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Over the last years, studies using artificial intelligence (AI) for the detection and
prediction of diseases have increased and also concentrated more and more on
vulnerable groups of individuals, such as infants. The release of ChatGPT
demonstrated the potential of large language models (LLMs) and heralded a
new era of AI with manifold application possibilities. However, the impact of
this new technology on medical research cannot be fully estimated yet. In this
work, we therefore aimed to summarise the most recent pre-ChatGPT
developments in the field of automated detection and prediction of diseases
and disease status in infants, i.e., within the first 12 months of life. For this, we
systematically searched the scientific databases PubMed and IEEE Xplore for
original articles published within the last five years preceding the release of
ChatGPT (2018–2022). The search revealed 927 articles; a final number of 154
articles was included for review. First of all, we examined research activity over
time. Then, we analysed the articles from 2022 for medical conditions, data
types, tasks, AI approaches, and reported model performance. A clear trend of
increasing research activity over time could be observed. The most recently
published articles focused on medical conditions of twelve different ICD-11
categories; “certain conditions originating in the perinatal period” was the
most frequently addressed disease category. AI models were trained with a
variety of data types, among which clinical and demographic information and
laboratory data were most frequently exploited. The most frequently
performed tasks aimed to detect present diseases, followed by the prediction
of diseases and disease status at a later point in development. Deep neural
networks turned out as the most popular AI approach, even though traditional
methods, such as random forests and support vector machines, still play a
role—presumably due to their explainability or better suitability when the
amount of data is limited. Finally, the reported performances in many of the
reviewed articles suggest that AI has the potential to assist in diagnostic
procedures for infants in the near future. LLMs will boost developments in this
field in the upcoming years.
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1 Introduction

Artificial intelligence (AI) can help humans to save time and

resources by solving complex tasks with machine learning (ML)

representing the underlying methodology of extracting knowledge

from data and subsequently generalising to new, unseen data. Due

to recent advancements including the rise of deep learning

methodology—a branch of ML, AI has been gaining momentum

in all domains of our lives. In medicine, current AI technologies

focus on the detection of diseases as well as on monitoring of

disease progression and intervention success (e.g., 1–3). AI systems

cannot replace healthcare professionals, but they are intended to

assist them in their decision-making process similar to other

medical devices and diagnostic tools doctors regularly use. For

optimal functionality of AI systems, huge amounts of data are

needed, such as imaging data, audio recordings, and vital

parameters (4–6). These data can either be collected in

standardised conditions in laboratories or, alternatively, by means

of wearable devices in the wild, i.e., in patients’ everyday

environments (7, 8). The latter approach has certain advantages

such as minimising the white-coat effect (9) or the possibility to

collect long-term data. These can be used to capture symptoms

that only occur sporadically over the day or to investigate the

course of a disease over weeks, months, or even years (10, 11).

AI has been achieving promising performance especially in

tasks related to the medical conditions cancer, mental diseases,

and chronic diseases (12–14). In the last few years, healthcare-

targeted AI research has also been focusing more and more on

children and even infants, i.e., children in their first year of life –

an especially vulnerable period. Timely diagnosis is especially

important at this young age as it enables early intervention and

therewith facilitates the best possible outcomes for affected

individuals (15).

The first studies using AI systems for the detection of clinical

signs in infants were carried out several decades ago (e.g.,

16, 17). At the end of 2022, the release of ChatGPT—a

sophisticated generative AI chatbot based on large language

models (LLMs) which can process and generate natural language,

heralded a new era of AI with serious implications for diverse

sectors of life, including research and education, and with

numerous application opportunities, amongst others in medicine

(18–20). While the actual impact of LLMs remains to be

estimated within the next couple of years, this review aims to

shed light on the most recent pre-ChatGPT research activities in

the field of automatic (ML-based) disease (status) detection1 and

prediction in infants, which is why we decided to include only

studies published from 2018 until 2022. Although there are

reviews on AI applications in newborns (21) and on AI used for
1Please note that we use “detection” as a medical term throughout this work,

