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Leveraging machine learning and
rule extraction for enhanced
transparency in emergency
department length of
stay prediction
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This study aims to address the critical issue of emergency department (ED)
overcrowding, which negatively affects patient outcomes, wait times, and
resource efficiency. Accurate prediction of ED length of stay (LOS) can
streamline operations and improve care delivery. We utilized the MIMIC IV-ED
dataset, comprising over 400,000 patient records, to classify ED LOS into
short (≤4.5 hours) and long (>4.5 hours) categories. Using machine learning
models, including Gradient Boosting (GB), Random Forest (RF), Logistic
Regression (LR), and Multilayer Perceptron (MLP), we identified GB as the best
performing model outperforming the other models with an AUC of 0.730,
accuracy of 69.93%, sensitivity of 88.20%, and specificity of 40.95% on the
original dataset. In the balanced dataset, GB had an AUC of 0.729, accuracy of
68.86%, sensitivity of 75.39%, and specificity of 58.59%. To enhance
interpretability, a novel rule extraction method for GB model was
implemented using relevant important predictors, such as triage acuity,
comorbidity scores, and arrival methods. By combining predictive analytics
with interpretable rule-based methods, this research provides actionable
insights for optimizing patient flow and resource allocation. The findings
highlight the importance of transparency in machine learning applications for
healthcare, paving the way for future improvements in model performance
and clinical adoption.

KEYWORDS
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FIGURE 1

Overview of study workflow.
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1 Introduction

Emergency departments (EDs) are at the forefront of

healthcare, where providing timely and efficient care is essential

for saving lives. Overcrowding is a global problem that causes

longer wait times, lower quality care, and increased stress for

healthcare providers (1). Overcrowding occurs when the demand

for emergency services exceeds a department’s capacity to

provide timely, high-quality care, negatively affecting patient

outcomes and operational efficiency (2).

Effective management of emergency department (ED) length of

stay (LOS) is crucial to mitigating overcrowding, primarily by

optimizing the allocation of resource (3). Accurate prediction of

LOS can help streamline patient flow, prioritize treatment, and

ensure that resources are used efficiently, resulting in better patient

outcomes in the ED. Automating ED LOS classification with

machine learning (ML) techniques allows healthcare providers to

make proactive data-driven decisions, especially in high-volume EDs

where traditional methods are not scalable or accurate (4).

Traditional LOS prediction methods often use simplistic

metrics or heuristic rules, which do not account for the

complexity of patient conditions and clinical pathways (4). These

approaches introduce biases and overlook important patient-

specific factors, reducing resource planning effectiveness and

increasing the likelihood of suboptimal care delivery, particularly

under high-pressure conditions typical of EDs.

Recent advances in machine learning have shown promise in

improving the accuracy and granularity of ED LOS classification

(5, 6). However, many ML models are considered black boxes,

which limits their practical application in clinical settings due to

difficulties in understanding the underlying decision processes

(7–9). To address this issue, our study aims not only to

accurately classify ED LOS using the MIMIC IV ED healthcare

dataset, but also to improve model interpretability by

implementing a novel rule extraction method tailored for

Gradient Boosting (GB).

We use machine learning and deep learning models such as

GB, Random Forest (RF), Logistic Regression (LR), and

Multilayer Preceptron (MLP) to categorize ED LOS into short

stays (�4.5 h) and long stays (>4.5 h), identifying the model with

the best predictive capabilities. In addition, our goal is to

improve model transparency by analyzing the extracted rules and

calculating metrics such as accuracy, relative coverage, and

overall coverage. This rigorous analysis provides healthcare

professionals with clear and actionable guidelines for patient

management, facilitating informed clinical decision-making, and

optimal allocation of resources in emergency departments (10, 11).

Our research also addresses the class imbalance of the data set,

which shows that “ED LOS (Long)” cases outnumber “ED LOS

(Short)” cases. To address this imbalance, we employ various

different types of over- and under-sampling methods in a robust

manner, enhancing the model’s ability to learn from both classes

effectively (12).

