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Introduction: Current preoperative exam guidelines utilize extensive lab tests,
including blood tests and urine analysis, which are crucial for assessing
surgical readiness. However, logistical challenges, especially for patients
traveling long distances for high-quality medical care, create significant delays
and burdens. This study aims to address these challenges by applying a
previously developed point-of-care (POC) device system to perform accurate
and rapid lab tests. This device is designed to assist both healthcare providers
in resource-limited settings and patients by offering a low-cost, portable
diagnostic tool that enables both in-clinic and at-home testing.
Methods: The system was tested for adaptability and compatibility by transitioning
from its original Android platform to an iOS platform. A custom application was
developed to maintain the system’s capabilities of capturing optimal cell images
across different mobile platforms. The system’s cell counting algorithm was tailored
to process the captured images, featuring a streamlined workflow that includes
image processing and automated cell detection using a Hough circle algorithm.
Results: The new system provided good-quality raw images with 26.3 px/mm
pixel resolution and 2.19mm spatial resolution, facilitating effective cell
recognition and counting. The cell counting algorithm demonstrated high
precision (0.8663) and high recall (0.9312), with a correlation (R2 = 0.89535)
between algorithm-generated counts and actual counts.
Discussion: This study highlights the potential of the POC device to streamline
preoperative testing, making it more accessible and efficient, particularly for
patients in rural areas or those needing to travel for medical care. Future
enhancements, including wider field-of-view, adjustable magnification, more
advanced and integrated algorithms as well as integration with a microfluidic
channel for direct sample analysis, are proposed to expand the device’s
functionality. The device’s portability, ease of use, and rapid processing time
position it as a promising alternative to traditional lab tests, ultimately aiming
to improve patient care and surgical outcomes.
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1 Introduction

Clinical lab tests are part of the standardized preoperative exam guidelines observed in

healthcare systems in the world. When testing is required preoperatively, blood tests are

almost always performed since they are able to help assess a patient’s general health

condition, evaluate organ function, identify bleeding disorders, as well as determine
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infection or inflammatory conditions. Urine sample analysis is also

commonly ordered, especially for patients with urinary tract

symptoms or undergoing urological procedures (1). A lot of

information could be extracted from these tests, but most of this

information involves the presence or concentration of certain

cells or chemicals, such as full blood count, creatinine

concentration, and hematuria (2).

Research studies have indicated that many routine preoperative

tests are excessive and their results would not alter the surgical

outcome (3, 4). However, current clinical guidelines still suggest

the inclusion of such tests based on the historical findings and

patient conditions (5). In modern practice, risk stratification

algorithms are often used to determine which preoperative tests

are required, based on a patient’s medical history, comorbidities,

and the complexity of the procedure (6). While these algorithms

help optimize patient care, they can also lead to a large number

of tests, especially for high-risk patients. Performing this

extensive testing often requires significant time and resources,

contributing to delays in the preoperative process. The debate

over whether to cut certain tests is ongoing, but a more practical

solution would be to make these tests cheaper and easier to

perform so that they don’t take up much time and resources.

This approach addresses the financial and logistical barriers

without compromising patient safety (7).

Many individuals seeking high-quality medical care travel

significant distances to reach advanced medical facilities, far from

their residences. They also face excess travel frequency for

unnecessary preoperative testings, no matter how near or far they

live from hospitals. Even in a well-developed country like the

United States, this phenomenon is still notably prevalent, where

more than 50% of patients received unindicated preoperative

tests (8), and about a quarter of patients traveled more than 100

miles to receive congenital heart surgery (9). This distance poses

substantial challenges, including transportation difficulties and

the timely collection and examination of samples. Scheduling

preoperative exams becomes particularly tricky because these

tests are usually conducted shortly before the surgery. Backlogs at

testing facilities and delays in obtaining test results have been

shown to contribute to the postponement of elective surgeries

(10). Additionally, involving a third-party medical facility nearby

for preoperative testing only is not always feasible due to

logistical issues and the need for careful appointment planning.

In rural settings, the infrastructure might not support the timely

transportation of samples to distant labs, potentially delaying

diagnosis and treatment. This problem is compounded by the

fact that many rural areas have limited access to specialized

medical equipment and trained personnel, further hindering the

efficiency of preoperative testing.

