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Introduction: Operating room (OR) efficiency is a key factor in determining
surgical healthcare costs. To enable targeted changes for improving OR
efficiency, a comprehensive quantification of the underlying sources of
variability contributing to OR efficiency is needed. Previous literature has
focused on select stages of the OR process or on aggregate process times
influencing efficiency. This study proposes to analyze the OR process in more
fine-grained stages to better localize and quantify the impact of
important factors.
Methods: Data spanning from 2019-2023 were obtained from a surgery center
at a large academic hospital. Linear mixed models were developed to quantify
the sources of variability in the OR process. The primary factors analyzed in
this study included the primary surgeon, responsible anesthesia provider,
primary circulating nurse, and procedure type. The OR process was
segmented into eight stages that quantify eight process times, e.g., procedure
duration and procedure start time delay. Model selection was performed to
identify the key factors in each stage and to quantify variability.
Results: Procedure type accounted for the most variability in three process times
and for 44.2% and 45.5% of variability, respectively, in procedure duration and
OR time (defined as the total time the patient spent in the OR). Primary
surgeon, however, accounted for the most variability in five of the eight
process times and accounted for as much as 21.1% of variability. The primary
circulating nurse was also found to be significant for all eight process times.
Discussion: The key findings of this study include the following. (1) It is crucial to
segment the OR process into smaller, more homogeneous stages to more
accurately assess the underlying sources of variability. (2) Variability in the
aggregate quantity of OR time appears to mostly reflect the variability in
procedure duration, which is a subinterval of OR time. (3) Primary surgeon has
a larger effect on OR efficiency than previously reported in the literature and
is an important factor throughout the entire OR process. (4) Primary
circulating nurse is significant for all stages of the OR process, albeit their
effect is small.
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1 Introduction

Improving operating room (OR) efficiency is a key factor in

controlling or reducing surgical healthcare costs (1), which are

significant. Aggregate surgical healthcare expenditures comprised

29% of aggregate healthcare expenditures in the United States in

2005, as computed by Muñoz et al. (2). Moreover, aggregate

surgical expenditures were forecasted to grow from 4.6% of US

GDP in 2005 to 7.3% of US GDP in 2025 (2). In a more recent

study by Childers and Maggard-Gibbons (3), the mean cost of

ambulatory OR time across California hospitals in fiscal year

2014 was $36.14 per minute with a standard deviation of $19.53

per minute. Cerfolio et al. (4) report a significantly higher cost of

$150 per minute of OR time in the main campus ORs at

New York University Langone Health. Even with financial

considerations aside, improving OR efficiency will likely improve

patient safety, experience, and outcomes, decrease patient wait

time, increase OR throughput, and improve surgical team and

staff satisfaction (5, 6).

Improving OR efficiency is a multifaceted problem, and several

metrics have been investigated by researchers.1 A common approach

to improving efficiency is to improve the utilization of the OR, that

is, by minimizing both underutilization and overutilization (9, 10).

Underutilization occurs when an OR lies unused due to cases

being completed earlier than predicted, and overutilization occurs

when an OR is used beyond its predicted or allotted time (5).

Such inefficiencies are caused in large part by variability in OR

time (11, 12), typically defined as the duration of time from when

the patient is wheeled into the OR to the time the patient is

wheeled out. Indeed, studies by Bokshan et al. (13) and Allen

et al. (14) have shown OR time to be a significant driver of

increased surgical costs. To reduce inefficiencies and associated

costs, researchers have sought to identify the sources of variability

in OR time. The primary conclusion in the literature is that

procedure characteristics, namely, precise procedure type and type

of anesthesia, are the main factors explaining the variation in OR

time, followed by surgical team characteristics, primarily the

surgeon (11, 12, 15, 16). Other factors such as patient

characteristics (e.g., BMI) or other surgical team factors, such as

the anesthesiologist, are generally found to be insignificant.

OR time, however, is an aggregate quantity that encompasses

several stages of the OR process, and it does not span the entire

OR process (Figure 1). As such, it has the following potential

downsides. First, OR time does not include all stages of the OR

process. In this study’s dataset, which consists of timestamps

taken from a surgery center located in a large academic hospital,

OR time does not include room setup duration or room cleanup

duration, nor any delays in starting the next case or beginning

anesthesia induction. In addition, the dataset shows that

anesthesia induction begins, on average, approximately two
1For comprehensive reviews, refer to Lee et al. (7) and Dexter and Epstein (8).
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minutes before the patient is wheeled into the OR (i.e., two minutes

before OR time begins). Thus, analyzing OR time alone will not

allow for ascertaining the sources of variability in all stages of the

OR process, and it may also contain some inaccuracies due to

the starting and ending points of OR time not lining up with the

activities in the OR process. Second, OR time itself covers several

different stages of the OR process, including anesthesia induction,

procedure duration, and delays in the procedure start time and in

the time the patient is wheeled out after the procedure is

completed. It is reasonable to hypothesize that the above four stages

do not have the same sources of variability, or that shared sources

of variability do not account for the same proportion of variability

across all stages of the OR process. Therefore, this study’s approach

is to segment the OR process into more fine-grained, homogeneous

stages and assess the sources of variability within each stage.

Past studies have focused on other parts of the OR process

besides OR time and the more fine-grained stages that comprise

OR time, including surgical procedure duration, anesthesia-related

times, start time delays, and turnover time (refer to Section 2.1).

However, an effort to quantify the sources of variability across all

fine-grained stages of the OR process is currently lacking. Based

on timing markers obtained from a surgery center located in a

large academic hospital, this paper quantifies the sources of

variability in several OR process stages, including first case start

time delay, setup duration, anesthesia induction time, procedure

start time delay, procedure duration, wheels out delay, cleanup

duration, and OR time (refer to Section 3.1). The focus of this

paper is on quantifying the extent to which type of procedure and

members of the surgical team - primary surgeon, responsible

anesthesia provider, and primary circulating nurse - and their

interactions explain the variation in the fine-grained stages of the

OR process. By better understanding the influence of various

important factors, stakeholders and researchers can better pinpoint

where interventions to improve efficiency should be targeted.

The rest of this paper is organized as follows. Section 2

provides a literature review on previous approaches to assess or

improve efficiency within different stages of the OR process.

Section 3 describes the dataset, process times, statistical

approach, and model selection. Section 4 describe the results of

the statistical analysis, primarily providing a decomposition of

variability for each process time. Section 5 discusses the primary

findings of this study and comments on this study’s limitations

and opportunities for future work. Section 6 provides concluding

remarks. Additional tables and figures generated in this study are

available in the Supplementary Material.
2 Research background

2.1 Related work in determining the factors
driving the stages of the OR process

Numerous studies have investigated the various factors

purported to cause or explain the variation in the OR process.