By validating these findings and exploring the integration

of sophisticated predictive models with interpretable rule

extraction techniques, this research aims to optimize patient flow
Frontiers in Digital Health 02
and refine care delivery strategies in emergency healthcare

settings. This approach contributes to the advancement of

data-driven methodologies in healthcare management, illustrating

how ML techniques can enhance operational efficiency and

patient outcomes.

The structure of the paper is organized as follows: Section 2

provides an overview of studies on Emergency Department

Length of Stay. Section 3 details the materials and methods,

including feature selection, machine learning modeling,

and rule extraction. Section 4 presents the results of the

feature analysis, model evaluation, and rule extraction.

Section 5 discusses these findings, and finally Section 6

concludes the article. A complete overview of the study flow is

presented in Figure 1.
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2 An overview of emergency
department length of stay studies

Recent investigations into predicting emergency department

length of stay have utilized various machine learning models to

meet the growing demand for effective patient care and resource

management. The objectives, features, datasets, and methodologies

of these studies vary, as shown in Table 1. This section provides a

comprehensive overview of current research in this area.

Ala et al. (13) and Zebin et al. (14). Both used the MIMIC data

set, although different versions, to investigate patient outcomes in

emergency settings. Ala et al. (13) classified emergency patients

into complex and fast-track categories using models such as

Multilayer Perceptron (MLP), Regression Trees (CART), and

Stochastic Gradient Boosting (SGB), with the SGB model

reaching an AUC of 0.752. This study demonstrated the

importance of clinical variables, such as vital signs and chief
TABLE 1 Summary of studies on ED LOS prediction.

Study Objective Features Dataset

Ala et al.
(13)

Classify emergency
patients into complex
and fast-track (<4 h)

19 variables which include
vital signs, pain, chief
complaints, arrival means,
and age

MIMIC-IV-ED and
MIMIC-IV

Zebin
et al. (14)

Identify short (0–7 d)
and long (>7 d) hospital
stays

Admission records,
demographics, diagnosis
codes (ICD-9), chart
events

MIMIC-III

Pedro
et al. (15)

Predict hospital
admission and prolonged
LOS in older adults (>70
years)

21 variables including age,
sex, comorbidities, ISAR
tool, FRAIL scale, and
CAM

Retrospective coho
of geriatric ED in
Brazil

Bopche
et al. (16)

Predict prolonged ED
LOS (>2 d) using
historical patient records

Age, temporal features,
laboratory results,
diagnostic codes

Retrospective coho
at St Olavs Univers
Hospital, Norway

Etu et al.
(17)

Prediction model for
COVID-19 patient ED
LOS less than or greater
than 4 h

127 clinical and
operational variables
including age, sex, ESI,
insurance, and
comorbidities

Henry Ford Hospit
EHR

Chang
et al. (18)

Predict low-severity
patients with short
discharge LOS in ED
(<4 h)

32 variables including
trauma, chief complaints,
injury mechanisms, and
vital signs

Retrospective study
in Taiwan

Rahman
et al. (19)

Predict ED LOS >4 h
using a decision tree
algorithm

33 variables including ED
visit type, age, gender,
triage category, and
consultations

Regional Australian
public hospital

Gill et al.
(20)

Predict fast track patients
staying longer than 4 h in
ED

27 variables with emphasis
on time-dependent factors
like time to imaging
request

Regional Australian
Public Hospital

This study Predict ED LOS >4.5 h
with enhanced
interpretability using rule
extraction

Top 10 important
variables including arrival
methods and medication
history

MIMIC IV-ED

CatBoost, Categorical boosting; CART, Classification and regression trees; DNN, Deep neural n

perceptron; ProAGE, Pronto atendimento geriátrico especializado-specialized geriatric emergenc

minority over-sampling technique + tomeklinks undersampling technique; XGBoost, Extreme gr
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complaints, in designing successful decision support systems.

Zebin et al (14) used an auto-encoded deep neural network on

the MIMIC-III dataset to differentiate between short and long

hospital stays. Their solution, which obtained an accuracy of

77.7%, demonstrated the value of advanced feature engineering

and deep learning to capture complex patterns in large datasets.

Both studies emphasize the need to integrate diverse patient data

to improve prediction accuracy and clinical decision-making.

