operational inference data pipeline pulls data from a real-

time database, while the training data during development was

collected from a backend offline database. Although efforts were made

to align the data between the two environments, some unaccounted-

for variables may still warrant further investigation. Besides potential

data drift, other external factors, such as modifications to clinical

workflows in response to the model’s deployment, might have

influenced the results. Nevertheless, the model’s utility in operations

remains evident, as will be further discussed.

A crucial aspect of evaluating the model’s operational impact is

to assess how well it aligns with the target benchmark (MS

GMLOS) to minimize excess days. In Figure 5, we compare the

average LOS for the predictive model, MS GMLOS, initial clinical
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estimation-based LOS, and actual LOS. Data was clipped to a

range of 1–5 days to accommodate the fact that the predictive

model is a multi-class classification model, providing five possible

discharge durations: one day, two days, and so on.

The predictive model aligns closely with the MS GMLOS, with

a slight underestimation (difference of 0.12 days). In contrast, the

initial clinical estimation-based LOS significantly underestimates,

with a 1.22-day shortfall compared to MS GMLOS. Such

underestimation can disrupt the patient discharge planning

process. Conversely, the actual LOS overestimates by 0.56 days,

leading to excess days. The model’s alignment with the MS

GMLOS can potentially help reduce excess days and optimize the

patient discharge planning process.

The operational utility of the model can also be assessed based

on the number of predictions that are less than or equal to the MS

GMLOS, exceed it by one day, or exceed it by two or more days

(refer to Table 2). In 75.14% of cases, the model predicted an

LOS that was less than or equal to the GMLOS, prompting the

clinical team to initiate proactive discharge planning and

potentially reducing excess days. This highlights the model’s

effectiveness in aligning with the desired discharge benchmark.

By closely predicting the GMLOS, the model aids healthcare

providers in managing patient flow more efficiently and helps in

timely discharge planning. The model’s ability to predict LOS

within the benchmark range supports the goal of reducing excess

hospital days and optimizing resource utilization, which is crucial

in improving hospital efficiency and patient outcomes.
3.3 Operational outcomes

In this analysis, we compare the excess days recorded in 2022

with those in 2023, during which the model was actively in

operation. As illustrated in Figure 6, there was a substantial

reduction of 13,883 days (18.96%) in excess days between 2022

and 2023. The predictive model played a significant role, along

with other accompanying technological implementations, in

reducing these excess days.

This reduction underscores the positive impact of data-driven

decision-support tools on hospital management. Such tools help

streamline discharge planning and enhance resource utilization by

providing healthcare professionals with data-driven insights. By

accurately forecasting patient length of stay, these models enable better

scheduling and utilization of hospital resources, resulting in improved

patient care and increased hospital efficiency. The reduction in excess

days not only minimizes unnecessary costs associated with prolonged

hospital stays but also enables hospitals to accommodate more

patients, effectively improving the overall healthcare delivery system.

The predictive model’s ability to integrate seamlessly into the clinical

workflow demonstrates the transformative potential of advanced

technology in addressing critical challenges in healthcare operations.
3.4 Operational and clinical implications

Accurate estimation of patient discharge date facilitates

ancillary services, such as Social Work and Outcomes
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1455446
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 4

Post-deployment F1-scores. (A) F1-scores of baseline and predictive models. (B) F1-score across months for both baseline and predictive models.
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Management, to initiate the process of insurance authorization for

necessary post-discharge services like subacute rehabilitation. This

proactive approach prevents delays in patient discharge due to

pending service authorizations and contributes to a reduction in

excess hospital days.
Frontiers in Digital Health 07
For families, the predictive model enhances the accuracy of

discharge estimations, thereby improving communication and

preparation for the patient’s transition from the hospital.

Knowing the estimated discharge date in advance allows families

to prepare adequately for the patient’s return home or transfer to
frontiersin.org
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FIGURE 5

The average length of stay (LOS) comparison. (A) Average LOS for various variables includingmodel-related LOS. (B)Difference from the referenceMSGMLOS.

TABLE 2 Proportions relative to MS GMLOS.

Criteria Proportion (%)
Less than or equal to MS GMLOS 75.14

Larger than MS GMLOS by 1 day 11.73

Larger than MS GMLOS by 2 days or more 13.13

Mahyoub et al. 10.3389/fdgth.2024.1455446
another facility, such as subacute rehabilitation. This foresight

enables Outcomes Management, nurses, and physicians to engage

in discussions about patient disposition with the family several

days before discharge, rather than on the day of discharge.

Consequently, these early conversations foster better and more

effective communication between the care team and the patient’s

family, ensuring a smoother transition and reducing stress for all

parties involved.
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3.5 Applicability to various health systems
and contexts

Our model was trained using the Virtua Health dataset, with a

focus on ensuring local generalizability. This was assessed using the

Virtua Health validation dataset, which was not seen by the model

during development or training. We anticipate that the results will

be applicable to public datasets and other health systems, provided

the underlying population is similar to that of Virtua Health. Such

similarity may stem from comparable demographics (similar

baseline characteristics) and aligned data collection methods

(data quality-based similarity). Nevertheless, the results can still

be replicated with adjustments or retraining on patient

populations that differ from Virtua Health. In conclusion, this

paper discusses a specific use case of utilizing machine learning
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FIGURE 6

MS DRG excess days.
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to predict inpatient discharge dates, and reported performance may

vary in different health settings.
4 Conclusions

This study illustrates the development and deployment of a

machine-learning model for inpatient discharge date prediction.

By leveraging XGBoost and integrating the model into the

clinical workflow through Epic EMR, the research offers a

practical and scalable approach to enhancing patient flow and

resource management in hospitals. The results demonstrate

significant improvements in reductions of excess days,

highlighting the operational benefits of the model. Despite

challenges like data drift and limitations in data scope, the

study shows how machine learning models can provide

actionable insights to improve hospital efficiency and patient

outcomes. Further research is needed to refine the model by:

(1) incorporating more clinical data and dynamic features such

as vital signs, laboratory data, and medications; (2)

investigating the inclusion of external factors such as

transportation logistics that contribute to the patient discharge

date; (3) exploring a dynamic prediction window rather than

a single prediction at a fixed time after admission;

(4) evaluating model’s long-term applicability across different

healthcare settings.
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