Such work is motivated by the idea that, for OR efficiency to be

improved, relevant stakeholders must first be informed about the
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FIGURE 1

Visual depiction of the OR process, including timestamps and the span of time each OR process time covers. Formulas for each process time are given
in Table 1.

2ACT is defined in Dexter et al. (22) as the sum of the time from when the

patient enters the OR to when the positioning or skin preparation begins,

plus the time from when the surgical dressing is completed to when the

patient is wheeled out of the OR.
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primary factors driving OR inefficiencies. In addition, identifying

the primary factors will allow for better predictive modeling,

which in turn will allow for more accurate OR case scheduling to

reduce OR underutilization and overutilization.

Variability in OR time (i.e., “wheels in” to “wheels out” time) is

cited as a primary cause of inefficient OR utilization (11, 12). When

a case lasts longer than planned, subsequent cases will either be

delayed, potentially leading to OR overutilization, or cancelled,

resulting in less OR revenue, patient dissatisfaction, and reduced

quotas for surgical teams. When a case lasts shorter than

expected, the OR will likely lie underutilized for some period of

time, wasting resources. Exploring the factors that explain the

variability in OR time, Dexter et al. (15) verified earlier findings,

e.g., in Strum et al. (16), that reported the importance of three

factors: precise procedure information, surgical team, and

anesthetic type in predicting OR time. Eijkemans et al. (11) later

identified additional factors, including the surgeon’s estimate

of total surgical time, operation characteristics (e.g., number of

separate procedures), and team characteristics (e.g., number of

surgeons). van Eijk et al. (12) found that type of procedure is the

overwhelming predictor of OR time variability, with surgeon

having a small but significant effect and anesthesiologist having a

negligible effect. Many studies show that patient characteristics

(e.g., body mass index) have little effect (11, 12).

Some studies have investigated the sources of variability in

other parts of the OR process and in more fine-grained stages.

The most commonly examined stage is the (surgical) procedure

duration, which is typically the longest stage that comprises OR

time. For instance, Strum et al. (16) found the surgeon to be the

most important source of variability in procedure duration,

followed by anesthesia type. Patoir et al. (17) found surgeon

characteristics, center location, and surgical procedure and

patient characteristics accounted for much of the variation in
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procedure duration. Additional factors were explored in the

literature, such as surgeon factors (e.g, team composition factors,

such as the presence of residents) (18), factors that increase the

expected duration (e.g., communication failures) by Gillespie

et al. (19), and operational (e.g., OR assignment) and temporal

(e.g., whether a case was started after 5:00PM) factors by Kayis

et al. (9). However, many of the studies focusing on procedure

duration, e.g., Strum et al. (16), Stepaniak et al. (18), and Kayis

et al. (9), perform statistical analyses separately for each surgical

speciality or coarse-grained category rather than considering

holistically how the specific procedure type, as indicated by a

fine-grained category such as the American Medical Association’s

Current Procedure Terminology codes (refer to Section 3.2),

accounts for the variation in procedure duration.

Other parts of the OR process explored in the literature are

anesthesia-related times. For instance, Kougias et al. (20) found

in their multivariate regression analysis that procedure type,

anesthesia type, and BMI were statistically significant predictors

of anesthesia induction time, while procedure type, anesthesia

type, and operative case length were statistically significant

predictors of anesthesia recovery time. van Veen-Berkx et al. (21)

found that scheduling accuracy improved when looking at

anesthesia-controlled time (ACT) as a proportion of total

procedure time.2 Few studies, however, have examined the
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impact of various human factors involved in the OR process on

anesthesia-related times, including anesthesiologists.

Other fine-grained stages of the OR process that have been

explored include start time delays, such as procedure start time

delay, (any) case start time delay, and first case start time delay.

Does et al. (23) employed Six Sigma techniques (24) to identify

poor planning and scheduling as the primary factor causing

delays in the start times of surgical procedures. The authors

noted that surgical specialty and anesthesia technique also

influence start time delays. A review by Halim et al. (25)

identified several factors that can improve start time, including

financial incentives for staff, education strategies, perioperative

protocols and systems, surgical team communication, the “golden

patient” initiative,3 and the “productive operating theatre”

scheme4 A more specific approach is to look only at delays in

the first case of the day, with the justification being to mitigate

the cascading effect a delay in the first case has on subsequent

cases in the OR. Cox Bauer et al. (27) analyzed data across three

high-volume urban hospitals and found that, for cases with a

documented reason for delay, the physician was the most

reported reason for delay at 52%, followed in descending order

by anesthesia, patient, staff, other sources, and facility. The

authors did perform a regression analysis finding patient age,

occurrence of late arrival, department, and facility to be

significant predictors of delay. However, neither approach gives a

quantification of the overall impact of a predictor on first case

start time delay. Other similar work has looked at more

specific events such as delays in the start of a subsequent

case when the preceding case was performed by a different

surgeon (28) and remaining time to exit the OR after surgical

closure begins (29).

An additional stage of the OR process explored in the literature

is turnover time, which is the duration of time from when a patient

is wheeled out until the next patient is wheeled in. Thus, turnover

time is all the remaining time in the OR process not covered by OR

time (Figure 1). Bhatt et al. (30) took a systems-level approach to

improve turnover time, which focused on developing a consistent

“room ready” designation to reduce variability, implementing

parallel processing to ensure room readiness and patient

readiness occur simultaneously, and improving perioperative

communication. Cerfolio et al. (4) piloted a Performance

Improvement Team, called “PIT Crew,” that performed lean

processing and value mapping to improve efficiency in the

turnover time period. Goldhaber et al. (31) reduced turnover

times significantly by collecting more granular data within the

turnover time period and displaying these data to teams for

regular review and accountability. The turnover time period was
3The “golden patient” initiative is a strategy where the first patient on the

operating list is medically fit, thoroughly investigated, and has a clear

surgical plan (25).
4The “productive operating theatre” scheme is a three-step intervention to

increase OR efficiency (25, 26).
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further divided into the followings segments: wheels out time !
cleanup start time ! cleanup complete time ! setup start time

! time room is ready for patient ! wheels in time. Few studies,

however, have taken the approach of quantifying the factors that

explain variation in turnover time or the stages that comprise the

turnover time period.
2.2 State-of-the-practice methodologies
for determining important factors

There are several approaches in the related literature that seek

to identify the important factors accounting for the variation in the

OR process. Primary methods found in the literature include

performing basic statistical analysis, fitting known probability

distributions to OR process times, utilizing regression approaches

for inference or prediction, utilizing systems-level approaches for

improving process efficiency, and, more recently, training

machine learning models for prediction.

Traditional statistical analysis, such as descriptive statistics and

hypothesis testing methods, is a fundamental approach to gaining

insights from gathered datasets. Such analysis dates back many

decades but is still utilized today, particularly with healthcare

data, as it provides insights and an overview of process efficiency.