Pedro et al. (15) used a ProAGE (Pronto Atendimento

Geritrico Especializado – Specialized Geriatric Emergency Care)

rating system which is a validated mnemonic method used to

assess vulnerability and predict hospital admission, prolonged

length of stay (LoS), and death in older adults at the ED (21).

They combined ProAGE with bootstrapping to predict hospital

admission and prolonged LOS in older people, achieving an

AUC of 0.790. Their study focused on a specific cohort,

emphasizing the importance of geriatric-specific characteristics
Models Sample size and
train/test split

Results

MLP, CART, RF,
LR, SGB

sample size = 104,014, Split:
80% train, 20% test, 5-folds
CV

SGB: Sensitivity = 59.13%,
Specificity = 91.20%,
AUC = 0.752

RF, Auto-
Encoder, DNN

Sample Size: 53,104 Split:
80% train, 10% validation,
10% test

Auto+DNN: Accuracy =
77.7%, Sensitivity = 77.6%,
Precision = 75.2%

rt PRO-AGE
scoring system,
Bootstrapping

Sample Size: 5,025 patients,
Data Split: 2:1
(bootstrapped)

AUC = 0.79

rt
ity

XGBoost,
LightGBM,
CatBoost

Sample Size: 35,591 Split:
80/20

XGBoost:
AUROC = 0.9797,
Accuracy = 0.9286,
Sensitivity = 0.9179,
Specificty = 0.9322

al LR, GB, DT, RF, Sample Size: 57,665 Split:
80% train, 20% test,
SMOTE, 10-fold cross-
validation

GB: Accuracy = 85%,
AUC = 0.930, F1
Score = 0.880,

CatBoost,
XGBoost, DT, RF,
LR

Sample Size = 127,749, Split:
80% train, 20% test

CatBoost: AUC = 0.748,
Sensitivity = 59.09%,
Specificity = 83.25%

Decision Tree Sample Size: 80,512 Split:
divided into mutually
exclusive horizontal
segments, 10-fold cross-
validation

Accuracy = 84.94%

Gradient Boosting Sample Size: 62,955 Split:
70% train, 30% test, 10-fold
cross-validation

AUC = 0.890

GB, RF, LR, SVM, Sample Size = 410,927, Split:
80% train, 20% test, SMOTE
+Tomek, 5-fold stratified
cross-validation

GB: Accuracy = 69.93%,
Sensitivity = 88.20%,
Specificity = 40.95%,
AUC = 0.730

etwork; DT, Decision tree; GB, Gradient boosting; LR, Logistic regression; MLP, Multilayer

y care; RF, Random forest; SGB, Stochastic gradient boosting; SMOTE + Tomek, Synthetic

adient boosting.
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such as the ISAR (Identification of Seniors At Risk) tool and the

FRAIL scale (Fatigue, Resistance, Ambulation, Illness, and Loss

of weight), which are critical to understanding the complexities

of care for elderly patients.

Etu et al. (17) created a prediction model for COVID-19

patient ED LOS by combining Logistic Regression (LR), Gradient

Boosting (GB), and Decision Trees. Their study, which used data

from Henry Ford Hospital, found that the GB models

outperformed other models, with an AUC of 0.930, especially

when dealing with unbalanced data sets using approaches such

as SMOTE.

Chang et al. (18) used a variety of models, including CatBoost

and XGBoost, to predict low-severity patients with short discharge

times. Their work revealed the usefulness of ensemble methods in a

retrospective Taiwanese data set, with CatBoost reaching an AUC

of 0.748. This study emphasizes the necessity of model selection

in different clinical contexts.

Rahman et al. (19) and Gill et al. (20) both studied regional

Australian public hospitals, with an emphasis on predicting ED

LOS of more than 4 h. Rahman et al. (19) used a decision tree

approach and obtained an accuracy of 84.94%. Their research

revealed the utility of decision trees in developing interpretable

models for the prediction of LOS in the emergency department,

which is especially significant in clinical settings where

transparency is required. Similarly, Gill et al. (20) focused on

fast-track patients and applied gradient boosting, reaching an

AUC of 0.890. Their results highlighted the importance of time-

dependent variables, such as the time to imaging request, in

understanding patient flow and addressing bottlenecks in

emergency care. Both findings emphasize the importance of

predictive modeling in increasing the efficiency of the emergency

department and patient outcomes.

