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AI-enabled workflow for
automated classification and
analysis of feto-placental
Doppler images
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Introduction: Extraction of Doppler-based measurements from feto-placental
Doppler images is crucial in identifying vulnerable new-borns prenatally.
However, this process is time-consuming, operator dependent, and prone to errors.
Methods: To address this, our study introduces an artificial intelligence (AI)
enabled workflow for automating feto-placental Doppler measurements from
four sites (i.e., Umbilical Artery (UA), Middle Cerebral Artery (MCA), Aortic
Isthmus (AoI) and Left Ventricular Inflow and Outflow (LVIO)), involving
classification and waveform delineation tasks. Derived from data from a low-
and middle-income country, our approach’s versatility was tested and validated
using a dataset from a high-income country, showcasing its potential for
standardized and accurate analysis across varied healthcare settings.
Results: The classification of Doppler views was approached through three
distinct blocks: (i) a Doppler velocity amplitude-based model with an accuracy
of 94%, (ii) two Convolutional Neural Networks (CNN) with accuracies of
89.2% and 67.3%, and (iii) Doppler view- and dataset-dependent confidence
models to detect misclassifications with an accuracy higher than 85%. The
extraction of Doppler indices utilized Doppler-view dependent CNNs coupled
with post-processing techniques. Results yielded a mean absolute percentage
error of 6.1 ± 4.9% (n= 682), 1.8 ± 1.5% (n= 1,480), 4.7 ± 4.0% (n= 717),
3.5 ± 3.1% (n= 1,318) for the magnitude location of the systolic peak in LVIO,
UA, AoI and MCA views, respectively.
Conclusions: The developed models proved to be highly accurate in classifying
Doppler views and extracting essential measurements from Doppler images. The
integration of this AI-enabled workflow holds significant promise in reducing the
manual workload and enhancing the efficiency of feto-placental Doppler image
analysis, even for non-trained readers.
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1 Introduction

Feto-placental Doppler imaging is the most widely used

ultrasound technique for fetal health monitoring and assessment

(1). In a non-invasive, quick, and secure manner, ultrasound is

used to assess fetal and vascular development information and

detect congenital heart diseases (CHD) (1). Doppler imaging allows

a hemodynamic and physiological assessment of the cardiovascular

system and fetoplacental circulation (2). Thanks to these

advantages, and while the use of MRI is crucial to evaluate some

particular conditions of the placenta and fetal 3D flow (3, 4),

ultrasound remains the primary tool for the evaluation of fetal

health as it allows quantifying the blood flow in critical regions like

the umbilical artery (UA), middle cerebral artery (MCA), left

ventricular inflow outflow (LVIO) and aortic isthmus (AoI).

Measurements extracted from these regions have been shown to

help identifying fetuses as Small Vulnerable Newborns (5, 6), a

condition highly associated with neonatal death and morbidity.

In a standard feto-placental Doppler study, a sequence of

Doppler images is acquired over time and manually analyzed to

evaluate fetal health. In addition to the Doppler spectrum, which

represents the blood flow velocities over time (with the x-axis

representing time and the y-axis showing the velocity of the blood

flow), the Doppler images also include a brightness mode

(B-mode or 2D) subimage. The subimage is employed to identify

the specific spatial location from which the Doppler spectrum is

obtained, as illustrated in Figure 1. It represents the anatomical

structure at the designated time point and serves as a fixed

reference point to facilitate visualization of the region where the

Doppler measurements are being conducted. The acquisition time

for these images is approximately 45–60 min; however, the

subsequent manual analysis may span a longer period due to the

following factors: (i) the large volume of images acquired, (ii) the

unpredictable foetus positioning inside mother’s womb, which

increases image variability, and (iii) the numerous measurements
FIGURE 1

Components of a Doppler image—B-mode for structural details, the Dopple
mode region.
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required to be performed, as suggested by the ISUOG Practice

guidelines (7). The analysis process consists of: (i) labelling each

acquired image (classification), (ii) delineating its Doppler trace

and (iii) retrieving functional Doppler indices crucial for clinical

diagnosis (e.g., maximal peak velocity). Besides being a time-

consuming task, this analysis heavily relies on operator’s skill and

often leads to inter- and intra-observational errors (1). For

instance, a study published in 2013 by Vilkomerson et al. (8)

reported a 25% inter-observer variability when measuring maximal

peak velocity in Doppler images.

Artificial intelligence (AI), especially deep learning (DL), can

be applied to the analysis of ultrasonographic studies, leading to

faster and more standardised analysis of the acquired images as

compared to manual analysis methods (9). In this sense, the

manual steps requiring expertise could be replaced or supported

by AI-enabled models specifically designed for labelling (10–13)

or segmenting ultrasound images (14–18). Several studies, as the

one exemplified by Gilbert et al. (12), have demonstrated the

application of DL to automate the labelling process for

ultrasonographic B-mode images achieving an accuracy of 87%–

92% (11, 12). Other studies leveraged the potential of DL models

for the classification of fetal ultrasound biometric images (i.e.,

abdomen, brain, thorax, and femur) (10, 13) demonstrating

accuracies as high as 99.84%. Likewise, other studies have

focused on automating segmentation and extracting

measurements from echocardiographic images using AI (19, 20).

In (19), correlation coefficients (0.988 and 0.985) between the

automated and manual annotation of Mitral Valve inflow

Doppler velocities were achieved, and in (18), the authors

reported a bias of 0.31 cm/s and 0.14 cm/s, and standard

deviations of 2.00 cm/s and 1.54 cm/s for the detection of the E

and A peaks, respectively. Meanwhile, Marzbanrad et al. (20)

reported a mean error of 15 ± 0.6 ms for the timing of the Aortic

Valve outflow fetal cardiac intervals. Despite the remarkable

acceleration in extracting information from the Doppler region
r region for blood flow information and Doppler cursor on top of the B-
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TABLE 1 Ground truth data generated using the TransCor platform for
both datasets.

Label FeDoC IMPACT
Aortic Isthmus (AoI) 443 451

Middle Cerebral Artery (MCA) 424 428

Umbilical Artery (UA) 416 572

Left Ventricular Inflow Outflow (LVIO) 352 463

Other 1,702 892

Total 3,337 2,806
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facilitated by AI-enabled solutions, offering both high specificity

and accuracy, it is important to note that several studies continue

to rely on image processing techniques for doing so (21, 22),

demonstrating agreement as high as (R2 = 0.94 and R2 = 0.90)

between automated and manual measurements of peak velocity

and Velocity Time Integral (VTI).