Moreover, the current lab test procedures require sending

samples to specific labs where complicated processing steps are

involved, resulting in delays in obtaining results. It also raises the

issue of the availability of such labs, especially in underdeveloped

areas. In most countries around the world, there is a significant

shortage of both pathological lab equipment as well as personnel,

which exacerbates the problem. This shortage means that many

patients in remote or under-served regions may not have timely
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access to necessary preoperative tests, leading to delays in

surgical procedures and potentially compromising patient

outcomes. Additionally, the overburdened existing labs often

struggle to keep up with the demand, leading to further delays

and a backlog of tests (11). This situation underscores the urgent

need for more efficient and accessible diagnostic solutions that

can deliver accurate results quickly and reliably, without being

dependent on centralized lab facilities. To address these

challenges, there is a growing need for diagnostic solutions that

do not rely on fully equipped laboratories or specialized

personnel. Instead, these solutions aim to bring testing directly to

the point of care, allowing for faster and more convenient testing

without the need for large-scale infrastructure.

On the other hand, point-of-care (POC) devices have gained

popularity and might offer a viable alternative to traditional

clinical lab testing, as they can potentially streamline the testing

process, providing results more quickly and efficiently. POC

devices are designed to perform a variety of tests at or near the

site of patient care, thereby reducing the need for sample

transport and expediting the diagnostic process (7). The

development of POC devices has also benefited from the fast

advancement and widespread adoption of smartphone

technologies, as the high data processing capabilities and

powerful sensors of smartphones can be utilized for POC

devices, thus eliminating hurdles in both cost and access to high-

end technology (12). This is especially important in rural areas

because even though their access to healthcare facilities and

laboratories is the most limited (11), their ownership rate of

smartphones is comparable to that of urban areas, at about 80% (13).

The advancement of POC technology has the potential to

revolutionize preoperative testing. These devices are compact,

easy to use, and can deliver accurate results rapidly, making

them ideal for use in both rural and urban settings. The

convenience and speed offered by POC testing can also facilitate

more effective preoperative assessments, reducing the time

patients spend waiting for test results and enabling quicker

surgical interventions. Furthermore, POC devices integrated into

smartphones can be designed to be user-friendly and mostly

automatic, allowing patients with minimal training to perform

complex diagnostic tests easily and accurately from their homes (14).

The need for smartphone-based POC devices extends beyond

just convenience. The ability of the smartphone to provide and

transmit timely data and rapid analysis of the collected sample

allows for the full utilization of the professional pathologist

network worldwide, so experts around the world could help

guide sample collection procedures or review analysis results to

eliminate patient constraints of local resource availability and

accessibility (15).

Thus, there is a pressing need for a POC device that can

perform lab tests accurately with a uniform testing scale, without

being cost-prohibitive or logistically challenging. In our recently

submitted work, we developed a microscope attachment for

smartphones called m-phone that aims to tackle this issue (16).

The m-phone utilizes inexpensive, accessible optical components

packaged as a smartphone attachment, enabling microscopic

image capture and analysis at a cellular level. Its compact form
frontiersin.org
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FIGURE 1

Left: Prototype model fitted to camera dimensions of an iPhone 14 Pro Max; Right: Prototype model fitted to camera dimension of an OnePlus 9.
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factor and ease of production make it a cost-effective solution for

conducting blood tests in resource-limited settings. The initial

prototype of the m-phone was designed to work with an Android

smartphone (OnePlus 9), but in this study, we demonstrate its

versatility by adapting the system to an iOS device, requiring

only adjustments to fit the size and location of the camera and

flashlight on the desired smartphone model (Figure 1). While the

hardware for this device was previously validated, this paper

presents the novel integration of a custom app and a cell

counting algorithm, creating a fully functional system for

preoperative lab testing with high potential for deployment.

Unlike traditional clinical microscopes, this device integrates both

the hardware (the microscope) and the software (the cell

counting algorithm) into a single system that can be used by

non-specialists in a variety of settings. This eliminates the need

for both a full laboratory and highly trained personnel for

microscope-related tests, making preoperative testing more

accessible to patients in underserved areas. In this paper, we

discuss the application of this complete system, focusing on its

ability to perform automated blood cell counting and its

potential to adapt to major phone models. We also aim to

highlight its capacity to perform other diagnostic tests, such as

the identification and counting of specific cell types. The

integration of the custom app with the hardware allows for real-

time data collection and processing, enabling faster and more

accurate preoperative assessments in resource-limited settings.