even though presented studies actually deal with classification or regression

tasks from a technical perspective.
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development monitoring of children up to 18 years (22), to the best

of our knowledge, this is the first review of the recent pre-ChatGPT

literature on automatic detection and prediction of disease (status)

in the first year of life. We specifically aimed to identify and discuss

investigated medical conditions, exploited data types, performed

tasks, applied ML approaches, as well as achieved detection/

prediction performances prior to the advent of LLMs.
2 Methods

A systematic literature review was done to capture

developments between 2018 and 2022 in automatic detection and

prediction of diseases and disease status in the first year of life.

We performed the following steps: (1) specification of research

questions, (2) decision on search engines, (3) definition of

inclusion and exclusion criteria, (4) determination of search

terms, (5) extraction of data, (6) identification of relevant articles,

(7) review of selected articles for extraction of key findings.
2.1 Research questions

We decided to address the following research questions (RQs):

RQ1: How did the number of articles on automatic disease (status)

detection and prediction in infants develop over time?

RQ2: Which medical conditions in infants were investigated by

means of ML approaches?

RQ3: Which data were used for automatic disease (status)

detection and prediction in infants?

RQ4: How is the distribution of tasks on detection and prediction

of diseases and disease status?

RQ5: Which ML approaches were applied for automatic disease

(status) detection and prediction in infants?

RQ6: Which measures were used to report the performance of

automatic disease (status) detection and prediction in

infants and how did ML approaches actually perform?

RQ1 refers to articles published between 2018 and 2022. As

artificial intelligence is a very rapidly changing field, we decided

to refer to articles published in 2022 only when answering RQ2–

RQ6. This allowed us to capture the most recent trends

preceding the release of ChatGPT.
2.2 Search strategy

In order to cover articles both from the technical and the

medical community, we chose the search engines PubMed and

IEEE Xplore. We defined the following inclusion and exclusion

criteria: All articles needed to be original articles written in

English and published in journals or conference proceedings in

the years 2018 to 2022. Articles needed to focus on conditions

that can be classified according to standard disease classification

systems such as the International Classification of Diseases 11th

Revision (ICD-11). Studies needed to have investigated infants,
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https://doi.org/10.3389/fdgth.2024.1459640
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Bartl-Pokorny et al. 10.3389/fdgth.2024.1459640
i.e., children in their first year of life; studies having focused on a

broader age range were included if the authors explicitly stated

that also individuals in their first year of life were investigated.

Studies needed to have applied an ML approach to automatically

detect, predict, or characterise a medical condition. In order to

analyse whether data from the first year of life is useful for the

detection or prediction of disease (status), at least parts of the

data fed into the ML model shall have been collected during the

participants’ first 12 months of life. Studies having only used

data of the infants’ mothers or data collected prior to birth were

excluded. Preterm birth without further complications in the

neonatal period or later in childhood was not regarded as a

condition of interest and related studies were excluded.

Moreover, articles were excluded if the age or the ML

methodology was not mentioned.

We applied the following search string to identify potentially

relevant articles in PubMed and IEEE Xplore: “(artificial-intelligence

OR machine-learning* OR deep-learning* OR neural-net*) AND

(infant OR infan*) AND (disorder* OR disease* OR disabil* OR

patho*).” In PubMed, the search was automatically limited to the first

two years of life. The search revealed a total of 927 potentially relevant

articles: 743 articles in PubMed and 184 articles in IEEE Xplore (last

update of the literature search: 14 August 2023). All articles were

evaluated for inclusion based on title and abstract by the first author

(KDB-P) and by at least one of the authors MB, CZ, GV, or FBP.