The aforementioned studies provide only partial solutions within

the whole clinical pipeline, and very few of them focus on the

development of such tools for fetal Doppler. To arrive at a

documented interpretation of the Doppler image and a diagnosis, a

sequence of tasks comprising view labelling, Doppler trace

delineation, and automatic retrieval of Doppler-based imaging

markers is essential. With these requirements in mind, this study

presents the development of an AI-enabled pipeline that optimizes

the clinical workflow in fetal echography, focused on the UA, MCA,

AoI and LVIO. Notably, our AI models conforming this workflow

will be trained using data from a Low-Middle Income Country

(LMIC) and the generalisation and performance of the developed

workflow will be reported against data from a high-income country.
2 Methodology

2.1 Dataset

The sample for this work comprised two research fetal

ultrasound cohorts, which were acquired in accordance with the

international guidelines for ultrasound velocimetry acquisition (7),

with particular attention paid to mitigating the typical challenges

associated with the acquisition of feto-placental Doppler images.

Efforts were made to optimize the acquisition angle, to acquire

multiple cardiac cycles (i.e., at least 2–3 cardiac cycles), to avoid

aliasing and to account for fetal motion in order to minimize

variability and maximize the quality of the images obtained.

The first one, FeDoC (Fetal Doppler Collaborative)

(ClinicalTrials.gov Identifier: NCT03398551) study, was carried out

on fetuses at the primary health care clinic operated by the

Department of Paediatrics and Child Health at The Aga Khan

University in Pakistan. The inclusion criteria specified pregnant

women residing in the southeast region of Karachi (Pakistan) who

were between 22 and 34 weeks of gestation and had provided

written informed consent at the time of image acquisition (5). The

images that conform this dataset were acquired using VividTM iq

(GE Healthcare, Zipf, Austria) Ultrasound System equipped with a

curvilinear transducer.

The second one, sourced from the IMPACT trial (ClinicalTrials.

gov Identifier: NCT03166332) from BCNatal-University of

Barcelona (Spain), a randomized clinical trial that took place from

2017 to 2020 consisting of 1221 high-risk pregnant women. The

echo images of this cohort were acquired using two different

Ultrasound Systems from GE Healthcare: Voluson E10 and

Voluson S8 (GE Healthcare, Zipf, Austria).

A total of 452 and 943 ultrasonographic studies were analysed,

with 3,337 and 2,806 Doppler images, for FeDoC and IMPACT,

respectively. These images were labelled and segmented (see

Table 1) by a paediatric cardiologist and obstetrics fellow, for
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FeDoC and IMPACT, respectively, using an in-house cloud- and

web-based platform: the TransCor platform. The TransCor Platform

is a modular system developed at BCN-MedTech (Universitat

Pompeu Fabra, Barcelona, Spain) and Insitut d’Investigacions

Biomèdiques August Pi i Sunyer (IDIBAPS, Barcelona, Spain)

consisting of several tools for ground-truth generation in Doppler

images, such as view or anatomy labelling, cycle timing and

Doppler waveform delineation based on the location of

physiological events in the Doppler spectra (23, 24). For the

ground-truth generation process, experts were first required to label

each of the images by selecting the corresponding anatomy from a

list of pre-defined fetal anatomies. Next, cardiac cycles needed to

be delimited, due to the absence of ECG in feto-placental Doppler

images, ejection beginning or beginning of systole events were used

to define the start and the end of each of the cardiac cycles from

the spectral Doppler. Experts were required to delimit a minimum

of 2 cardiac cycles on each of the images. Lastly, experts were

required to delineate the Doppler by locating a set of pre-defined

anatomy-dependent physiological events, which were in turn used

for generating a spline of the velocity envelope.

This study focuses on four different feto-placental Doppler sites

(see Figure 2): the MCA, UA, AoI, and LVIO. The MCA, focusing

on cerebral circulation, was segmented by marking onset S and

the systolic peak (S peak) in each cardiac cycle. Similarly, the UA,

highlighting feto-placental blood flow, was traced using the same

physiological events. Notably, both the MCA and UA Doppler

signals consistently appeared either completely above or below the

Doppler zero line. For the AoI, the key markers were placed at

onset S and S peak. AoI images could include possible reversal

flow, leading to the presence of Doppler signals on both sides of

the zero line. Lastly, the LVIO captures combined blood flow

through the mitral and aortic valves, which have opposite

directions. This view was acquired using a cross-sectional view of

the fetal thorax, at the level of the four-chamber view of the heart,

a 2–4 mm Doppler sample volume was placed to include both the

lateral wall of the ascending aorta and the mitral valve. The

ventricular outflow tracing relied on systole (S) onset, S, and end

of S, while the mitral inflow was traced through the onset of early

diastolic (E) wave, E peak, atrial (A) peak and end of A wave.

Besides the physiologically relevant control points mentioned,

users could add additional control points to improve the fitting of

a spline curve for defining the envelope.

We have included a detailed table in the (see Supplementary

Table S1), which provides the mean, maximum and minimum

durations of the Doppler spectrograms across both datasets.
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FIGURE 2

Example of annotated Doppler images from the feDoC dataset. The MCA, UA and AoI traces were delineated using the location of the S onset and the
systolic peak value (S). The LVIO was traced with the S onset and systolic peak value to represent AV outflow and the E and A peaks were used for the
MV inflow tracing.
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2.2 Workflow description

The proposed AI-enabled approach (see Figure 3) for automatically

processing feto-placental Doppler ultrasound images involves two steps

sequentially arranged. The first step is employed for view classification,

which is identifying the specific Doppler view. The second step is the

delineation of the temporal signal in the Doppler spectrum. For the

scope of this study, only single frame fetal Doppler images were used,

this was determined using the DICOM metadata.