Dexter et al. (22) used two-group, one-sided t-tests to determine

if eliminating ACT would allow for additional cases to be

completed during a typical 8-h workday. Martin and Langell (32)

used Cuzick’s test for trend to evaluate whether pre-OR timeouts

and performance pay improved on-time starts, OR utilization,

and OR costs. Simmons et al. (33) was interested in determining

if fine-grained CPT codes, compared to coarser-grained surgical

specialties, would improve accuracy in surgical scheduling. They

utilized the I2 statistic and Levine’s test to assess heterogeneity in

the means and variances, respectively, of ACTs and surgical-

controlled times (SCTs).5 While traditional methods of statistical

analysis can provide interpretable and meaningful summaries of

data to answer questions of interest, such as determining whether

differences in groups are significant following an intervention,

further quantification capabilities are needed to assess the impact

of factors on OR efficiency.

An early line of research involved finding distributions with a

good fit to OR process time data. A main contributing paper in

this approach is that of Strum et al. (34) in which the authors

recommended using the lognormal distribution to model surgical

procedure times. Stepaniak et al. (35) mostly corroborated the

findings of Strum et al. (34), but Kayis et al. (9) found the

lognormal distribution did not generally fit surgery duration well

at the procedure level. Joustra et al. (36) more comprehensively

fit a number of hazard models. However, as mentioned in

Joustra et al. (36), such methods are less concerned with
5Surgical-controlled time is defined as the duration of time from surgical

incision to surgical closure.
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6Further description of the dataset in terms of procedural categories and the

range of CPT codes used are provided in Supplementary Table S1.
7Initially, the process times of anesthesia start time delay, computed as

anesthesia start minus wheels in, and next case start time delay, computed

as setup start (of next case) minus cleanup end (of previous case), were

included in this study. However, after data cleaning, there were too little

data to build LMMs with the desired factors; thus these process times were

excluded from the analysis.
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identifying the factors contributing to OR efficiency and more

concerned with prediction.

Regression models, on the other hand, do allow for evaluating

sources of variability in OR process times. Strum et al. (16)

employed main-effects ANOVA modeling with the logarithm of

surgical time and total procedure time as separate responses and

found primary surgeon and type of anesthesia to be important

predictors of variability. Does et al. (23) and Stepaniak et al. (18)

also utilized ANOVA models to assess the importance of select

factors on start time delays and surgical procedure times.

Regression modeling is similarly used to identify factors that

influence OR process times. Linear regression is especially

utilized for this purpose, such as in Silber et al. (37), Ying Li and

Huang (38), Gillespie et al. (19), and van Veen-Berkx et al. (21).

Linear regression models also have added functionalities over

ANOVA models, such as regularization techniques to avoid

overfitting or to perform variable selection, e.g., LASSO used in

Wang et al. (39), and incorporating nonlinear terms such as in

Wang et al. (40).

The literature above utilizing linear regression methods tends

to treat all factors as fixed effects. However, in a fixed effects

setting, when certain units, e.g., surgeons, have few observations,

parameter estimates may have high sample-to-sample variability.

Thus, the parameter estimates may vary substantially from

dataset to dataset, implying that the model built on a given

dataset may not be reliable (41). In addition, fixed effects models

require dummy variables to be created for each unit (e.g., each

surgeon), and a coefficient must be estimated for each unit. If a

factor contains many units (this study’s dataset contains over one

hundred surgeons), then estimating a large number of

coefficients reduces the model’s degrees of freedom, diminishes

the model’s power, and increases the standard errors of the

coefficient estimates (41). Furthermore, the present study is not

concerned with estimating the effects of individual surgeons,

anesthesiologists, etc., but rather the effect of these groups as a

whole. For such reasons, previous papers in assessing the effects

of different factors on OR process times have employed linear

mixed model (LMM) approaches, which incorporate both fixed

and random effects, with great success, e.g., Dexter and Ledolter

(42), Eijkemans et al. (11), van Eijk et al. (12). This paper also

takes an LMM approach for the above reasons.

More recently, machine learning (ML) has become a popular

method for predicting quantities in the OR process. Master et al.

(43) found that regression tree methods, such as gradient boosted

regression trees, outperformed historical averaging, surgeon

expert predictions, and other ML methods in the literature when

predicting pediatric surgical durations. ML methods combined

with surgeon predictions were also among the top-performing

methods in Master et al. (43). Other research has used ML to

improve predictions of OR process times (44–48). While ML

methods may improve prediction, Wang and Dexter (49) notes

that implementing ML software to increase prediction accuracy

will not increase productivity unless accompanied by more

allotted case time in a typical workday. More importantly, the

objective of this paper is to quantify the impact that various

human factors have on OR efficiency. LMMs allow for
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quantifying the proportion of variance explained in a response

by each factor of interest. ML methods do have some options for

determining similar values of impact, including variable

importance in classification and regression trees (CART) (45)

and Shapley additive explanations (SHAP) values (46). However,

variable importance metrics may not correlate well with model

variance explained by features (50), particularly when the model

overfits the data on which it’s trained, which is a common issue

with CART methods (43). The variable importance values are

also typically reported in a relative fashion (to other variables)

and thus do not provide an absolute assessment of the impact a

factor has on a response. SHAP values may provide a better

alternative in these regards, however they are not as well-

established as linear regression-based metrics and may have

issues as feature importance metrics (51).
3 Materials and methods

3.1 Dataset and subjects

Data spanning from January 2, 2019 to June 30, 2023 were

obtained from a surgery center in the University of Miami

Hospital. The surgery center incorporates six operating rooms

and a dedicated preoperative area and postoperative recovery

unit. The dataset originally contained 12,375 cases, before data

cleaning was performed (detailed below). The dataset included

the following timestamps: setup start time, anesthesia start time,

wheels in time (i.e., when the patient enters the OR), anesthesia

ready time, procedure start time, procedure complete time,

wheels out time (i.e., when the patient exits the OR), and

cleanup end time.6

This study examined various critical stages of the OR process

rather than focusing solely on one stage or on aggregate process

times encompassing several stages. The OR process times

explored in this study included first case start time delay, setup

duration, anesthesia induction time, procedure start time delay,

procedure duration, wheels out delay, and cleanup duration.7

Each OR process time was defined as the elapsed time between

two timestamps as described in Table 1. Figure 1 depicts the

timestamps and process times.

There is a strong focus in previous literature on the aggregate

quantity, OR time, defined as the elapsed time between when

the patient is wheeled into the OR to when the patient is
frontiersin.org
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TABLE 1 Formulas for calculating each OR process time and number of
cases after individual data cleaning for each process time.