Whenever a rater was not able to determine whether an article

fulfilled the inclusion criteria based on title and abstract, he or she

read the full text to come to a decision. The full text of an article was

also read in case of disagreement between the raters. Articles with

disagreement were discussed within the team until consensus was

achieved. This procedure resulted in a final number of 154 included

articles: 125 from PubMed and 29 from IEEE Xplore. 129 were peer-

reviewed journal articles and 25 were conference proceedings. A list of

included articles is provided in a .bib-file in the SupplementaryMaterial.
2.3 Extraction of key findings

In order to address RQ1, we extracted the publication year of

each included article. In order to address RQ2, RQ3, RQ4, RQ5,

and RQ6, we checked the 46 articles published in 2022 against

the following details: RQ2) medical condition, RQ3) data used

for automatic disease (status) detection or prediction, RQ4)

performed tasks, RQ5) ML approach(es) used, and RQ6)

achieved detection/prediction performance. Data extraction was

performed based on the full text of the articles by KDB-P, CZ,

and GV. FBP checked the extracted data for appropriateness and

completeness. Entries with disagreement were discussed within

the team until consensus was achieved.
FIGURE 1

Publication trend in the field of automatic disease (status) detection
and prediction in infancy in terms of number of (#) published articles
between 2018 and 2022.
3 Results

In the following, we present our research question-specific

findings in separate subsections. Comprehensive information on

the 46 reviewed articles from 2022 is given in Table S1 in the
Frontiers in Digital Health 03
Supplementary Material. In order to answer RQ2–RQ6, we

summarised details from this Table.
3.1 RQ1: publication trend

Within the investigated 5-years time window, a positive research

trend can be observed; see Figure 1. Increasing research activity in

the field of automatic disease status detection in infancy is

reflected by a steadily increasing number of published articles

starting with 17 articles in 2018 and ending up with 46 articles in

2022 except for a single slight stagnation in between in 2021.
3.2 RQ2: medical conditions

A total of 27 medical conditions were investigated in the

framework of the 46 included articles published in 2022. We

assigned the medical conditions to the respective ICD-11

categories (23). In case a medical condition—as stated in a given

article—is not listed in the ICD-11, we assigned it to the best

matching ICD-11 category. This was the case for example for the

condition “Cognitive deficits” (24–26): ICD-11 (23) suggests to

classify disorders characterised by developmental deficits in

cognitive function to the grouping neurodevelopmental disorders.

As “Neurodevelopmental disorders” belong to the category

“Mental, behavioural or neurodevelopmental disorders,” we

selected this ICD-11 category for the medical condition

“Cognitive deficits.” Following this procedure, the included

articles cover twelve ICD-11 categories. The category “Certain

conditions originating in the perinatal period” was addressed

most frequently, namely in twelve articles. It was also the

category covering the highest number of different medical

conditions, namely six. Details on the respective disease

categories and medical conditions dealt with are provided in

Table 1. Some of the articles dealing with the same

medical condition have partly overlapping authors. This is the

case for bronchopulmonary dysplasia (27–30), cognitive deficits

(24, 25, 31), retinopathy of prematurity (32–34), and postnatal

growth failure (35, 36).
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TABLE 1 ICD-11 disease categories and related medical conditions dealt
with in the 46 reviewed articles from 2022 with the respective number
of articles in brackets. ICD-11 disease categories and medical conditions
are listed (i) in decreasing order according to the number of articles
assigned to the respective categories/conditions, and (ii) alphabetically.

ICD-11 disease category Medical condition
Certain conditions originating in the
perinatal period (12)

Bronchopulmonary dysplasia (4)

Necrotising enterocolitis (4)

Hypoxic-ischemic encephalopathy (1)

Neonatal opioid withdrawal syndrome (1)

Parenteral nutrition-associated cholestasis
(1)

Postnatal intestinal perforation (1)

Mental, behavioural or
neurodevelopmental disorders (7)

Cognitive deficits (3)

Autism spectrum disorder (2)

Developmental dyslexia (1)

Language deficits (1)

Developmental anomalies (6) Congenital heart disease (2)

Craniosynostosis (2)