For the first step, we used a sequential approach for view

classification, consisting of three different blocks: (i) a Doppler
FIGURE 3

Schematic of the AI-enabled workflow for feto-placental Doppler, consistin
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amplitude-based classifier to divide the images based on the

Doppler signal; (ii) DL-based classifiers that integrate B-mode

and Doppler information; and (iii) confidence models that detect

out-of-domain samples corresponding to other views. The

classification task was divided into three blocks to overcome the

limitations of previous attempts at using a single multiclass

neural network. These attempts failed to distinguish between

pulsatile and flatter Doppler signal profiles, as well as between

the UA and MCA. The last block of the classifier, the confidence

models, act as a quality control to detect and remove images

corresponding to non-considered or non-standard views that
g of Doppler view classification and Doppler waveform delineation.
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might be included in a fetal study. The rationale for including it as

a last step, rather than an initial one, is that the Doppler

spectrograms can vary significantly depending on whether the

view they represent is closer to the heart or further downstream.

Additionally, integrating the different views can be challenging,

particularly given the limited data available for analysis.

The objective of the second step, which comes after the view is

classified in one of the pertinent classes using the models in the first

step, is to extract the Doppler waveform by delineating its envelop,

and the temporal localization of physiologically-relevant events (such

as wave peaks). As the physiological events are dependent on the

Doppler view, a waveform delineation model was created for each of

the views. Based on the values of these events, we compute the

clinically relevant Doppler indices used for medical assessment.
2.3 Pre-processing

B-Mode and spectral Doppler regions were identified from the

DICOM file, using the publicly available metadata, and resized to

256 × 256 and 512 × 256, respectively.

DICOM images had cursor and burn-in annotations, which

were in different vendor-specific colours. To standardise DICOM

images, burned-in annotations were detected and removed, as

well as the fully black rows and columns.

Additionally, the position of the Doppler cursor on top of the

B-mode region was extracted by image processing. This step

involved the detection of non-grey pixels within the image. The

determined ROI location was then employed to generate a binary

mask, which was subsequently combined with the B-mode

image. This pre-processing step was essential due to the absence

of Doppler cursor position in the publicly available metadata of

the DICOM images. It should be noted, however, that the

position of the Doppler cursor varies depending on the specific

spectral Doppler modality used. It can be represented either as a

dashed line, as shown in Supplementary Figure S14, or as a

bounding box, as illustrated in Supplementary Figure S13.

Furthermore, to extractmultiplemetrics from theDoppler spectra,

the Doppler region was binarized using simple thresholding. This

process aimed to extract multiple metrics, such as the maximum

(Vmax) and minimum (Vmin) velocities between positive and negative

peaks, as well as their combined sum, termed as Vrange. The

detection of positive and negative peaks was particularly

advantageous for cropping this region to emphasise theDoppler signal.

Finally, both regions were converted to grayscale and its

intensities normalized to [0, 1] range. A schematic representation

of the pre-processing steps is provided in Figure 4.
2.4 Classifier

Leveraging physiological differences, the first step of the classifier

consisted in grouping peripheral (UA and MCA) and cardiac/aortic

Doppler patterns using a Doppler velocity amplitude-based classifier.

This approach led to grouping the MCA and UA, distinguished by

Doppler signals completely positioned entirely above or below the
Frontiers in Digital Health 05
Doppler zero line, depending on the relative orientation of the

probe. Conversely, the AoI and LVIO were also grouped.

Therefore, the initial phase of classification aimed to distinguish

between these two different Doppler patterns. To achieve this, a

Doppler amplitude-based classifier was developed using classical

machine learning models, to differentiate between images

corresponding to the MCA-UA or AoI-LVIO groups. The K-

Nearest Neighbours algorithm, with K = 13, was employed with

the previously extracted Vmin and Vrange values. This methodology

was designed to effectively categorise Doppler regions according to

their analogous Doppler patterns and to redirect the DICOM

image to the corresponding DL-based classifier.

Additionally, two DL-based classifiers were developed aimed to

distinguish between: (i) MCA and UA, and (ii) LVIO and AoI.

These classifiers made use of the information found in both, the

Doppler spectra, and the B-mode preview. The chosen architecture

for doing so was a parallel ResNet50 (25). This architecture

consisted of two convolutional encoders from ResNet50, one for

the B-mode and the other for the Doppler spectra, whose weights

were initialised with an in-house paediatric Doppler classification

model. The feature vectors generated from each encoder were

concatenated to create a joint low-dimensional embedding. This

embedding was then passed through a fully connected network

with 3 layers: 2,048, 256, and 2 neurons. The weights were not

shared between the two convolutional encoders in the model.

Furthermore, Doppler view and dataset dependent confidence

models were developed to identify and discard images

corresponding to other anatomic views not considered in this

study (26, 27). These models used the DL description vectors

generated from the ResNet50 with the default ImageNet weights

(25) inputting either the Doppler or the B-mode region. The

dimensionality of the resulting feature vectors underwent

reduction through Principal Component Analysis, retaining

features that accounted for 85% of the variance. Subsequently,

these reduced-feature vectors were used to train individual

XGBoost models (28) for each Doppler view and dataset. These

models were trained using images from the class of interest, as

well as those depicting other fetal cardiovascular structures or

heart valves (i.e., tricuspid inflow, pulmonary artery). The selection

of images for each model was guided by predictions from

preceding models in the pipeline, the Doppler amplitude-based

model, and the corresponding DL-based classification model. Any

image predicted as the class of interest but actually not belonging

to that class was retained and labelled under the “skip” category.
2.5 Doppler waveform delineation and
physiological event detection

The selected architecture was the W-Net, chosen for its

demonstrated success in various segmentation domains (29–31).

The W-Net architecture consists of two stacked U-Net

architectures, where the output of the first U-Net serves as the

input to the second U-Net. To prevent a bottleneck between the

two U-Nets, skip connections are employed between the decoder

of the first U-Net and the encoder of the second U-Net, like the
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FIGURE 4

Schematization of the pre-processing steps. Pre-processing consisted of the identification of the B-Mode and spectral Doppler regions, region
standardization with the removal of burnt-in annotation and cropping, grayscale conversion and the location of the Doppler cursor on top of the
B-mode region.
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connections established between the encoder and decoder in a

traditional U-Net. This additional structure increases the depth

of the network, which often leads to improved performance (32).

Notably, our approach diverged from the typical single-output

structure by incorporating multiple output channels in the final

layer of the W-Net: the first channel included the velocity

envelope, and the remaining included the time-location of the

physiological events. This architecture allowed our model to

simultaneously delineate the Doppler envelope waveform and

precisely locate targeted physiological events within it.