This device is designed for use by both care providers and

patients. For care providers, it reduces the need for extensive

clinical laboratory setups, lowering financial and logistical

barriers, especially in remote or resource-limited environments.

For patients, it offers the potential for more frequent and

convenient health monitoring, eliminating the need for travel to

distant healthcare facilities for preoperative tests. By empowering
Frontiers in Digital Health 03
patients with a portable, easy-to-use diagnostic tool, the system

enhances patient autonomy and reduces delays in care. This

innovation could streamline the preoperative process, allowing

for more efficient scheduling and reducing the overall time and

resources spent on preoperative assessments.
2 Materials and methods

Building on the system’s potential for universal adaptability,

we tested the m-phone for compatibility across multiple

smartphone platforms, transitioning it from its original Android

implementation to an iOS device. This adaptation was part of a

broader effort to ensure that the device could be easily applied to

different phone models while maintaining consistent and

accurate cell counting performance. The goal was to verify that

the hardware could be adapted to new smartphones without

significant modification, confirming the system’s versatility in

resource-limited settings. As part of this proof-of-concept

demonstration, we used the iPhone 14 Pro Max as a

representative example.

During the adaptation process, some adjustments were

required to ensure the system’s functionality remained

consistent across different platforms. One of the key

adjustments involved overcoming the limitation of the

iPhone’s built-in camera application, which lacks the ability to

keep the flashlight on continuously during photo preparation

—an essential feature for locating specific regions of the

biosamples that require analysis. Thus, we developed a

custom iOS application that enabled the flashlight to

remain on constantly with adjustable brightness levels, as

shown in Figure 2. This improvement facilitated image field

determination while also ensuring that the camera could
frontiersin.org
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FIGURE 2

Screenshot of the custom-made iOS application.
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adjust its focus on the features before taking the pictures. The

app also allows for adjustment of the ISO (International

Organization for Standardization) value, which controls the

camera’s sensitivity to light, and shutter time, which

determines the exposure duration. Adjusting these settings

helps optimize image quality based on the phone model and

the type of analysis required.

However, during the development and testing phase, we

encountered limitations with the flashlight’s brightness as well as

the light pipe’s efficiency in light transmission. The previous

lighting setup was found to be inadequate for providing enough

illumination brightness, which resulted in uneven backlight
Frontiers in Digital Health 04
intensity in the image captured. It also resulted in a lot of dirt

that built up on the lens system being captured on the images.

The accumulation of dirt on various lens components is normal

since the optical system is not fully sealed. In most commercial

microscopes though, dirt on these surfaces typically does not

significantly affect image quality because the bright backlight

reduces its visibility. However, in our device, the backlight is not

as bright, so any dirt or dust on the lens or optical surfaces is

more likely to create noticeable artifacts, such as dimmer areas or

visible specks in the image. This issue is particularly pronounced

when the dirt is located on the surfaces closest to the sample or

light source, where it may even show up as distinct artifacts.

Thus, we added two glass beads on both sides of the light pipe.

The one on the flashlight end is able to collect more light, while

the one on the side is able to focus more light onto the sample,

as shown in Figure 3. This brighter illumination significantly

enhanced the visibility of cells in the captured images, thereby

providing more detailed morphological information about the

cells, and improving the accuracy and reliability of the cell

counting process.

Furthermore, we developed a cell counting algorithm

tailored to the images captured using this new system. The

algorithm was designed to be simple and efficient, with a

streamlined workflow, as shown in Figure 4. The image taken

with the custom camera application would be loaded in a

Python environment with OpenCV, and would then be

cropped to a square shape to exclude all the dark areas. It

would then be converted to grayscale before a circular mask

would be applied to isolate the field-of-view (FOV) area. The

cell boundaries were then enhanced with min-max normalization

based on the pixel intensities in the FOV area. The entire

picture would then be shrunken to a dimension of 501 by 501

pixels to reduce the calculation workload for all the remaining

steps. To achieve optimal image quality for the subsequent cell

recognition step, a Gaussian filter with a kernel size of 5� 5

was applied to reduce noise, followed by a sharpening filter to

enhance the edges of the cells. The sharpening filter used the

following 3� 3 kernel:

�1 �1 �1
�1 9 �1
�1 �1 �1

2
4

3
5

Next, a median filter with a 5� 5 window size was applied to

further reduce noise while preserving edges. The image was then

processed using Contrast Limited Adaptive Histogram

Equalization (CLAHE) with a clip limit of 1.0 and a grid size of

8� 8 to enhance local contrast. Finally, the brightness was

adjusted by adding a constant bias of 7, and the contrast was

fine-tuned with a scaling factor of 1.02, improving the visibility

of the cells for accurate detection.