Coarctation of aorta (1)

Developmental dysplasia of hip (1)

Diseases of the nervous system (5) Cerebral palsy (2)

Neonatal intraventricular hemorrhage (1)

Neuromotor disorders (1)

WEST epilepsy syndrome (1)

Diseases of the visual system (5) Retinopathy of prematurity (5)

Certain infectious or parasitic diseases
(4)

Sepsis (3)

Serious bacterial infection (1)

Symptoms, signs or clinical findings,
not elsewhere classified (2)

Postnatal growth failure (2)

Diseases of the ear or mastoid process
(1)

Hearing loss (1)

Diseases of the respiratory system (1) Neonatal chronic lung disease (1)

Diseases of the skin (1) Atopic dermatitis (1)

Endocrine, nutritional, or metabolic
diseases (1)

Diabetes mellitus type 1 (1)

Sleep-wake disorders (1) Sleep apnea (1)
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3.3 RQ3: data

Various different data types were used to automatically detect

and characterise diseases in infancy. We classified the data in ten

categories: clinical and demographic information, laboratory data,

X-ray, magnetic resonance imaging (MRI), photography, video,

electrocardiography (ECG), audio, electroencephalography (EEG),

and thermal data. The category “clinical and demographic data”

includes clinical details from pregnancy and birth, results of

standardised assessments, information on treatment,

comorbidities, and familial history, environmental data, socio-

economic data, etc.; occasionally single laboratory parameters

may be included, e.g., in case the authors did not specify the

exact data acquisition approach for single features (e.g., whether

oxygen saturation was collected via laboratory blood analysis or

via pulse oximetry). The category “laboratory data” includes

analysed blood and stool samples. Figure 2 presents the number

of articles that used the respective data types for automatic

disease status detection. The most widely used data type was

clinical and demographic information, followed by laboratory

data. Thirty-five articles relied on a single data type (see
Frontiers in Digital Health 04
Figure 2b), nine articles (29, 37–44) on two data types, and two

articles (45, 46) on three data types.
3.4 RQ4: tasks

To answer RQ4, each task was assigned to one or more of the

following categories: “detection of condition” (demographic

variables/measurements are used to detect a condition), “detection

of condition status” (demographic variables/measurements are

used to detect the status of a condition such as severity or

subtype of condition), “prediction of condition” (analysis of

demographic variables/measurements suggests how likely an

individual is to develop a condition), “prediction of condition

status” (demographic variables/measurements are used to

predict long term outcome such as severity of a condition in

childhood). A total of 51 tasks were performed by the 46

reviewed studies from 2022. Forty-eight of the 51 tasks were

assigned to only one of the four predefined task categories. The

greatest proportion of them, namely 17/48, aimed to “detect a

condition.” Twelve tasks, respectively, aimed to “predict a

condition” or “predict a condition status.” Seven tasks were

assigned to the category “detection of condition status.” The

remaining three tasks were each assigned to two categories,

namely “detection of condition” and “detection of condition

status.” Detection tasks included both tasks using data acquired

in infancy (e.g., retinal images) and tasks using retrospectively

acquired data (e.g., details on pregnancy) to detect a present

condition or condition status.
3.5 RQ5: machine learning approaches

Random forests, deep neural networks (DNNs), and support

vector machines were most frequently used in the 46 reviewed

studies from 2022; see Figure 3a. In exactly half of the

studies, more than one ML approach was tried out. When

only taking into account the respective best performing

approach (as reported by the authors and/or evident from the

given results, i.e., best results across the reported performance

measures, see Subsection 3.6) of these studies plus the

respective only approach of the rest of the studies, DNNs

clearly come off as the top approach; see Figure 3b. In eleven

studies DNNs were applied as the only approach, whereas in

nine studies DNNs outperformed other approaches. In 11 out

of the 14 remaining studies, in which ML approaches other

than DNNs yielded the best performance, DNNs were not

among the compared approaches. Thus, we only registered

three studies, in which a non-DNN approach outperformed a

DNN approach (31, 35, 37).