After acquiring the binary masks representing the velocity

envelope and the time-coordinates of targeted physiological events,

our methodology involved a sequence of post-processing procedures

(represented in Figure 5). These steps aimed to precisely determine

both the temporal position and magnitude of the desired events

within the Doppler signal, such as ejection beginning or peak velocity.

The initial step is to smooth the predicted binary mask

corresponding to the Doppler envelope using a 7 × 7 Gaussian

kernel, followed by binary dilation and closing. Subsequently, we

determine the region in which the maximum absolute velocity is

located—either below or above the Doppler zero line—and reset

the values in the opposite region to zero. It’s worth noting that for

the LVIO Doppler images, this step is performed twice: once for

the outflow pattern and once for the corresponding inflow pattern.
FIGURE 5

Schematic representation of the post-processing of the waveform delineat
physiological events.
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Next, the channels associated with desired physiological

events undergo post-processing to precisely determine the

time-coordinates of the detected events within the Doppler

region. To begin, gaps are filled, and subsequently, the centroid

of each onset is identified, establishing the time-coordinate of the

control point. Detected time-coordinates are then forced to have

a minimum distance of 80 ms between each other, following the

approach described by Wong et al. (33). The enforced minimum

distance between events of 80 ms was enforced, to avoid the

detection of double peaks as shown in Supplementary

Figure S15, and it was chosen empirically, based on the time-

distance between the different physiological events.

Finally, the magnitude-coordinates for control points are

derived by calculating the intersection between the previously

determined time-coordinate of the event and the velocity envelope.
2.6 Training

Both classification and waveform delineation models were

trained using a data augmentation approach. This involved

concatenating the previously manually segmented cardiac cycles

while modifying their duration and magnitude by a random

factor up to 10%. These synthetic images were generated from
ion results to obtain the location in time and magnitude of the relevant
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annotated data and encompassed 1 to 18 cardiac cycles, with the

definition of cardiac cycle numbers being randomized for each

image. This strategy ensures the network’s adaptability to

spectrograms featuring varying numbers of cardiac cycles. This

approach is particularly advantageous in real-world clinical

scenarios where obtaining a predetermined number of cardiac

cycles can be challenging due to factors such as fetal movement

during image acquisition. In addition, each image in the Doppler

waveform delineation model training set had two synthetic

versions: one unchanged and another vertically flipped.

The FeDoC dataset served as the training data for each of the

DL models presented in this study. For both classification and

waveform delineation models, the dataset underwent a division

into training (75%) and testing (25%) sets, ensuring a stratified

split by class to maintain view distribution in both training and

testing sets. In addition, images from the same patient were

assigned either to the training or the testing dataset.

For the training of the Doppler waveform delineation models,

the ground-truth generated by the two experts required to be

transformed into binary masks. Consequently, the waveform

delineation details for each of the Doppler images were encoded

through a binary mask with M channels, aligning with the

dimensions of the Doppler region within the image. Here, M

signifies the count of intended physiological events for detection,

along with an additional channel dedicated to the velocity

envelope mask. Specifically, the values for M were 2, 2, 2, and 7

for AoI, MCA, UA, and LVIO, respectively.

In the DL models training phase, a batch size of 16 was used

over 200 epochs and 100 epochs, for the DL-based classifiers and

waveform delineation models, respectively.

Diverse augmentation techniques were applied at each epoch,

affecting either the Doppler or B-mode regions of the image.

The applied augmentation techniques included brightness and

contrast adjustments, geometric transformations (e.g., flipping,

rotation, scale), and custom functions tailored to address our

specific problem, such as eliminating unnecessary rows in the

Doppler region, simulating aliasing, and B-mode rotation.

These augmentation techniques were systematically applied at each

epoch, enriching the dataset, and enhancing the model’s learning

process. Optimization was achieved with the Adam optimizer and

a learning rate of 1e-3. The learning process was finetuned using a

ReduceLROnPlateau scheduler (34), which dynamically adjusted

the learning rate by a factor of 0.1 after a patience of 20 epochs.

The loss function employed for classification was cross-entropy,

while for waveform delineation, both the Dice coefficient,

measuring overlap between predicted and ground-truth masks, and

the F1 loss, balancing specificity and sensitivity when measuring

waveform delineation accuracy, were employed.
2.7 Evaluation

All generated models were evaluated on a separate test set from

the FeDoC dataset, as well as the IMPACT dataset. Classification

models were evaluated using standard classification metrics such

as accuracy, specificity, sensitivity, F1 score and Area Under the
Frontiers in Digital Health 07
Curve (AUC). The AUC was calculated by measuring the area

under the curve, which was based on the prediction scores of

each classification model (35).

The evaluation of the waveform delineation of UA, MCA and

AoI was based on the pulsatility index (PI) (see Equation 1) and

the estimation of the maximum and minimum velocities. Whereas

LVIO’s waveform delineation performance was based on the

systolic (S) and diastolic (D) duration (Equation 2), velocity

magnitudes of the S, E and A peaks. S duration was computed as

the difference between the valve opening (VOt) and closure times

(VCt), while the D duration was the difference between the end of

the A wave (end At) and the start of E (onset Et). The metrics

were calculated as follows:

PI ¼ Vmax � Vmin

Vmean
(1)

S duration ¼ VOt � VCt ,

D duration ¼ end At � onset Et (2)
The disparities between the ground-truth and the inferred

annotations were reported in the form of Root Mean Square

Errors (RMSE) or Mean Absolute Percentage Errors (MAPE).

Furthermore, the RMSE and MAPE were calculated based on

the median across all manually delineated cardiac cycles for a

given image.
3 Results

The Doppler velocity amplitude-based classifier, employed to

distinguish between the MCA-UA and LVIO-AoI using metrics

extracted from the Doppler region, the Vmin and Vrange,

presented an accuracy of 97% and 94% in FeDoC and IMPACT

datasets, respectively (see Figure 6; Table 2).