Our research builds on previous work by combining rule

extraction with GB models to improve interpretability while

retaining predictive performance. Our research not only

coincides with the accuracy and AUC scores published in

previous studies but also makes a distinct addition by offering

clear, actionable insights through rule extraction.
3 Materials and methods

In this section, we first describe raw data processing/

benchmark data generation, and preprocessing. Next, we

introduce data balancing methods, baseline models for the

benchmark task, and model performance evaluation. Finally, we

elaborate on the rule extraction and analysis methods.

A complete overview of the study flow is presented in Figure 1.
3.1 Data source

We used real-world data from the MIMIC-IV ED dataset (22),

which is a comprehensive clinical database that contains detailed

information from the emergency departments of Beth Israel

Deaconess Medical Center in Boston, Massachusetts. The
Frontiers in Digital Health 04
analytical data set contained deidentified information from more

than 400,000 emergency department visits between 2011 and

2019, such as demographics, comorbidities, laboratory results,

vital signs, medications, medical procedures, and clinical results.

The raw data was managed using a data generation pipeline (7),

and additional data processing was performed with Python

version 3.9.7. Additional information about the initial data

processing is provided to ensure the transparency and

reproducibility of our methods.
3.2 Preprocessing

Raw electronic health record (EHR) data is often unsuitable for

model building due to issues such as missing values, outliers,

duplicates, and errors arising from system or clerical errors (23).

Therefore, effective preprocessing is crucial to ensure optimal

machine learning performance.

3.2.1 Exclusion criteria
We addressed these issues by first defining the following

exclusion criteria:

• Patients under the age of 18 (n = 168) were excluded

• ED LOS less than 0.5 h (n = 2,264) and more than 24 h

(n = 11,896) were excluded.

• Negative values of ED LOS (n = 6) that were deemed erroneous

were removed.

The criteria were guided by existing literature (7, 24), which

shows that patients under the age of 18 should be discarded as

their medical conditions and healthcare requirements differ

significantly from adults, necessitating different triage and

treatment procedures. An ED LOS of 24 to 48 h can be

considered prolonged (24). Prolonged LOS is frequently

attributed to non-health-related factors such as bed shortages or

patients refusing to be discharged, whereas stays of less than

0.5 h are typically associated with minor complications.

3.2.2 Outlier detection
Outlier detection was performed, first by defining values of

vital signs as outliers and marking them as missing if they fell

outside the plausible physiological range determined by domain

knowledge, such as a value less than zero or an oxygen

saturation level greater than 100%, using an outlier detection

procedure similar to MIMIC-EXTRACT (25). For the detection

thresholds, we used thresholds found in Harutyunyan et al. (26).

One set of upper and lower thresholds was used to filter outliers,

and any value outside of this range was marked as missing. A set

of thresholds were introduced to indicate the physiologically

valid range. Any value that fell outside of this range was replaced

with the nearest valid value, see Table 2.

Second, outlier detection was performed on the outcome

variable ED LOS. We used several established methods for this

purpose, including the Interquartile Range (IQR), Modified

Z-score, and unsupervised learning models like Isolation Forest

and Local Outlier Factor (LOF) (27, 28). LOF outperformed
frontiersin.org
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other methods as it was able to retain a distribution closest to

original distribution as seen in Figure 2. A complete overview of

the total missing values for all variables discussed above can be

found in Table 2.
TABLE 2 Summary of MIMIC-IV ED observation distribution of Vital Signs
and ED LOS.