Process time Formula Nbr. of
cases

First case start time delay Wheels in – 7:30/8:30 AM* 3,543

Setup duration Wheels in – setup start 4,681

Anesthesia induction
time

Anesthesia ready – anesthesia start 5,480

Procedure start time
delay

Procedure start – anesthesia ready 11,357

Procedure duration Procedure complete – procedure
start

11,501

Wheels out delay Wheels out – procedure complete 11,326

Cleanup duration Cleanup end – wheels out 4,800

OR time Wheels out - wheels in 11,467

*7:30 AM is the day’s start time for Monday, Tuesday, Wednesday, and Friday, and 8:30 AM

is the start time for Thursday.
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wheeled out. It is hypothesized that the factors driving an aggregate

quantity such as OR time, which covers various stages of the OR

process (Figure 1), would not necessarily be identical across all

stages comprising OR time, nor that shared sources of variability

in OR time would explain the same proportion of variation in

each stage comprising OR time. To evaluate these hypotheses,

OR time was also included as a process time for comparison to

the other seven process times.

This study’s statistical analysis (refer to Section 3.2) involved

building separate regression models using each OR process time

as a univariate response for a total of eight models. The subset of

cases containing errors corresponding to one process time were

not necessarily the same as the subset of cases containing errors

for a different process time. Then, because separate models were

developed for each process time, the choice was made to clean

the data separately for each process time, maximizing the

amount of data available for each model. Data cleaning involved

removing any cases with missing data, outliers, or errors. In

addition, any process time labeled as a “delay” only included

delay times that were positive. For instance, if the first case

started on or before the day’s start time, e.g., 7:30 AM, then this

case was removed as there was no “delay” in the commencement

of the first case. After removal of such cases for first case start

time delay, the number of cases available for fitting the statistical

model was 3,543 cases (Table 1). If instead the choice was made

to remove the same subset of cases for all process times, then

while each of the eight models would have a common pool of

data, the data size would be significantly reduced and the results

would not be as robust. The number of cases available after data

cleaning for each process time is provided in Table 1.

All the OR process times exhibited right skewness. For instance,

Figures 2(a,b) shows the original distributions of first case start time

delay and procedure duration, where the right skewness is evident.8
8Supplementary Figures S1–S6 show the corresponding histograms for all

other process times.
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To address this, a common approach in the relevant literature is to

use a logarithm transformation. Eijkemans et al. (11) and van Eijk

et al. (12) used the log transformation on OR time, and Strum

et al. (34) and Stepaniak et al. (35) showed that OR time and

procedure duration follow lognormal distributions, implying that

log-transforming these process times will approximately yield a

normal distribution more appropriate for linear regression

modeling methods. Does et al. (23) were concerned with reducing

start time delays of procedures, and to address right skewness they

opted for a more thorough Box-Cox transformation. However, the

optimal choice for the parameter l in the Box-Cox tranformation

was found to be zero in Does et al. (23), which is simply the log

transformation. This study investigated several transformations,

including log, square root, Box-Cox, and more. For many of the

process times, the log transformation was not “optimal” in the

sense of producing a distribution that most closely fits a normal

distribution relative to all other transformations, however it was

near-optimal for all process times. Moreover, given that the

previous literature concluded the log transformation is appropriate

for several OR process times and that the log transformation has

better interpretability (in contrast to, e.g., the Box-Cox

transformation), the logarithm was used to transform all process

times in this study.
3.2 Statistical analyses

The primary objective of this study was to quantify the extent

to which the variability observed in each OR process time could be

attributed to four key factors: type of procedure, primary surgeon,

responsible anesthesia provider, and primary circulating nurse.

These factors will henceforth be referred to as “procedure,”

“surgeon,” “anesthesiologist,” and “circulator,” respectively. Such

analyses can provide a more precise account and quantification

of the impact each factor has on each fine-grained stage of the

OR process.

To quantify sources of variability in the OR process times, a

linear mixed model (LMM) approach was used. An LMM was

built separately for each of the eight process times, so that the

sources of variability for each stage of the OR process could be

assessed and quantified. The primary factors of interest, i.e.,

procedure, surgeon, anesthesiologist, and circulator were treated

as random effects. Table 2 shows the number of levels of each

factor that occurs in each process time’s corresponding dataset

(after data cleaning).

The four primary factors were treated as random effects for

multiple reasons. First, treating a factor as a random effect allows

for estimating the factor’s variance and proportion of variance

explained in the response (i.e., process time). Second, Table 2

shows that each of the four primary factors has many levels, and

treating each as a fixed effect would require estimating tens to

hundreds of coefficients, reducing the degrees of freedom in the

model. This study is also not concerned with, e.g., a particular

surgeon’s effect, but rather the impact of the group of surgeons as

a whole. Third, the procedures, surgeons, anesthesiologists, and

circulators included in the dataset do not necessarily encompass
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FIGURE 2

Histograms for (a) first cast start time delay and (b) procedure duration before transformation and (c) first case start time delay and (d) procedure
duration after a log transformation.

TABLE 2 Number of levels of each random effect in the cleaned dataset for each OR process time.

OR process time Random effect

Procedure Surgeon Anesthesiologist Circulator
First case start time delay 439 106 78 112

Setup duration 568 106 76 114

Anesthesia induction time 633 118 77 117

Procedure start time delay 820 131 82 130

Procedure duration 827 132 82 131

Wheels out delay 818 131 82 130

Cleanup duration 519 107 79 121

OR time 823 132 82 131

Meyers et al. 10.3389/fdgth.2024.1455477
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TABLE 3 Description of fixed effects used in the LMMs.

Factor Levels Description
Number of
procedures

0, 1,…, 31 Number of procedures performed
in a surgical case.

Number of
panels

1, 2,…, 5 Number of panels in a surgical case,
where a “panel” is defined as a
grouping of surgical procedures
performed together.

Procedure
level

None, I, II, III, IV Indicates surgical complexity of
case.

Cancer/
noncancer

Cancer, noncancer Indicates whether procedures were
cancer-related or not.

Position Assistant, associate,
professor

Position of primary surgeon in
academic hospital.

Patient class Emergency, hospital
ambulatory surgery,
inpatient, surgery admit

Admission status of patient.
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the entire populations of these factors. Thus, treating the factors as

random effects allowed for accomplishing this study’s research

objective and was an appropriate choice given the dataset. Note

that only random intercepts were used in the LMMs.

Procedure was categorized based on the American Medical

Association’s Current Procedure Terminology (CPT) codes (52).

Several past studies have identified the importance of

categorizing procedures with high granularity, e.g., with CPT

codes, rather than with low granularity, e.g., with surgical

specialities such as neurosurgery, gynecology, etc. (33, 34, 38). In

particular, a recent study by Simmons et al. (33) examined over

30,000 surgical cases in an academic hospital and found that

both the mean and variance of ACT and SCT varied significantly

between CPT codes within specialities. Their results suggest that

the use of more granular categories, specifically CPT codes, will

enhance the accuracy of subsequent analysis and scheduling.

Accordingly, this study used the primary CPT code for each case

as the procedure type.

Other factors were available in the University of Miami

Hospital’s database that could influence the process times.