In Table 3, the classical classification metrics for the Doppler

view classification models are presented. An accuracy of 87.4%

and 89.2% for the DL classification model aimed at distinguishing

UA and MCA, in the FeDoC and IMPACT datasets respectively,

was obtained. Conversely, the model aimed at distinguishing

between the AoI and LVIO Doppler views demonstrated lower

accuracies in IMPACT dataset, achieving 99.4% and 67.3%

accuracy in the FeDoC and IMPACT datasets, respectively.

The Doppler view and dataset dependent confidence models,

used to eliminate misclassified samples, demonstrated false

negative rates (FNR) of less than 13% for all samples across the

UA, MCA and AoI views in both datasets. In contrast, the FNR

of the LVIO was 72.3%, as presented in Table 4. However, the

False Positive Rate (FPR) was relatively low at 1.72%. Therefore,

the model demonstrated a lack of efficacy in retaining samples

for their subsequent analysis.

In the evaluation of the UA, MCA and AoI’s waveform

delineation models, the magnitude of the maximal (Vmax) and

minimal velocity (Vmin), as well as the PI were assessed. The

results, as detailed in Table 5, showcase notable variations in
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FIGURE 6

Confusion matrices of the classical machine learning model employed to distinguish between AoI-LVIO and UA-MCA using Doppler velocity ranges
trained in the feDoC dataset.

TABLE 2 Doppler amplitude-based classification results.

FeDoC—accuracy 97% IMPACT—accuracy 94%

Class Specificity Sensitivity F1-score Samples Specificity Sensitivity F1-score Samples
UA—MCA 0.97 0.97 0.96 153 0.98 0.91 0.95 1,000

AoI—LVIO 0.97 0.97 0.97 174 0.91 0.98 0.94 909

Macro Avg 0.97 0.97 0.97 327 0.94 0.94 0.94 1,909

Weighted Avg 0.97 0.97 0.97 327 0.94 0.94 0.94 1,909

TABLE 3 Doppler view classification results for the UA-MCA classifier and AoI-LVIO classifier with no Doppler cursors.

UA vs. MCA

Class FeDoC—accuracy 87.4% IMPACT—accuracy 89.2%

Specificity Sensitivity F1-score Samples Specificity Sensitivity F1-score Samples
MCA 1.0 0.71 0.83 77 0.91 0.88 0.89 425

UA 0.71 1.0 0.89 98 0.88 0.91 0.89 425

Macro avg 0.86 0.86 0.87 175 0.89 0.89 0.89 850

Weighted Avg 0.85 0.87 0.87 175 0.89 0.89 0.89 850

AoI vs. LVIO

Class FeDoC—accuracy 99.4% IMPACT—accuracy 67.3%

Specificity Sensitivity F1-score Samples Specificity Sensitivity F1-score Samples
AoI 0.99 1.0 0.99 85 0.76 0.58 0.64 447

LVIO 1.0 0.99 0.99 88 0.58 0.76 0.69 447

Macro Avg 0.94 0.99 0.99 173 0.67 0.67 0.67 895

Weighted Avg 0.94 0.99 0.99 173 0.67 0.67 0.67 895
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Vmax, Vmin, and PI throughout the two datasets. For instance, the

Vmax in the UA presented of MAPE 2.7% and 1.8%, in FeDoC

and IMPACT, respectively. The most challenging view across all
Frontiers in Digital Health 08
Doppler-derived magnitudes was the MCA, which presented a

maximum MAPE of 10.4 ± 7.0% and 12.1 ± 9.6% in the

estimation of Vmax and Vmin in the FeDoC dataset. Regarding
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TABLE 4 Doppler view-dependent confidence models showing skip and keep accuracies for each view/label, false negative rata (FNR,%) and false
positive rate (FPR,%) and the area under the curve (AUC).

Label Dataset FNR,% FPR,% AUC Skip samples Keep samples Total samples
MCA FeDoC 12.50 0 0.99 106 24 130

IMPACT 4.81 7.52 0.98 266 208 474

UA FeDoC 3.85 0.75 1 133 26 159

IMPACT 9.49 0.92 1 977 253 1,230

AoI FeDoC 3.77 2.49 1 241 106 347

IMPACT 8.44 4.36 0.99 574 154 728

LVIO FeDoC 72.15 1.72 0.87 524 79 603

IMPACT 9.68 2.51 0.99 798 124 922

TABLE 5 Comparison of mean errors in inferred Doppler indices for MCA, UA and AoI among the feDoC and IMPACT datasets: pulsatility Index (PI),
Maximum velocity (Vmax), and Minimum velocity (Vmin) reported as MAPE and RMSE, and timing of relevant physiological events and cardiac cycle
curation, reported as RMSE.

Metric Dataset MCA UA AoI
Vmax,% FeDoC 10.4 ± 7.0 (n = 75) 2.7 ± 2.6(n = 150) 6.1 ± 6.2 (n = 49)

IMPACT 3.5 ± 3.1 (n = 1,318) 1.8 ± 1.5 (n = 1,480) 4.7 ± 4.0 (n = 717)

Vmax, cm/s FeDoC 4.5 ± 4.9(n = 75) 1.9 ± 2.9(n = 150) 8.6 ± 13.1(n = 49)

IMPACT 2.0 ± 3.0(n = 1,318) 1.0 ± 1.5 (n = 1,480) 5.0 ± 7.2 (n = 717)

Vmin,% FeDoC 12.1 ± 9.6 (n = 76) 4.6 ± 4.0(n = 146) 8.5 ± 7.3 (n = 50)

IMPACT 9.5 ± 6.5 (n = 1,281) 5.1 ± 4.0 (n = 1,475) 8.9 ± 8.8 (n = 710)

Vmin, cm/s FeDoC 1.6 ± 2.1 (n = 76) 1.3 ± 1.6(n = 146) 1.4 ± 1.7 (n = 50)

IMPACT 1.2 ± 1.4 (n = 1,281) 1.3 ± 1.4 (n = 1,475) 1.3 ± 2.6 (n = 710)

PI,% FeDoC 10.06 ± 9.41 (n = 71) 4.67 ± 3.38 (n = 143) 5.44 ± 4.36 (n = 51)

IMPACT 5.01 ± 3.81 (n = 1,329) 6.59 ± 4.37 (n = 1,483) 5.06 ± 8.71 (n = 760)

PI FeDoC 0.16 ± 0.24 (n = 71) 0.04 ± 0.05 (n = 143) 0.16 ± 0.21 (n = 51)