Please note that in case of different ML algorithms used in

combination, e.g., one for representation learning (i. e., the use of

ML to automatically discover the optimal data representation)

and one for subsequent disease (status) detection/prediction, we

only considered the ultimate approach. Moreover, we categorised

ML approaches according to their underlying basic principle,
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FIGURE 2

Distribution of data types dealt with in the 46 reviewed articles with the respective number of articles in brackets. The pie chart on the left (a) considers
the total number of data types, i.e., it also includes multiple different data types used in one and the same study. The pie chart on the right (b) only
comprises studies that exclusively exploited one single data type. The category “Other” summarises data types that only occur in one article,
respectively. These are “Audio,” “Electroencephalography,” and “Thermal data” both for (a) and (b). ECG, electrocardiography; MRI, magnetic
resonance imaging.

FIGURE 3

Distribution of machine learning (ML) approaches utilised in the 46 reviewed studies with the respective number of studies (articles) in brackets. The
pie chart on the left (a) considers the total number of approaches, i.e., it also includes multiple different approaches tried out in one and the same
study. The pie chart on the right (b) only comprises one approach per article, namely either the only approach that was used (left summand in
brackets) or the respective best performing approach (right summand in brackets). The category “Other” summarises approaches that only occur
in one article, respectively. These are “Decision tree + neural network (ensemble learning)” and “Hidden Markov model” for (a) and “Naïve Bayes,”
“Decision tree + neural network (ensemble learning),” “Logistic regression,” and “Neural network” for (b). DNN, deep neural network (in case a
DNN with two hidden layers and a DNN with more than two hidden layers were tried out in the same study, DNN was just counted once); DT,
decision tree; KNN, k-nearest neighbors; LDA, linear discriminant analysis; LR, logistic regression; NB, naïve Bayes; NN, neural network; RF,
random forest; SVM, support vector machine.

Bartl-Pokorny et al. 10.3389/fdgth.2024.1459640
irrespective of potential implementational specialties. For example,

extreme gradient boosting (XGBoost) was assigned to the ML

category “Decision tree.” Furthermore, we considered a neural

network as deep if it was implemented with two or more hidden

layers (i.e., more than three layers in total). In doing so, we

additionally differentiated between DNNs with exactly two
Frontiers in Digital Health 05
hidden layers and DNNs with more than two hidden layers; see

Table S1 in the Supplementary Material. In case no information

about the number of layers of a neural network is revealed in an

article and the authors did not explicitly state that a deep

architecture was used, we categorised the respective model as

neural network only.
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Cho et al. (37) employed an artificial neural network with exactly

two hidden layers; (26) implemented a long short-term memory

(LSTM) neural network with bi-directional structure (also two

hidden layers). Han et al. (35) tried out different network

architectures with the number of hidden layers varying from one

(traditional neural network) to five (DNN with two and DNNs

with more than two hidden layers). In all (20) other studies in

which DNNs were applied, the respective networks were

exclusively implemented with more than two hidden layers. Five

studies explicitly disclose the use of established very deep network

types, such as residual neural networks (ResNets) (29, 34, 47, 48),

or a very deep convolutional neural network (VGG) (30).
3.6 RQ6: performance

Forty-four of the 46 reviewed studies from 2022 dealt with

(binary) classification models, i.e., generating a discrete AI system

output (e.g., 29, 47, 49, 50). Just four studies additionally or

exclusively investigated regression models, i.e., generating a

continuous AI system output (32, 33, 51). Across the 46 articles,

14 different measures were utilised to report model performance.

An overview of performance measures reported per ML

approach is given in Table 2. For classification models, accuracy,

area under the receiver operating characteristic curve (AUC-

ROC), sensitivity, and specificity were most frequently used

across all ML approaches. All four registered regression models

were realised by means of DNNs and evaluated by means of the

correlation coefficient.