Domain expertise of this study’s authors was used to select the

factors believed to impact OR process efficiency. Six factors were

included; they are shown in Table 3. “Position,” for instance, was

included as a proxy measure of the seniority and expertise of the

primary surgeon. More experienced and senior surgeons were

expected to be more efficient and consequently have a positive

impact on OR efficiency. The six factors were treated as fixed

effects for the following reasons. First, the factors were of less

interest in this study and were expected to only marginally

improve the model. The objective of this study was to quantify

the sources of variability in the process times, focusing on

procedure, surgeon, anesthesiologist, and circulator. Second,

every factor had no more than five levels, with the exception of

the number of procedures, which had thirty-two possible levels.9

Third, the levels of the factors were exhaustive of the population,

whereas the levels of the random effects were only a subset of

their respective populations.

As stated previously, LMMs were separately built for each of

the eight process times.10 Before model selection was performed,

a univariate analysis of each random effect was conducted to

quantify the improvement in each model by the addition of a

single random effect. Two base models were used - one

consisting of a fixed intercept and the other a fixed intercept plus

all six fixed effects. To each base model, a single random effect

was added and the adjusted intraclass correlation coefficient

(ICC) was calculated for each random effect, given by

ICC(adj) ¼
s2
a

s2
a þ s2

e

, (1)
9However, most cases involved only a few procedures.
10All LMMs were fitted using the lmer function from the R package lme4 (53).

A reference on this package is provided by Bates et al. (53).
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where s2
a refers to the variance of the random effect. ICC(adj) may

be interpreted as the proportion of variance explained in the

logarithm of the process time by the random effect, after

controlling for the fixed effects.

After univariate analysis, multivariate analysis was performed

to assess the impact of each random effect (in the presence of

other significant random effects) on the process time and to

control for fixed effects. Model selection proceeded as follows.11

First, a base model was developed, given by

yi ¼ b0 þ Xibþ a j[i] þ ei,
a j � N(0, s2

a),
ei � N(0, s2

e),
(2)

where i ¼ 1, . . . , n and j ¼ 1, . . . , J are the indices of the

observations and procedure levels, respectively, yi represents the

ith observation of the logarithm of the respective process time,

b0 is the fixed intercept, b is the vector of fixed slopes, Xi is the

vector of the ith observations of all variables associated with the

fixed effects (Table 3),12 a j[i] is a random intercept for

procedure, j[i] denotes to which procedure the ith observation

belongs, ei is the error term, and s2
a and s2

e are the variances of

the random effect and error, respectively.

Second, note that the base model in Equation 2 only includes a

random intercept for procedure. Procedure was previously found in

multiple studies to be the primary source of variability in various

OR process times (11, 12, 16, 35). Thus, with procedure

ostensibly explaining much of the variation in the process times,

it was reasonable to begin the base model with only procedure as

a random intercept. Each additional random effect was

subsequently and cumulatively added to determine if the
11A similar model selection procedure to that of van Eijk et al. (12) was used in

this study.
12Because all fixed effects were categorical with many levels, several dummy

variables were created which would be included in the vector Xi .
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additional random effect should be retained in the final model. A

chi-squared test was used to determine the significance13 of a

model with one additional random effect compared to the

(previous) model without the random effect. Akaike information

criterion (AIC) was also reported as it penalizes the addition of

more terms to the LMM. However, the chi-squared test was

solely used for determining which random effects to keep, since

AIC is more appropriate for prediction which is not the objective

of this study.

Third, fixed effects were individually examined to determine

whether each should be retained in the final model for each

process time. For a given process time, a new base model was

formed by adding all significant random effects found in step

two above to Equation 2. Each of the six fixed effects were

individually removed from the new base model, while retaining

all other fixed effects, and chi-squared tests were performed and

AIC values were computed. If the new base model (containing

all fixed effects and significant random effects from step two

above) was found significant over the new base model without

the individual fixed effect (according to the chi-squared test),

then the fixed effect was retained for the final model.

Fourth, the final model for a given process time was formed by

adding all significant random effects from step two above and

removing all fixed effects according to the procedure described in

step three above. To assess the impact of each random effect

retained in the final model, ICC(adj) in Equation 1 was

calculated for each random effect. In addition, model ICC values

were calculated to give the overall proportion of variance

explained in the logarithm of the process time by all random

effects. Both unadjusted and adjusted model ICC values were

reported. The unadjusted model ICC, denoted ICCLMM, and

adjusted model ICC, denoted ICCLMM(adj), are given by

ICCLMM ¼ s2
r

s2
r þ s2

f þ s2
e

and

ICCLMM(adj) ¼
s2
r

s2
r þ s2

e

,

(3)

where s2
r and s2

f are the variances explained by all random and

fixed effects, respectively.
14Skewness of the process times is further supported by the histograms

displayed in Figure 2 and Supplementary Figures S1–S6.
15For cleanup duration (Supplementary Table S7), surgeon is only higher than
4 Results

Figure 3 shows a summary of the data, after cleaning, for each

(untransformed) process time and random effect. To calculate the

values of a given box plot, the times of the corresponding process

time (e.g., procedure duration) were grouped according to the

levels of the corresponding random effect (e.g., surgeon) and

the median was taken for each level. For all process times, the
13The standard 0.05 level of significance was used.
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random effect of procedure displays the highest dispersion

through larger interquartile ranges and wider outliers (dots). As

seen in Table 2, procedure also has significantly more levels than

any other random effect. However, this alone does not explain

the higher dispersion observed in procedure. Rather, it is likely

that procedure is an important factor, which also agrees with

much of the literature concluding that procedure is the primary

source of variability in various OR process times (11, 12, 16, 35).

Figure 3 also shows that all process times are right-skewed, as

indicated by the median line being closer to the first quartile

(bottom of box) and the upper tails and outliers extending far

upwards, particularly in the box plots corresponding to the

random effect of procedure. Some process times only show mild

skewness, such as cleanup duration.14

Table 4 and Supplementary Tables S2–S8 provide an

assessment of the individual impact of each random effect, with

and without fixed effects. In Table 4 and Supplementary Tables

S2–S8, ICC(adj) shows a small reduction when fixed effects are

included; thus, the fixed effects included in this study do not

explain much variation in the logarithms of the process times. Of

all main random effects, procedure shows the largest ICC(adj) for

most of the process times. This observation is supported by

Figure 3 in that the box plots associated with procedure show

the largest variation. Exceptions include first case start time delay

(Supplementary Table S2) and cleanup duration (Supplementary

Table S7) in which surgeon shows the largest ICC(adj).
15 In other

cases, surgeon is not far behind procedure in terms of ICC(adj),

including setup duration (Supplementary Table S3), anesthesia

induction time (Supplementary Table S4), procedure start time

delay (Supplementary Table S5), and wheels out delay

(Supplementary Table S6). Procedure duration (Table 4) and OR

time (Supplementary Table S8) are the process times where

procedure explains moderately more variation than surgeon.16

While the fact that procedure and surgeon accounting for the

most variability could in part be due to both factors having

many levels, circulator also shows approximately the same

number of levels as surgeon (Table 2), yet it typically accounted

for very little of the variability. One final observation from

Table 4 and Supplementary Tables S2–S8 is that the interaction

terms typically have higher ICC(adj) than their main effect

counterparts, but the gain is marginal.