IMPACT 0.1 ± 0.12 (n = 1,329) 0.06 ± 0.08 (n = 1,483) 0.16 ± 0.36 (n = 760)

Onset S (t), ms FeDoC 10.9 ± 9.4 (n = 56) 10.7 ± 10.2 (n = 121) 12.8 ± 10.7 (n = 37)

IMPACT 8.2 ± 8.8 (n = 237) 7.2 ± 8.8 (n = 300) 10.6 ± 18.9 (n = 107)

Peak (t), ms FeDoC 7.0 ± 7.8 (n = 56) 2.3 ± 3.0(n = 121) 8.1 ± 10.3 (n = 35)

IMPACT 4.2 ± 7.1(n = 234) 1.4 ± 1.6 (n = 299) 3.2 ± 4.2 (n = 106)

Cycle length (t), ms FeDoC 7.5 ± 7.4 (n = 51) 8.8 ± 8.1 (n = 114) 8.0 ± 8.1 (n = 31)

IMPACT 9.7 ± 9.5 (n = 224) 8.8 ± 8.4 (n = 288) 8.3 ± 7.9 (n = 91)
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the timing of events and the duration of the cardiac cycles, detailed

in Table 5, the smallest RMSEs were observed in the time location

of peak velocities [Peak(t)]. The biggest error in peak velocity

timing [Peak(t)] was found in the location of AoI’s peak velocity

in the FeDoC dataset, showing a RMSE of 8.1 ± 10.3 ms.

In Table 6, errors pertaining to the timing location and

magnitudes of the relevant physiological events (S, E and A

peaks), along with the duration of the systolic and diastolic

phases for LVIO, are presented. A MAPE of 6.1 ± 3.56% was

reported in the peak velocity value of the systolic phase (S) for

both datasets, while the error in the duration of the systolic

phase was less than 15 ms. The observed MAPE errors in the

location of E and A peaks were higher in the IMPACT dataset

with 29.9 ± 5.7% and 12.6 ± 5.1%, respectively.
4 Discussion

In this study, an AI-enabled workflow for automatically

quantifying feto-placental Doppler images was developed. The

results demonstrate the potential of using AI models to
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optimize fetal Doppler analysis by replacing time-consuming

tasks such as manual image classification and identification of

physiological events in the Doppler region by DL-based

methods, thereby reducing analysis time for each

ultrasonographic study.

Automated analysis of Doppler spectrograms, despite its

clinical relevance, has been overlooked (36). There exist only few

works, focusing on adult applications. Despite the velocity

waveform being a time signal, authors have taken an approach

based on 2D image processing, which allows to take advantage of

contextual information (i.e., pixels that are both close in time (x-

axis), but also in velocity (y-axis)) (14, 18, 19). Furthermore,

treating the time-signal as an image allows to use network

architectures specialized in image processing, which are more

developed than its applications to signal processing. However,

neglecting the signal nature of the data comes with

disadvantages, as in wave-form delineation, the network output is

not guaranteed to have a single value for each time, and requires

post-processing to correct this. Future work would be to develop

novel architectures taking advantage of the 1D/2D nature of the

Doppler spectrograms.
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TABLE 6 Errors at the computation of clinical parameters for the left
ventricular inflow outflow (LVIO) Doppler images.

Metric Dataset LVIO
S,% FeDoC 6.1 ± 3.56 (n = 341)

IMPACT 6.1 ± 4.9 (n = 682)

S, cm/s FeDoC 6.1 ± 3.8 (n = 398)

IMPACT 4.6 ± 2.8 (n = 682)

E,% FeDoC 10.3 ± 3.5 (n = 370)

IMPACT 29.9 ± 5.7 (n = 254)

E, cm/s FeDoC 4.4 ± 3.0 (n = 370)

IMPACT 11.4 ± 5.7 (n = 254)

A,% FeDoC 9.7 ± 4.9 (n = 370)

IMPACT 12.6 ± 5.1 (n = 262)

A, cm/s FeDoC 5.7 ± 3.9 (n = 370)

IMPACT 7.3 ± 4.9 (n = 262)

S (t), ms FeDoC 10.0 ± 9.101 (n = 200)

IMPACT 9.5 ± 9.1 (n = 349)

E (t), ms FeDoC 13.6 ± 11.192 (n = 192)

IMPACT 32.1 ± 22.5 (n = 204)

A (t), ms FeDoC 18.7 ± 17.6 (n = 197)

IMPACT 24.0 ± 19.8 (n = 145)

S duration (t), ms FeDoC 11.8 ± 7.3 (n = 380)

IMPACT 14.8 ± 8.2 (n = 356)

D duration (t), ms FeDoC 14.9 ± 9.2 (n = 380)

IMPACT 17.9 ± 10.9 (n = 352)

Metrics that include (t) denote timings (x axis); their errors are the root mean square error
(RMSE) in milliseconds. Metrics that do not include (t) denote amplitudes (y axis) and their

errors are the RMSE and Mean Average Percentage Error (MAPE).
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When compared to other approaches in the literature, our

methods compare favorably; although some solutions exist, they

are partial and restricted to specific parts of the clinical analysis

pipeline (37). Doppler view classification is difficult to address,

and even though the approach by Gilbert et al. (12) achieves

higher accuracy without requiring samples from multiple

datasets, they benefited from certain advantages. Gilbert et al.

had access to private vendor information (Doppler sample

position), three times more data for model training, and dealt

with data from the adult population. In contrast, our study

involved training and testing models with data from two distinct

contexts, encompassing different acquisition protocols, echo

equipment, and the inter-observer variability as the two datasets

were annotated by experts of different disciplines: FeDoC dataset

was delineated by a paediatric cardiologist, whereas IMPACT was

annotated by an obstetrician. Unlike the study presented by

Gilbert et al. (12), this study did not benefit from having access

to the sample probe position. To overcome the restricted access

to it, its location was extracted with image processing. However,

in contrast to Gilbert et al.’s (12) study, adding sample probe

position did not improve the classifier’s performance across both

datasets (see Supplementary Figure S3). This discrepancy may be

attributed to the lack of specificity in determining the exact

sample probe position using image processing methods. The

resulting binary mask, which contains the probe position, may

take the shape of a bounding box or a dashed line, depending on

the Doppler modality employed during image acquisition. This is

illustrated in Supplementary Figures S13, S14, respectively. In

addition, Doppler cursor position in the fetal population is less
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relevant than in adults, due to the variability of fetus’ position in