With regard to the performance itself, most studies

demonstrated a basic feasibility of the investigated task with results

fairly above chance level (e.g., 24, 31, 50, 52). In other studies

(nearly) perfect performance was reached (26, 30, 34, 47–49, 53–57).
TABLE 2 Respective number of reviewed articles from 2022, in which a certain
certain machine learning approach. In case of more than one classification o
measures are counted only once. Both measures and approaches are listed (i)
and (ii) alphabetically.

Measure\
Approach RF

(24)
DNN
(23)

SVM
(22)

LR
(15

Classification Accuracy (31) 16 16 16 8

AUC-ROC (28) 16 12 16 13

Sensitivity (28) 14 12 14 8

Specificity (24) 12 11 12 7

PPV (16) 8 6 6 4

F1 score (13) 6 8 8 5

NPV (7) 5 1 4 2

AUC-PR (6) 4 2 3 4

Brier score (2) 2 1 2

Kappa (2) 2 1

CC (1) 1 1 1

Error rate (1) 1 1 1 1

Regr. CC (4) 4

MAE (1) 1

STDAE (1) 1

AUC-PR, area under the precision-recall curve; AUC-ROC, area under the receiver operating ch

HMM, hidden Markov model; KNN, k-nearest neighbors; LDA, linear discriminant analysis; LR

negative predictive value; PPV, positive predictive value; regr., regression; RF, random forest; ST
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4 Discussion

In this work, we systematically reviewed articles on ML for

detection and prediction of disease (status) in infants.

Although it is still a relatively underrepresented application

field of AI as compared to others, such as cancer, mental

diseases, and chronic diseases (12–14, 58), our systematic

review shows a clear increase of research activity from 2018 to

2022: More than twice as many articles were published in the

year 2022 than in 2018. Interestingly, we revealed a slight

stagnation of published articles in the year 2021. This might

be due to the COVID-19 pandemic: The prevention of

COVID-19 came along with remarkable challenges for the

acquisition of research data and this was even more rigorous

in vulnerable populations such as (preterm born) infants.

A wide variety of medical conditions covering twelve ICD-11

categories were investigated, reflecting the great potential of AI

for infant healthcare. Some of these conditions mainly affect

infants born preterm, such as bronchopulmonary dysplasia,

necrotising enterocolitis and retinopathy of prematurity. A great

proportion of the included articles focused on these conditions.

Another major class of medical conditions subsume conditions

that are usually recognised at a later time in development, such

as autism spectrum disorder or deficits in various developmental

domains. The studies on infants later diagnosed with a

developmental disorder aimed to predict the condition based on

clinical information gathered in infancy (e.g., 24, 50). Such a

strategy could help to advance earlier diagnosis and intervention

for affected children. The fact that we found partly overlapping

authors for different articles on one and the same medical

condition, such as retinopathy of prematurity, indicates that there

seem to be specialised labs/research consortia actively driving ML

research in specific diseases.
measure was used to report classification or regression performance of a
r regression task investigated within one and the same article, respective
in decreasing order according to the number of articles (given in brackets),

)
DT
(14)

KNN
(6)

NN
(6)

NB
(4)

LDA
(3)

DT+NN
(1)

HMM
(1)

11 5 5 3 1 1 1

11 4 6 3 2 1 1

10 3 5 3 3 1

9 3 5 1 3 1

5 1 1 1

6 2 2 1 2 1

1

2 1 2 1 1

2

1 1

1 1

aracteristic curve; CC, correlation coefficient; DNN, deep neural network; DT, decision tree;

, logistic regression; MAE, mean absolute error; NB, naïve Bayes; NN, neural network; NPV,