Variable Total
outliers

Total valid
values

Valid range
(26)

Triage temperature (�C) 23,903 401,178 [26, 45]

Triage heartrate (bpm) 17,097 407,984 [0, 350]

Triage resprate (bpm) 20,356 404,725 [0, 300]

Triage O2sat (%) 20,637 404,438 [0, 100]

Triage SBP (mmHg) 18,307 406,774 [0, 375]

Triage DBP (mmHg) 19,486 405,595 [0, 375]

Triage pain 38,236 386,846 [0, 10]

Triage acuity 6,987 418,094 [1, 5]

ED temperature last (�C) 26,837 398,200 [26, 45]

ED heartrate last (bpm) 18,438 406,643 [0, 350]

ED resprate last (bpm) 18,923 406,158 [0, 300]

ED O2sat last (%) 29,102 395,979 [0, 100]

ED SBP last (mmHg) 18,687 406,403 [0, 375]

ED DBP last (mmHg) 18,936 406,145 [0, 375]

ED pain last 49,650 375,432 [0, 10]

ED LOS (h) 3,053 410,132 –

FIGURE 2

Comparison of ED length of stay distributions after outlier removal.
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3.2.3 Outlier imputation experiment
Following the detection of outliers in both vital signs and ED

Length of Stay (ED LOS) data, we conducted an extensive

imputation experiment to benchmark various methods for

handling missing values introduced by outlier detection. This

experiment aimed to assess the accuracy of each imputation

approach across these different types of clinical data.

3.2.3.1 Imputation methods evaluated
The following imputation methods were applied to handle the

artificially induced missing values for both vital signs and ED

LOS data:

• Median imputer: The median value for each variable was used

to replace missing values. This approach is commonly used for

its robustness against outliers.

• K-nearest neighbors (KNN) imputer: The KNN imputer utilized

the nearest five neighbors (n_neighbors = 5) to impute missing

values. This method allows for local patterns in the data to be

leveraged when estimating the missing values (29).

• Iterative imputer: A multivariate approach that iteratively

estimated missing values using relationships between all other

features. This method is particularly suited for datasets with

highly correlated features (29).

• Autoencoder imputer: A deep learning-based autoencoder (30)

was implemented . The model architecture consisted of an input
frontiersin.org
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TABLE 3 Baseline characteristics of the study population.

n = 410,927

Demographics
Age (years) 52.76 (20.61)

Gender, n (%)

Female 222,318 (54.10%)

Male 188,699 (45.90%)

Charlson comorbidity index score 1.37 (2.63)

Elixhauser comorbidity index score 3.09 (4.79)

Healthcare utilization
Number of ED visits in past 30 d 0.24 (0.78)

Number of ED visits in past 90 d 0.53 (1.61)

Number of ED visits in past 365 d 1.40 (4.21)

Number of Hospital visits in past 30 d 0.16 (0.52)

Number of Hospital visits in past 90 d 0.36 (1.03)

Number of Hospital visits in past 365 d 0.97 (2.70)

Number of ICU visits in past 30 d 0.02 (0.16)

Number of ICU visits in past 90 d 0.05 (0.27)

Number of ICU visits in past 365 d 0.11 (0.50)

Medication administered during the previous visit, n (%)

Yes 297,075 (72.29%)

No 113,852 (27.71%)

Triage vital signs
�

Sulaiman et al. 10.3389/fdgth.2024.1498939
layer matching the number of features, a dense hidden layer with

10 nodes using ReLU activation, and a reconstruction layer.

Training was carried out using the dataset with missing values

filled by median imputation, with 50 epochs and a batch size of 32.

3.2.3.2 Evaluation metrics
To quantify the accuracy of each imputation method, two

commonly used metrics were employed: Mean Squared Error

(MSE) and Mean Absolute Error (MAE). These metrics

compared the imputed values against the original values from

the subset without missing data.

3.2.3.3 Experimental design
The experiment was carried out separately for both the vital signs

and the ED LOS variables. In each case, a large subset (n = 50,000/

250,000) of relevant data without missing values was selected for

evaluation. To simulate missing data, 20% of the values in the

subset were randomly set to missing using a probabilistic mask.

Then the various imputation methods were used to predict

values and compare them with the original known value. This

process was repeated fives times to ensure robustness in the

evaluation and average MSE and MAE were found.