Model selection was performed for each process time as

described in Section 3.2. The model selection process is
procedure in ICC(adj) when fixed effects are included.
16As concluded in this paper, though, the variability of OR time largely

reflects that of procedure duration; thus, procedure type has a significantly

higher impact on procedure duration than the primary surgeon, but this is

not the case for the other stages of the OR process as examined in this study.

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1455477
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 3

Box plots by random effect for each (untransformed) process time: (A) first case start time delay, (B) setup duration, (C) anesthesia induction time, (D)
procedure start time delay, (E) procedure duration, (F) wheels out delay, (G) cleanup duration, (H) OR time. The values used to generate each box plot
were the median times for each level of a given random effect and for each process time.
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TABLE 4 Univariate assessment of random effects when using procedure
duration as the response.

Random effect ICC(adj) (%),
without FE

ICC(adj) (%),
with FE

Procedure 66.9 59.8

Surgeon 39.7 34.9

Procedure � Surgeon 72.0 64.3

Anesthesiologist 6.1 1.6

Procedure �
Anesthesiologist

69.8 58.2

Surgeon �
Anesthesiologist

46.9 35.3

Circulator 12.3 6.6

Procedure � Circulator 69.0 59.1

Surgeon � Circulator 44.3 35.7

Anesthesiologist �
Circulator

22.7 12.3

Each row corresponds to an LMM with a fixed intercept and the single random effect

specified in column 1. Columns 2 and 3 give ICC(adj) values (Equation 1) for each
univariate random effect model, both excluding (column 2) and including (column 3) all

fixed effects in the LMM. ICC, intraclass correlation coefficient; FE, fixed effects.

TABLE 5 Model selection for choosing random effects in the LMM where
procedure duration is the response.

Model AIC AIC gain p-value
Base model 22516.8 – –

þ Surgeon 21955.9 560.9 <0.001

þ Procedure � Surgeon 21750.2 766.6 <0.001

þ Anesthesiologist 21685.7 831.0 <0.001

þ Procedure � Anesthesiologist 21681.0 835.7 0.010

þ Surgeon � Anesthesiologist 21669.3 847.5 <0.001

þ Circulator 21628.8 888.0 <0.001

þ Procedure � Circulator 21597.9 918.9 <0.001

þ Surgeon � Circulator 21584.8 932.0 <0.001

þ Anesthesiologist � Circulator 21578.2 938.6 0.003

The base model is given in Equation 2 and consists of a fixed intercept, all six fixed effects,

and procedure as a random intercept. Additions appearing in this table are cumulative in the
sense that each subsequent random effect was added to the model in the preceding row. AIC

gain is the improvement in AIC from adding additional random effects onto the base model

(calculated as AIC of the base model minus AIC of the larger model). AIC, Akaike

information criterion.

TABLE 6 Number of final models in which each random and fixed effect
appeared.

Random effect Frequency Fixed effect Frequency
Procedure 8 Number of

procedures
6

Surgeon 8 Number of panels 1

Anesthesiologist 7 Procedure level 4

Circulator 8 Cancer/noncancer 1

Procedure � Surgeon 5 Position 1

Procedure �
Anesthesiologist

5 Patient class 8

Procedure � Circulator 8

Surgeon �
Anesthesiologist

4

Surgeon � Circulator 4

Anesthesiologist �
Circulator

2

TABLE 7 Model selection for choosing fixed effects in the LMM where
procedure duration is the response.

Model AIC AIC loss p-value
Base model 21578.2 – –

BM � Number of procedures 22772.2 1194.1 <0.001

BM � Number of panels 21577.0 �1.2 0.362

BM � Procedure level 21665.5 87.4 <0.001

BM � Cancer/noncancer 21576.8 �1.3 0.413

BM � Position 21574.3 �3.9 0.928

BM � Patient class 21696.0 117.8 <0.001

The base model consists of a fixed intercept, all six fixed effects, and the random effects found

to be significant from Table 5. Each fixed effect was removed from the base model, and each

reduced model was compared to the base model via a chi-squared test. If the base model was

found significant compared to the reduced model, then the corresponding fixed effect was
retained. Subtractions appearing in this table are not cumulative and denote that only the

indicated fixed effect was removed from the base model and all other fixed effects were

included. AIC loss is the increase in AIC from removing a fixed effect from the base

model (calculated as AIC of the reduced model minus AIC of the base model). AIC,
Akaike information criterion; BM, base model.
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illustrated with procedure duration (Table 5).17 The p-values were

determined from performing chi-squared tests between each model

and its previous (nested) model in Table 5, and they were used to

determine whether to retain a particular random effect for the final

LMM. In the case of procedure duration (and OR time;

Supplementary Table S15), all main effects and interactions were

determined to be significant and were retained for the final

model. The gain in AIC exhibited by every random effect in

addition to procedure indicates that including each term will

likely improve prediction. The number of final models in which
17The corresponding tables for all other process times are included in the

Supplementary Tables S9–S15.
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each random effect appeared is shown in Table 6. Procedure was

by default included in every model, but surgeon, circulator, and

the interaction of procedure and circulator also appeared in every

model. Anesthesiologist appeared in all models except for that of

first case start time delay.

A new model for each process time was formed by augmenting

the base model (Equation 2) with the significant random effects

shown in Table 5 and Supplementary Tables S9–S15. Then the

individual impact of each fixed effect on the performance of the

augmented LMM was assessed (refer to Section 3.2). Table 7

shows the performance associated with the fixed effects for

procedure duration.18 Based on the p-values, the fixed effects

retained for the final model for procedure duration were the

number of procedures, procedure level, and patient class. Table 6

shows the number of final models for which each fixed effect
18Supplementary Tables S16–S22 show the performance associated with the

fixed effects for all other process times.
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was retained. Patient class was found significant for every process

time and the number of procedures was found significant for all

process times except first case start time delay (Supplementary

Table S16) and cleanup duration (Supplementary Table S21).

ICC(adj) (Equation 1) was calculated for each random effect

appearing in each final model, and model ICC values, ICCLMM
and ICCLMM(adj) (Equation 3), were also calculated for each

process time (Table 8). From Table 8, it is observed that surgeon

is the random effect with the highest ICC(adj) value for five of

the process times, including first case start time delay, setup

duration, procedure start time delay, wheels out delay, and

cleanup duration. However, the highest ICC(adj) value surgeon

obtains is 21.1% for procedure start time delay. Procedure has

the highest ICC(adj) value for all other process times, including

anesthesia induction time, procedure duration, and OR time.