DAE, standard deviation of absolute error; SVM, support vector machine.
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A multitude of different data types were used to automatically

detect or predict a disease or disease status in infants. Almost 40%

of the articles from 2022 relied on clinical and demographic

information. The frequent use of this data type might be related

to the facts that it subsumes diverse information about the

participants, including partly even longitudinal data (e.g.,

35, 36), and that it was often used in addition to other data

types; Figure 2 shows that 18 articles used clinical and

demographic information, but only 7 of them exclusively used

this data for the detection or prediction of disease (status) in

infants (Figure 2b). Some studies even relied on dozens or

hundreds of features belonging to this data type fed into their

ML algorithms. We are aware that the data type clinical and

demographic information partly overlaps with the data type

laboratory data. The main reason for that is that most articles

did not describe how they collected certain clinical features. We

still decided not to combine these two data types as we found it

interesting to reveal how many studies mainly focused on the

analysis of blood and stool samples for automatic detection and

prediction of disease (status). However, we encourage future

studies to describe their underlying data in more detail in order

to get a more thorough insight in the worthiness of specific

data for the detection and prediction of medical conditions in

infants. Many reviewed studies used image-based data types,

namely X-ray, MRI, photography, and video. The important

role of image-based data in this field becomes especially

obvious when considering the frequent exclusive use of these

data for the detection or prediction of disease (status) in infants

(Figure 2b). This is a similar picture as known from non-

infant-centred application fields of AI in healthcare, such as

from the detection of cancer (e.g., 59–61). In contrast to those

widely used visual data, only a single of the included articles

from 2022 relied on audio data (62). Also electrocardiography

(ECG), electroencephalography (EEG), and thermal data are

relatively underrepresented. In case of EEG, the fixation of

electrodes on the infant’s scalp together with the potential use

of conductive paste might cause discomfort. This can be an

explanation for EEG currently not being among the top

choices for that age. Nevertheless, studies based on the

underrepresented data types revealed basic feasibility (i.e.,

results above chance level; 26, 50, 63) with regard to their

respective tasks, just as studies exploiting the more frequently

used data types did (28, 39, 55). This indicates not yet fully

recognised potential of currently underrepresented data types

for automatic disease (status) detection and prediction in

infants. Future studies should consider these data types as an

alternative or addition to clinical and demographic information,

laboratory data, and visual data. As each data type comes along

with specific advantages and disadvantages regarding reliability,

acquisition costs, acquisition comfort for the patient, processing

and storage requirements, etc., the combination of different

data types could increase robustness. Nevertheless, the choice of

data type ultimately depends on the investigated medical

condition and its related symptoms. Furthermore, it might be

most sustainable to exploit data types which are collected as

part of a condition-related clinical protocol anyway.
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With regard to applied ML approaches, our review clearly shows

a trend towards DNNs. This is in line with recent developments in

the general field of AI (64). Nevertheless, many studies still rely on

traditional ML methodology, such as random forests or support

vector machines, or provide results obtained via traditional

approaches as baselines alongside DNN results. Despite rapid

recent developments in the field of explainable artificial

intelligence (XAI)—a branch of AI trying to make ML models

better understandable to humans (65)—our finding might indicate

that—even coming along with better performances—insufficient

explainability of DNNs as compared to traditional ML approaches

still represents an unsolved ethical issue, especially in healthcare-

related application areas (66). Another reason might be that

many studies using AI for a novel medically relevant task

“just” aim to demonstrate basic feasibility—for which usually

traditional ML is applied—rather than trying to develop a

perfectly performing, ready-to-use AI system—which would

most probably rely on a sophisticated DNN architecture and

involve a number of additional ethical and political issues

regarding liability, regulation of application, and costs (67).

Besides, the question of using a traditional ML approach or a

DNN approach is also a matter of available (training) data.

Especially in niche fields of medical research—this includes AI

for disease (status) detection or prediction in infants—datasets

are often comparatively small. This makes traditional ML better

suited than deep learning, which normally necessitates much

more training data in order to effectively configure the complex

underlying network architectures.