As a preliminary proof-of-concept prototype, a Hough circle

algorithm is used to identify targeted cell types. The targeted cell

is identified by its minimal and maximal diameter in amount of

pixels, as well as the minimum distance between cells. These
frontiersin.org
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FIGURE 3

Prototype of m-phone adapted to an iPhone 14 Pro Max. The ball lens next to the phone flashlight is hidden from view.

FIGURE 4

Processing and cell counting flowchart for images taken with m-phone.
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dimensions can be looked up in units of micrometers and

converted to the number of pixels based on the pixel

resolution of the image. In our algorithm the minimum radius

of 2.5 mm and the maximum radius of 5 mm were used. To

reduce the false detection of multiple neighboring circles in

addition to the true one, the minimum distance between

circles is set to 4.5 mm. The conversion ratio could be

calculated using a fixed spacing grid target, as performed in

the previous research (16). Similar to the previous research, a

complete human blood smear was prepared, and different

pictures of the blood smear were collected to validate the cell

counting algorithm. All analyzed images were collected from

different and non-overlapping areas of the same blood smear

slide that was prepared using a drop of finger-pricked blood

collected from one of the authors with informed consent. For

this project, 22 images were taken as the dataset.
Frontiers in Digital Health 05
3 Results

An example processing result of a red blood cell image

captured using the m-phone is shown in Figure 5. Since the

optical system setup is the same as the previous work, the images

taken also have the same pixel resolution and spatial resolution,

namely 26.3 px/mm and 2.19 mm, respectively. It can be seen

from this image that all the cells can be observed in the raw

image, but the image processing enhances the contrast of the

edges of the cells, making it possible to classify each cell based

on morphological features such as shape, roundness, and

diameter. For red blood cells, these features, particularly their

circular shape and diameter, are key in distinguishing them and

enabling further classification. It also shows that a relatively

straightforward algorithm is able to successfully identify and

highlight almost all cells in the image.
frontiersin.org
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FIGURE 5

Left: Raw image captured by m-phone with iPhone 14 Pro Max;
Center: Processed image showing more obvious cell edges and
shapes; Right: Identified cells with the cell counting algorithm.
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To validate the accuracy and consistency of the algorithm, we

compared the cell counts generated by the algorithm with the

actual cell counts obtained through manual counting for the 22

different images in the dataset. The results showed a linear

correlation (R2 ¼ 0:89535) between the actual and algorithm-

generated cell counts, as shown in Figure 6. Detailed error

analysis data can be found in Table 1. The algorithm achieved a
Frontiers in Digital Health 06
recall of 0.9312 and a precision of 0.8663. The mean absolute

error (MAE) was calculated to be 3.36, and the mean squared

error (MSE) was 18.27.
4 Discussion

The system demonstrates its potential to perform red blood

count and its possibility to perform cell type identification and

classification based on morphological features, indicating its

capability to revolutionize preoperative testing and address the

various challenges associated with current preoperative lab tests.

The R-squared value of 0.89535 indicates a strong linear

correlation between the actual cell counts and those generated by

the algorithm. The high recall of 0.9312 indicates that the

algorithm is able to recognize almost all of the red blood cells.

Its relatively lower precision of 0.8663 indicates that it is

susceptible to falsely recognizing other artifacts, for example

speckles of dirt, as cells. The algorithm also produces a mean

absolute error of 3.36 and a mean squared error of 18.27, which

suggests that while most predictions are accurate, there are

occasional larger discrepancies that could be further optimized.

One of the primary advantages of the system is the simplicity

and speed of data collection. The entire algorithm is very

lightweight and takes only about 1 s to run, making the

procedure extremely fast and accessible. This rapid processing

time is beneficial for the widespread adoption of such

technologies since it would not impose any extra inconveniences

in either technology requirement or time.

The device also shows promise in identifying and classifying

different cell types, which is essential for comprehensive

preoperative testing. However, to fully realize its potential, a larger

database of cell images and classifications is needed. With an

expanded database, the accuracy and reliability of the device in

distinguishing various cell types can be further improved, making

it a more robust and powerful tool for preoperative assessments.