mother’s womb. The classifier achieved an accuracy of 89.2% in

distinguishing between UA and MCA, while in the AoI vs. LVIO

model, the accuracy stood at 67.3% in the IMPACT dataset. The

second model’s accuracy could potentially be enhanced, as

demonstrated by an additional study detailed in the

(Supplementary Figure S3). This study integrated IMPACT

samples during model training, increasing classification accuracy

by 25.5%, achieving a 92.8% accuracy when adding 251 samples

per view to the model. The need for adding samples from the

IMPACT dataset might be mostly due to differences during

image acquisition across the datasets. The necessity for adequate

training of sonographers to capture LVIO and AoI images was

not fulfilled during the acquisition of the FeDoC dataset. It is

possible that discrepancies in viewer settings may represent an

additional source of variability between the two cohorts (38, 39).

This is exemplified by the divergence between the sonographers

in the IMPACT and FeDoC datasets, with the practice of

zooming in on the B-mode region before capturing images, being

exclusive to the IMPACT dataset.

In the medical domain, addressing misclassifications holds

significant importance. In this context, we did not add an

additional label to the developed DL-based classification models,

considering the inherent variability observed in Doppler images

and their spectra. With the aim of avoiding additional

complexity in the DL models, our strategy focused on the

creation of confidence models specific to each Doppler view and

dataset. The developed models presented an overall accuracy over

85% across both datasets, consistently maintaining both the FNR

and FPR below 15%. However, the LVIO confidence model’s

accuracy in the FeDoC dataset was notably lower, reaching only

27.8%. The selection of samples used to develop these confidence

models was influenced by predictions made in earlier stages of

the pipeline. Consequently, the training data for the LVIO

confidence model might include Doppler views corresponding to

heart valves, such as the MV and AV. Because the LVIO pattern

combines elements from both left ventricular outflow and inflow,

determining whether to retain or discard an image becomes

challenging. Upon review, the identified FP images, classified by

an expert as either MV or AV and predicted as LVIO by the

XGBoost model, accounted for 1.7% of the test set. These images

exhibited evident traces of both AV outflow and MV inflow

within the Doppler region (see Figure 7).

Compared to the 25% inter-observer variability in measuring

the maximal peak velocity reported by Vilkomerson et al. (8) for

the location of relevant physiological events, our models

demonstrate significantly reduced variability. Specifically, in MCA

Doppler images, which presented the higher discrepancies

between the ground-truth and the predicted values, we observed

maximum MAPEs of 13.3 ± 4.7% and 10.8 ± 1.3%, for the FeDoC

and IMPACT datasets, respectively. Despite the largest MAPEs in

peak velocity detection are found in MCA images, the actual

errors encountered in velocity magnitudes are quite small, being

4.5 ± 4.9 cm/s and 2.0 ± 3.0 cm/s. Additionally, in Zolgharni et al.

(22), a 20% error was reported for the S peak, whereas our

findings indicate a notably reduced error of less than 7%.
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FIGURE 7

False positives of the LVIO confidence models used to detect misclassifications. (a) Image labelled as mitral valve and (b) image labelled as aortic valve.
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In assessing the timings of the S peak duration in LVIO images,

our findings revealed an RMSE of 11.8 ± 7.3 ms (n = 380) and 14.8 ±

8.2 ms (n = 356) for FeDoC and IMPACT respectively. These values

represent a smaller margin of error compared to the findings

reported by Marzbanrad et al. (20), which indicated an RMSE of

38 ± 12 ms (n = 45). Larger bias values were found in our study

compared to the Jevsikov et al. (18) in the detection of the E and

A peaks in mitral inflow images. We report a bias of 2.7 ± 3.5 and

2.9 ± 4.8 cm/s, compared to their bias of 0.31 ± 2.00 cm/s for the

detection of the E peak. In detecting the A peak, they found an

error of 0.14 ± 1.54 cm/s, while our error was 2.9 ± 4.8 cm/s.

Compared to our datasets, they used data from the same

institution even if it was acquired by a time gap of three years,

with a large dataset of 1,064 studies for training and 200 Doppler

images for testing. The authors’ work is focused on the adult

population, and it exclusively addresses the location of the mitral

inflow peaks (i.e., E and A peaks). In contrast, our approach

employs a binary mask with distinct channels for the envelope

and individual physiological events. Our detection of mitral valve

inflow peaks is used to detect all relevant events on LVIO images,

which include patterns from both aortic valve outflow and mitral

valve inflow. This approach results in a greater number of points

for detection and a higher level of complexity. Additionally, it is

important to highlight that fetal Doppler presents greater

challenges compared to adult Doppler, as it typically involves

lower signal gain and higher variability, as well as a higher heart

rate, further complicating the detection process.

Nevertheless, the variability observed in the extraction of

Doppler measurements could be reduced by implementing

additional image pre-processing techniques. One potential

approach to enhance the consistency of the performance across

models and datasets could be to ensure that the pixel-to-physical

unit transformation is uniform across all images in both the

training and the testing sets. This could involve resampling the

images, in addition to the resizing already described in the pre-

processing section.
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The study presented here faced significant challenges stemming

from the fundamental difference between the two datasets—FeDoC

was a community-based observational study, while IMPACT was a

hospital-based multi-arm clinical trial. Consequently, potential

variations in imaging protocols, equipment, image characteristics,

and quality between the two cohorts may arise, as well as

differences in patient phenotypes. Such factors influence the

deployment of models across both cohorts, complicating their

ability to generalize across these distinct settings (40).

Particularly, FeDoC was a community-based study (5), whereas

IMPACT was a multi-arm clinical trial with strict inclusion

criteria. To mitigate these challenges, several pre-processing steps

aimed at standardizing input images, ensuring consistency, and

maintaining uniform quality across diverse datasets were

implemented. The pre-processing steps included the removal of

burned-in annotations based on the detection of different

vendor-specific colors, the resizing of the B-mode and spectral

Doppler regions, and the intensity normalization of the image.