Temperature ( C) 36.72 (0.54)

Heart rate (bpm) 85.22 (17.49)

Respiratory rate (bpm) 17.58 (2.50)

Oxygen saturation (%) 98.36 (2.40)

Systolic blood pressure (mmHg) 134.78 (22.13)

Diastolic blood pressure (mmHg) 77.39 (14.69)

Pain scale 4.11 (3.62)

Acuity 2.63 (0.71)

ED last vital signs
Temperature (�C) 36.76 (0.37)

Heart rate (bpm) 78.19 (14.45)

Respiratory rate (bpm) 17.26 (2.48)

Oxygen saturation (%) 98.16 (2.93)

Systolic blood pressure (mmHg) 127.38 (19.56)

Diastolic blood pressure (mmHg) 73.55 (13.60)

Pain scale 2.18 (2.82)

Outcomes
Length of stay (h), n (%)

Short (� 4.5 h) 158,898 (38.67%)

Long (>4.5 h) 252,029 (61.33%)

Hospitalization, n (%)

Yes 191,289 (46.55%)

No 219,638 (53.45%)

Critical, n (%)

Yes 27,989 (6.81%)

No 382,938 (93.19%)

ED revisit 3 d, n (%)

Yes 14,557 (3.54%)

No 396,370 (96.46%)

Continous variables presented asmean (sd) and categorical ones presented as count (percentage).
3.3 Data set

A master dataset of 410,927 Emergency Department (ED) visits

from 202,503 unique adult patients (aged over 18) was generated,

which included 72 different variables. The resulting dataset was a

tabular dataset with a shape of (410,927 � 72), comprising both

categorical and continuous features. Table 3 provides the baseline

characteristics of the study population. The mean age of the patients

in this dataset is 52.76 years, with a standard deviation of 20.61 years,

indicating a broad age range ranging from 18 to 91 years. The racial

makeup of our cohort offers crucial understanding of the study’s

demographics, with primary groups being 53.81% White, 18.21%

Black or African American, and 4.87% classified as Other. The data

set’s gender breakdown shows a balanced representation, with a total

count of 202,503 persons. 45.90% of these are men, while 54.10% are

women. More information is provided in Table 3.

The outcome variable ED LOS was classified into two

categories: short (less than 4.5 h) and long (greater than 4.5 h).

This cutoff was chosen because it represents the average time

hospitalized patients spend in the ED (22). According to relevant

literature (31), the 4.5 h threshold aligns with several key

performance metrics used in emergency care, which often

consider a 4- to 5 h mark critical to evaluate quality of care and

patient performance. The United Kingdom Department of

Health (32) also supports the implementation of the 4 h rule.
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TABLE 4 Comparison of ED LOS dataset distribution before and after
SMOTETomek application.

Outcome: ED LOS

Short (�4.5 h) Long (>4.5 h)

Original data set (Imbalanced)
Training data 127,168 (38.68%) 201,574 (61.32%)

Test data 31,726 (38.60%) 50,459 (61.40%)

Total 158,894 (38.67%) 252,033 (61.33%)

Balanced data set (SMOTETomek)
Training data 201,489 (50.00%) 201,489 (50.00%)

Test data 31,726 (38.60%) 50,459 (61.40%)

Total 233,315 (48.07%) 251,948 (51.93%)

Sulaiman et al. 10.3389/fdgth.2024.1498939
The outcome variable ED LOS had a mean value of 6.40, with a

right-skewed distribution, as illustrated in Figure 2.

Initially, the data set was divided into training and test sets

using a 80/20 ratio as detailed in Table 4. This method

guarantees that the evaluation metrics accurately represent the

model performance on unseen data.
3.4 Data balancing methods for ED LOS

In this study, the ED Length of Stay (ED LOS) was identified as

an imbalanced outcome variable, with the majority of instances

classified as long stays (62%). To address this imbalance, we

applied several data balancing techniques using the imblearn

library in Python (33), focusing solely on the outcome variable

ED LOS.
3.4.1 Balancing methods
The following balancing methods were applied:

• SMOTE (Synthetic minority over-sampling technique): The

Synthetic Minority Over-sampling Technique (SMOTE) (34)

addresses imbalanced data by creating synthetic samples for

the minority class based on nearest neighbors. This increases

minority representation and contributes to a more balanced

training set.

• ADASYN (Adaptive synthetic sampling): Adaptive Synthetic

(ADASYN) (35) algorithm is similar to SMOTE, but it focuses

on difficult-to-learn instances by creating synthetic samples in

areas where minority classes are underrepresented.