Furthermore, the system also closely mirrors the current

clinical standard’s cell-counting process using hemocytometers,

which involves counting cells in a defined area with fixed fluid

depth and grid spacing. Our system has the potential to

automate this process, reducing the need for trained personnel to

perform manual counts. However, further hardware and software

adaptations, such as compatibility with the hemocytometer chips

and automatic calculation of grid spacings, are needed to bring

the device closer to clinical standards.

Since this system is an early-stage proof-of-concept prototype,

it has a lot of limitations that could be improved in future

development. One of the main limitations of the current device

is its extremely limited FOV. Enhancing the FOV would allow

for the examination of larger sample areas, reducing the need for

multiple scans and thus further speeding up the testing process.

A wider FOV would also facilitate the detection of rare cell types

or anomalies that might be missed in a smaller viewing area.

Furthermore, future development direction should also include

achieving an adjustable magnification ratio of the device, since

the current high magnification ratio is good for visualizing
frontiersin.org
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FIGURE 6

Comparison between cells counted manually and generated by the cell counting algorithm.

TABLE 1 Error analysis of the cell counting algorithm.

Precision
(mean+ std)

Recall
(mean+ std)

Mean
absolute
error

Mean
squared
error

0:8663+ 0:1265 0:9312+ 0:0525 3:3636 18:2727
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individual cells but lack the ability to visualize larger components

like blood clots. Integrating a range of different magnification

ratios would certainly expand the capability of the device to more

comprehensive usages of other biosamples. The cell counting

algorithm would also need further development to achieve better

precision and accuracy. The current algorithm is fast but simple,

with both Type I and II errors observed, so developing a new

algorithm that achieves higher accuracy without sacrificing the

processing speed would make the system more reliable.

In addition, future development should also include integrating

the camera application with the cell counting algorithm, as it would

open up possibilities of analysis for a larger sample size beyond the

constraint of an image. Eventually, it might even be possible to

annotate live video streams. However, retaining the option to

capture images could still be beneficial, especially for providing

visual references to physicians and pathologists for additional

judgment and reference. Implementing the ability to share

images with healthcare providers can also aid in collaborative

decision-making and ensure that patients receive the most

accurate and comprehensive care.

Another direction for future development and research is to

integrate a microfluidic channel or tube, enabling direct observation

and analysis of fluid samples without the need for prior sample
Frontiers in Digital Health 07
preparation. The current process of manually preparing blood

smears on glass slides presents a challenge, as it requires additional

training to ensure proper preparation and handling. In addition,

while users can currently draw blood using standard methods, such

as finger-pricking and preparing a slide, this approach only allows

a fraction of the sample to be observed, with results often

extrapolated from this limited view. By incorporating a microfluidic

solution, we aim to eliminate the need for manual sample

preparation and improve accuracy, as every cell in the fluid sample

could be observed and recorded directly.

Future developments could focus on effectively implementing the

system into clinical practice. Incorporating training materials directly

into the software for healthcare providers and patients could help

users quickly become familiar with the system. Additionally,

integrating the system’s test results and images into patients’

electronic health records (EHRs) would enable seamless sharing of

data with healthcare providers, facilitating faster diagnosis and

treatment decisions. These improvements would enhance the

practicality of the device and support its integration into preoperative

lab testing workflows in both urban and rural environments.

In general, this device has the potential to serve as a promising

alternative for integration into preoperative lab test procedures. For

care providers, the device simplifies preoperative testing workflows

by eliminating the need for extensive laboratory setups, particularly

in resource-constrained environments. This reduction in

complexity helps medical staff focus on patient care rather than

managing laboratory infrastructure. For patients, especially those

in rural or remote areas, the system offers an opportunity for

frequent, real-time health monitoring without the burden of

traveling to distant healthcare facilities. This portability ensures
frontiersin.org
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that preoperative testing is not only faster but also more accessible

and affordable.

The key contribution of this work lies in the integration of the

microscope hardware with custom image analysis software to create

a fully functional system. While previous work focused on the

hardware, this study presents a deployable solution that automates

diagnostic procedures through the custom app and cell counting

algorithm. This complete system is designed for real-world use,

eliminating the need for specialized personnel and lab infrastructure.

By offering a comprehensive, easy-to-use platform, the device

significantly reduces the financial and logistical burdens associated

with clinical diagnostics. The system’s ability to process data in real

time and perform automated analysis makes it a practical alternative

to traditional lab tests, particularly in remote and underserved areas.
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