Synthetic Doppler regions with a random number of cardiac

cycles were created using image processing to overcome the

difference in the duration of the Doppler spectrum between the

two datasets during model training too. Additionally, the data

augmentation techniques during model training were crucial to

ensure the generalization and robustness of the hereby presented

workflow across different ultrasound equipment and settings. The

data augmentation techniques implemented included the

synthetic generation of aliasing on the Doppler region, vertical

and horizontal flipping of each of the regions, to account for

differences in the acquisition angle and fetal positioning, and

random cropping to mitigate the lack of zooming in on the B-

mode region found in the FeDoC dataset. In the future, more

complex data augmentation techniques presented here, when

combined with more sophisticated AI-based solutions, such as

Variational Autoencoders (VAEs) or Generative Adversarial

Networks (GANs), could increase the performance of the models

presented (41, 42).
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In addition to the challenges associated with variations in image

characteristics and data from different US equipment, another

notable obstacle encountered was that the clinicians involved in

the labelling and delineation of the Doppler images had different

specialties: the exact definition of the velocity envelope varies

depending on the disciplines and the guidelines followed by the

clinical center. Addressing these challenges will be part of future

work, focusing on consistent ground truth generation by the same

expert and calculating inter-observer variability in Doppler

envelope tracing. During model optimization, inter-observer

variability could be used to ensure inferred Doppler indexes

adhere to a maximum error threshold derived from such

variability, penalizing those that surpass this predefined range.

Moreover, while our work should be regarded as a proof of

concept, future research is needed to validate the performance of

the models that constitute the workflow presented in this study

with additional external datasets to ensure their robustness and

suitability for real-world deployment. Furthermore, the additional

datasets could be employed to evaluate the performance of the

waveform delineation models in comparison with the ground

truth data derived from different experts, as was conducted in

(43). This would allow us to investigate whether the proposed

model optimization technique, based on interobserver variability,

is able to reduce the divergence between the inferred results and

the ground truth data with other datasets.

Considering all of the above, the approach proposed in this

work presents several competitive advantages with respect to the

state-of-the-art. The provided proof-of-concept AI solution

covers with good performance all aspects of usual clinical care

for feature extraction from Doppler images while being modular,

so most advanced utilities can easily be incorporated into the

system. However, automatization has to be carefully handled: a

fully automated approach may lead to inaccurate measurements

if unexpected issues arise, either due to the training set not being

representative enough or bias in the generated ground-truth.

Therefore, the AI-enabled workflow presented in this study has

to be combined with the TransCor Platform providing clinicians

with a full clinical decision support system where they can

review the automatic classifications and waveform delineations

and modify them, if necessary, before re-computing clinical

measurements and use them in a report or a diagnosis. The

presented AI-enabled workflow aimed at speeding up feature

extraction from Doppler images, could be a preliminary step

towards the creation of AI-driven models to be used for prenatal

diagnosis. In addition, as future work, the TransCor Platform

could be used not only to automate the analysis of feto-placental

images, but also to train clinicians in the acquisition of high-

quality data by creating a feedback-driven learning loop, in

which clinicians can receive daily feedback on the quality of their

acquired images by an expert in the field, allowing for

continuous improvement of their techniques. Over time,

variations in image quality can be used to train an AI model

capable of recognizing suboptimal images by identifying patterns

such as poor alignment, aliasing, or lack of gain. These models

could then be incorporated into this workflow to extract

measurements only from high quality images.
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Several barriers must be addressed when considering the

deployment of AI in resource-constrained healthcare settings.

First, the lack of infrastructure and financial constraints pose

significant challenges, as these settings often do not have the

necessary resources to support the implementation of advanced

technologies. Second, the absence of high-quality data can hinder

AI performance, as reliable data is crucial for accurate decision-

making and AI learning. Third, regulatory challenges also present

obstacles, as stringent guidelines may slow down the adoption of

AI in these environments. Lastly, integrating AI into existing

clinical workflows can be difficult, as many healthcare systems in

resource-limited settings are not designed to accommodate such

technologies. On the other hand, several facilitators can promote

the successful integration of AI in these settings. One key

facilitator is demonstrating AI’s effectiveness in improving

clinical decision-making, which can help build trust among

healthcare providers and encourage their engagement. This could

be achieved by evaluating the performance of the workflow on

several external datasets. The external datasets may contain

images of varying quality, allowing the assessment of the efficacy

of AI models across a range of image qualities. Another

facilitator is the creation of affordable and scalable AI

technologies, which would allow for cost-effective deployment in

these settings, making AI solutions more accessible and sustainable.

In conclusion, the integration of AI into LMIC has the potential

to be advantageous. Firstly, AI can provide medical expertise in areas

where access to experienced healthcare professionals is limited.

Secondly, AI can help to standardize assessments, reducing

variability in diagnosis. Thirdly, AI can contribute to more

efficient resource utilization and improve workflow efficiency,

which is especially relevant in resource-constrained settings.

Nevertheless, the implementation of decision support systems in a

variety of healthcare settings necessitates meticulous consideration

of several crucial elements. In addition to the technical

considerations of hardware and software integration, it is essential

to navigate the regulatory landscape that governs the use of AI in

medicine (44–46). These regulations can vary significantly across

regions and healthcare institutions. Future research could include

the analysis of how existing solutions, such as Philips Intellispace

Portal or Siemens’ eSie Measure software for automatic spectral

tracing, successfully reached the market and were adopted by

healthcare centers (47, 48).
5 Conclusions

It is our understanding that this work represents one of the

earliest attempts to automate the end-to-end analysis of feto-

placental Doppler images using AI (36). The included data

augmentation and image pre-processing techniques were put in

place to produce a performant and lightweight system. The good

system performance and its completeness for automated feature

extraction consolidates the proposed approach as a competitive

solution for feto-placental Doppler image analysis. Using AI for

this analysis has the potential to facilitate a more accurate and

consistent assessment of fetal blood flow, heart function and
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placental health. This would enable the rapid processing of a large

number of images and the early detection of fetal abnormalities.

However, before the inclusion of the developed models into

clinical practice, it is essential to consider the regulatory and

ethical implications (44–46). In addition, the models presented in

this study are designed for feature extraction from Doppler

images only and are not intended to automate subsequent

interpretation or decision-making (49). The responsibility for

these crucial steps remains with clinicians, who will review the

output generated by the AI models and make informed decisions

based on their expertise.
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