Finally, our review suggests that according to reported

performances some investigated tasks could actually be resolved

by or in assistance with AI in clinical settings in the near

future. However, it has to be kept in mind that performance

achieved in the framework of a research study certainly depends

on several factors, such as the participant sample, the type,

quality, quantity, and partitioning of available data, or the

evaluation strategy. Moreover, our review shows that in highly

interdisciplinary fields, such as automatic disease (status)

detection and prediction in infants, a variety of different

performance measures, such as accuracy, AUC-ROC, sensitivity,

and specificity for classification model evaluations, and

combinations of performance measures are reported. This can

be explained by discipline-specific conventions as well as study

design-, dataset- and application-specific advantages and

disadvantages of each measure. For example, accuracy is very

simple to compute, but as it “just” indicates the proportion of

correct predictions among all predictions—irrespective of

classes, it can be misleading in situations with class-imbalanced

datasets. Moreover, accuracy does not directly take into account

false negatives and false positives. In contrast, the AUC-ROC

reflects the trade-off between the true positive rate (sensitivity,

recall) and the false positive rate at different decision

thresholds. Thereby, it indicates the model’s ability to

distinguish between positive and negative cases. The curve itself

is a useful instrument to select appropriate thresholds for the

requirements of specific applications. Sensitivity is particularly

useful in tasks with a high cost of false negatives, e.g., when
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trying to detect rare events, whereas specificity quantifies how

well a model identifies (true) negatives. In medical research,

sensitivity and specificity are usually reported together, which is

also confirmed by our review study. In 24 out of 28

classification model evaluations, in which sensitivity was

reported, specificity was reported as well. Thus, sensitivity was

reported without specificity in four cases only. In contrast,

specificity was never reported without sensitivity. All study-

dependent aspects taken together make it hard to compare

performances between different studies—even if the same tasks

were investigated—or to assess, whether an approach is actually

“ready” for real-world application.
4.1 Limitations

We decided to search the databases PubMed and IEEE Xplore.

Most probably, an additional search in other databases would

have revealed additional relevant articles. Although we carefully

selected our search terms based on our experience, additional

search terms such as names of specific ML algorithms going

beyond umbrella terms, medical conditions listed in ICD-11, or

symptoms might have brought further suitable matches

including for example articles on Rett syndrome or fragile X

syndrome focusing on infant vocalisation analysis (68), as well

as articles on neonatal seizures (69) and cerebral palsy (70)

focusing on electrophysiological analysis. However, a broad

extension of search terms would have caused an exponential

increase of first search hits, while the number of finally

included articles might have just minimally grown. A more

extended search would have also been beyond the scope of this

work, as our aim was to give a representative overview, not to

uncover every single detail. Next, we need to point out that the

manuscript does not fully meet PRISMA criteria (71) in terms

of risk of bias assessment, synthesis methods, and reporting of

study selection processes. With regard to model performances,

we decided not to discuss absolute values as a comparison

across the different studies would be meaningless due to study-

specific differences, e.g., in the investigated medical condition,

data type, task, sample size, etc. However, for the interested

reader, all reported performance values are given in Table S1 in

the Supplementary Material. Finally, at a time when LLMs have

become a major game changer in several areas, it might be a

limitation of this work to have focused on the pre-LLM period

only. However, in our opinion it is still too early to capture

the whole impact of this new technology, especially in the

healthcare domain. That is why we leave another review on

the early LLM years for future work.
4.2 Conclusion

This work clearly shows that AI applications have been

gaining momentum in the field of disease (status) detection and

prediction in infants over the last couple of years before the

release of ChatGPT; a further boost through LLMs is highly
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expected, given their broad factual and semantic medical

knowledge as well as their capability of medical reasoning and

processing complex concepts (72). We revealed that AI had

already been used for a variety of medical conditions and

diverse data types with overall promising performances and

DNNs representing the most popular ML approach. Taken

together, our results suggest that AI has a great potential to

considerably improve diagnostic procedures for one of the most

vulnerable population groups.
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