Procedure accounted for 44.2% and 45.5% of variability in the

logarithm of procedure duration and OR time, respectively. For

all other process times, procedure accounted for approximately

11% of variation or less. While anesthesiologist was found

significant for seven process times, it accounted for at most 1.1%

of variation (wheels out delay). Interestingly, circulator was

found significant for all models and accounted for as much as

3.4% of variation (wheels out delay). However, both

anesthesiologist and circulator do not individually account for

much variation.

Table 8 also shows several significant interaction terms. In

particular, the interaction of procedure and circulator was

significant for all models. In many cases, this interaction term

accounted for more variation than circulator individually. This

suggests that the effect of the primary circulating nurse is

significant but their effect can depend on the type of procedure.

In addition, the interaction of procedure and surgeon was

significant for five models and accounted for 2.2%–8.7% of

variation. This also suggests the effect of the surgeon depends on

the procedure. Lastly, the interaction of surgeon and circulator

accounted for a modest amount of variance in the logarithms of

setup duration (6.5%) and cleanup duration (8.6%), suggesting a
TABLE 8 ICC(adj) values for each random effect (Equation 1) appearing in ea

FCSTD SD AIT
ICC(adj) (%) Procedure 1.0 9.9 11.4

Surgeon 7.1 12.2 7.3

Anesthesiologist - 0.8 0.8

Circulator 0.2 2.3 0.7

Proc. � Surg. – – –

Proc. � Anes. – – –

Proc. � Circ. 3.4 0.4 2.1

Surg. � Anes. – – –

Surg. � Circ. – 6.5 –

Anes. � Circ. – – –

ICCLMM(adj) (%) 11.6 32.1 22.3

ICCLMM (%) 11.3 29.8 21.1

A dash (–) indicates the random effect was not selected for the final model. The random effects w

ICCs, namely ICCLMM and ICCLMM(adj) (Equation 3). FCSTD, First case start time delay; S

Procedure duration; WOD, Wheels out delay; CD, Cleanup duration; ORT, OR time.
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synergistic effect of surgical teams in some stages of the

OR process.

Overall, Table 8 shows that the primary factors examined in

this study - procedure type, primary surgeon, responsible

anesthesia provider, and primary circulating nurse - are most

impactful on procedure duration and OR time, accounting for

67.5% and 69.7% of variation (in the logarithms), respectively,

after fixed effects have been accounted for. The primary factors

also explained a moderate amount of variation in the logarithm

of procedure start time delay (43.5%), and were mildly impactful

on setup duration (32.1%), anesthesia induction time (22.3%),

wheels out delay (26.5%), and cleanup duration (28.7%). The

primary factors accounted for very little of the variation in the

logarithm of first case start time delay (11.6%). Finally, it is

noted that there were little differences between ICCLMM(adj)
and ICCLMM, further reinforcing that the fixed effects included

in this study had little impact on the process times.
5 Discussion

5.1 Primary findings

The present study made several findings that both complement

and add to the existing literature on OR efficiency. First, this study

shows that, when investigating the impact of factors on the OR

process, a fine-grained approach is necessary to pinpoint where

in the process, and by how much, each factor makes an impact.

In Section 1, it was hypothesized that the fine-grained stages of

the OR process do not consist of the same sources of variability,

nor that the common sources of variability account for the same

proportion of variance in each stage. The results of this study

support the above hypotheses (Table 8). Notably, OR time is an

aggregate quantity consisting of the stages of the OR process in

which the patient is present in the OR (i.e., “wheels in” to

“wheels out”). However, the results of this study indicate that the

quantification of variability in OR time mainly reflects the
ch final model.

PSTD PD WOD CD ORT
10.7 44.2 5.8 1.3 45.5

21.1 10.8 10.9 11.3 13.3

0.4 0.2 1.1 0.5 0.3

0.7 0.5 3.4 1.5 0.4

3.5 8.7 2.2 2.5 7.2

0.9 0.3 1.1 2.7 0.6

5.6 1.3 1.4 0.4 0.6

0.7 0.3 0.7 - 0.7

– 0.9 – 8.6 0.9

– 0.3 – – 0.2

43.5 67.5 26.5 28.7 69.7

42.2 58.2 25.0 28.2 59.0

ith the largest ICC for each process time are indicated in bold. Also provided are the model

D, Setup duration; AIT, Anesthesia induction time; PSTD, Procedure start time delay; PD,

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1455477
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Meyers et al. 10.3389/fdgth.2024.1455477
quantification of variability in procedure duration. Comparing the

two process times in Table 8, their variabilities roughly decompose

in the same way. For example, procedure accounted for 45.5% and

44.2% and surgeon for 13.3% and 10.8% of variability in the

logarithms of OR time and procedure duration, respectively.

Moreover, the random effects overall accounted for 69.7% and

67.5% of variability in the logarithms of OR time and procedure

duration, respectively. In addition to procedure duration, OR

time also comprises the time intervals associated with (a large

proportion of) anesthesia induction time, procedure start time

delay, and wheels out delay. However, the decompositions of

variability for the latter three process times bear little

resemblance to that of OR time. Thus, what happens in the OR

during the procedure is mostly what is driving the aggregate

quantity of OR time. As a result, interventions for improving

efficiency in OR time should be focused on the procedure stage.

The second primary finding regards the impacts of each human

factor. In particular, the primary surgeon had a larger impact in

this study than what was previously reported in the literature.

For instance, van Eijk et al. (12) found that the primary surgeon

and second surgeon19 only accounted for a combined 4.8% of

the variability in the logarithm of OR time. In the present study,

however, primary surgeon alone accounted for 13.3% of

variability in the logarithm of OR time (Table 8). Surgeon also

accounted for a substantial 21.1% of variability in the logarithm

of procedure start time delay and for at least 7% in the

logarithms of all other process times (Table 8). The above results

suggest that the primary surgeon (and other surgeons in the

team) have moderate impacts not only on procedure duration,

but also on many stages of the OR process. The importance of

the surgeon was stressed in previous literature, e.g., Strum et al.

(16), however a quantification of the variability due to surgeon

was usually not provided. Moreover, the impact of the surgeon

depends in part on the procedure, as seen by the significant

interaction term of procedure and surgeon (Table 8). Indeed,

Strum et al. (16) found that variability in surgical time increased

as procedure time increased, indicating an interaction effect

between type of procedure and surgeon.

In agreement with previous literature, responsible anesthesia

provider was often a significant factor but not impactful on OR

efficiency (12, 16). Surprisingly, responsible anesthesia provider

had little impact on the anesthesia-controlled times, including

anesthesia induction time and wheels out delay, the latter of

which includes the patient’s emergence from anesthesia. Other

factors not included in this study, such as patient and operation

characteristics, may be important for accounting for variability in

anesthesia-controlled times (54).

Lastly, this study found the primary circulating nurse, a less

studied human factor in the literature regarding OR efficiency, to
19“Second surgeon” is defined in van Eijk et al. (12) as the first registered

assistant surgeon during a procedure.
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be a significant factor in all stages of the OR process. This is

reasonable because the circulating nurse, sometimes called the

“perioperative” nurse, is involved before the surgery (e.g.,

transporting the patient and preparing the patient for surgery),

during the surgery (e.g., assisting with equipment), and after the

surgery (e.g., monitoring the patient) (55). In this study, the

circulating nurse had their largest effect on wheels out delay and

setup duration, accounting for 3.4% and 2.3% of variability

(Table 8), respectively. In addition, the interaction of procedure

and circulator was also significant for every process time, and the

interaction of surgeon and circulator was significant for four

process times and reached an ICC(adj) value as high as 8.6%

(cleanup duration; Table 8). Thus, the effect of the circulating

nurse depends on the procedure type and, for some stages of the

OR process, also on the particular attending surgeon, indicating

some team synergistic effect on OR efficiency. Indeed, studies

have found that nursing staff characteristics and team effects are

important components of OR efficiency (56–58). More work is

needed though to investigate the role of nursing staff on OR

efficiency and to design interventions with nursing staff as a

central component.
5.2 Clinical implications

The primary findings of this paper have the following clinical

implications. First, OR process prediction models may be

improved by incorporating significant factors and interactions

found in this study. Improving prediction models will improve

scheduling accuracy and increase OR utilization (i.e., decrease

under- and over-utilization) which directly impacts OR

efficiency.20 This paper helps to fill a gap by quantifying the effect

of key members of the surgical team and procedure type on

various stages of the OR process. For instance, it may be beneficial

for models predicting procedure duration to not only include the

procedure type and primary surgeon, but also consider their

interaction (Table 8). There is likely less variability in procedure

duration among surgeons for simple procedures than for more

complex procedures. Thus, prediction models should take into

account that a surgeon’s variability itself will vary depending on

the type of procedure performed. In addition, this study uniquely

identifies the primary circulating nurse and various interaction

terms as significant; therefore, researchers can more

comprehensively consider the members of surgical teams and their

synergistic effects when designing prediction models.

Second, case scheduling may also be improved by incorporating

significant factors and interactions found in this study. The effect of

a particular individual, e.g., the attending primary surgeon, can be

considered when allocating portions of time to each stage for a
20See Dexter and Epstein (8) where “OR efficiency” is defined as minimizing

the “inefficiency of use of OR time,” the latter of which is calculated using

costs and times associated with under- and over-utilization.
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FIGURE 4

Diagnostic plots for the final LMM where procedure duration is the response. (a) Normal probability plot of residuals; (b) residuals vs. fitted values; (c)
histogram of residuals; (d) residuals vs. observation order.
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given case. The particular individual can be used in a more advanced

prediction model as mentioned above or, more simply, the

individual’s historical data can be considered when allocating

times. The same process can be done regarding surgical teams or

combinations of surgical team members. Also, knowledge of

particular surgical team members and teams themselves can

inform strategies for case scheduling. For instance, if a particular

surgeon or surgical team is known to have higher variability or

expected completion times for a particular case, then such a case

could be scheduled earlier or first in the day to allow for dynamic
Frontiers in Digital Health 14
scheduling after the case’s completion, which could allow for the

completion of more cases in a day (16).

Third, OR efficiency can be improved by minimizing the

variability in the stages of the OR process attributable to

members of the surgical team and combinations of team

members. The present study highlights areas of higher variability

for surgical team members. Efforts could be made to reduce

variability by identifying inefficiencies in a surgical team’s or

team member’s practice and providing relevant training. If the

area of improvement is in teamwork, for instance, training
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could seek to promote effective, assertive, and closed-loop

communication among surgical teams to help minimize team

performance variability.21 Moreover, surgical teams can be

further streamlined to match surgeons, anesthesiologists, and

nurses who consistently work well together, which will in turn

reduce performance variability.
5.3 Study limitations and future work

A limitation of this work was the use of a linear modeling

approach and transformations to conform to model assumptions.

Figure 4 shows model diagnostic plots for procedure duration.22

Figure 4(a) shows some departure from a normal distribution for

the logarithm of procedure duration; the distribution shows

heavier tails as indicated by the upper right and lower left portions

of the curve “peeling away” from the red line. Heavier tails

indicate the presence of outliers in both directions. In addition,

Figure 4(b) suggests mild heteroscedasticity in the residuals as the

variation appears to decrease as fitted values increase in absolute

value. Finally, the distribution of procedure duration exhibited

right skewness, which was corrected by a log transformation. The

above three observations were true for many of the process times.

While the results provided in this paper are still relatively robust

due to the large sample size of the dataset, more accurate results

could possibly be obtained through the use of robust regression

methods suited to handle outliers and heteroscedasticity. Moreover,

generalized linear mixed models could be explored to handle the

non-normality of the process times (59).

Another limitation of this work was the lack of inclusion of

many potentially important fixed-effect variables. Previous

literature has explored a wide range of factors that may contribute

to OR efficiency (refer to Section 2). There are likely important

factors missing from this analysis as they were not available in the

database at the University of Miami hospital. Future work could

explore a more comprehensive list of factors to maximize the

potential of data to reveal OR inefficiencies. Moreover, even with a

more comprehensive and retrospective assessment of influential

factors, more proactive measures are needed that implement

realistic interventions, in collaboration with members of surgical

teams, to bring greater efficiency to the OR suite.
6 Conclusions

The primary goal of this paper was to quantify the extent to

which the procedure type and key members of the surgical team

accounted for variation in the fine-grained stages of the OR

process. Some of the stages of the OR process and more
21Granted, targeted research is needed to identify areas of inefficiency.
22Diagnostic plots for all other process times are provided in Supplementary

Figures S7–S13.
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aggregate process times have been analyzed previously in the

literature (refer to Section 2.1). However, a comprehensive

analysis of the impact of the primary surgical team members on

the many stages comprising the OR process is lacking. This

study helps to fill this gap by developing eight different linear

mixed models that quantify the variability of several OR process

times with respect to procedure type, primary surgeon,

responsible anesthesiology provider, and primary circulating nurse.

This study found that, to more accurately account for sources

of variability in the OR process, it is necessary to break up the

OR process into smaller, homogeneous stages. For instance, this

study found that OR time, defined as the “wheels in” to “wheels

out” time of a patient in the OR, largely reflects procedure

duration and is therefore not homogeneous across its entire time

span. In addition, this study found that surgeon has a larger

impact than previously reported in the literature and that the

circulating nurse accounted for a significant, albeit small,

proportion of variability in all eight process times studied. This

study can serve as a foundation for quantifying the impact of

important members of the surgical team on various stages of the

OR process and for more targeted interventions seeking to

realize more efficient and cost-effective OR suites.
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