• Tomek links: Tomek Links (36) is an undersampling method

that eliminates overlapping samples from different classes,

thereby improving class separation and lowering ambiguity.

• SMOTETomek: The SMOTE-Tomek method (12) combines

SMOTE and Tomek Links to balance classes and remove

overlapping samples, resulting in a better-defined dataset and

improved classifier performance.

• SMOTEENN: The SMOTE-ENN method (37) combines

SMOTE oversampling with Edited Nearest Neighbors (ENN)

undersampling to generate synthetic minority samples and

remove noisy or misclassified samples, improving data quality.
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3.4.2 Evaluation of balancing techniques
We evaluated the balanced datasets using various machine

learning models, including Random Forest, Gradient

Boosting, Logistic Regression, and a Multi-Layer Perceptron

(MLP) neural network. A 5-fold stratified cross-validation

was used to ensure the reliability of the metrics. Evaluation

metrics were calculated for both the training and the test sets.

3.4.3 Confusion matrix analysis
To better understand how data balancing affects model

performance, we created a confusion matrix for each balancing

technique and classifier. The confusion matrix provided a

detailed view of true positives, true negatives, false positives, and

false negatives, allowing us to evaluate the accuracy of each

balancing strategy in correctly identifying both “Short” and

“Long” ED LOS categories. Refer to Figure 3.

3.4.4 Experimental procedure
The balancing and evaluation procedure consisted of the

following steps:

1. Splitting the dataset: The dataset was divided into training and

testing sets in an 80/20 split. To provide an unbiased evaluation

of model performance, the training set was balanced while the

test set remained unchanged.

2. Cross-validation and resampling: During the 5-fold

stratified cross-validation, each training fold was resampled

using one of the balancing techniques. The balanced

training set was then utilized to train the models and

validated on the corresponding unbalanced test fold to

calculate accuracy, AUC, specificity, sensitivity, and F1 score.

3.5 Feature engineering and selection

3.5.1 Feature engineering
In addition to the 72 analytical variables, several new

variables were derived from the original data to improve

the performance of the model. Notably, a new feature,

Medication Event, was introduced as a boolean variable that

indicates whether the patient received medication during a

previous visit. The Charlson comorbidity index (CCI) and

Elixhauser comorbidity index (ECI) were also calculated.

For both indices, weights ranging from 1 to 6 were

assigned to various comorbid conditions based on their

severity (38). These weights were then summed together to

generate a single score for each index, providing a

comprehensive measure of each patient’s comorbidity burden.

To facilitate prediction of the outcome, the length of stay

(“ED_LOS”) variable was divided into two categories.

Specifically, a 4.5 h threshold was used to classify LOS as

“short” (�4.5 h) or “long” (>4.5 h). This classification

produced a new binary variable in which short stays were

encoded as 0 and long stays as 1, ensuring consistency for

subsequent modeling, yielding 158,898 short stays (38.67%)

and 252,029 long stays (61.33%).
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FIGURE 3

Confusion matrices for various sampling methods & classifiers. Where TP is ED LOS long stay and TN is ED LOS short stay. Values given in
percentage format.
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3.5.2 Encoding categorical features
To allow for more effective modeling, categorical variables

were encoded using one-hot encoding utilizing the pandas

library (39). This transformation enabled categorical

variables to be represented by binary columns, providing

flexibility for models that benefit from binary feature

representations. Features encoded include Race, Arrival

Transport, Disposition, Insurance, and Chief Complaint

indicators. Each category within these characteristics was

represented as a separate binary column to ensure

completeness and preservation of information. Table S1 of

the Supplementary Material provides a complete summary of

the one-hot encodings.
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3.5.3 Feature selection
In order to perform feature selection, a comprehensive feature

importance analysis was performed. This process involved taking

advantage of the inherent ability of the Gradient Boosting (GB)

model to rank features based on their predictive power (40). By

analyzing the importance scores of the GB model, we identified

the ten most influential variables for ED LOS. This step was

critical in reducing the dimensionality, which simplified the data

and increased the efficiency of subsequent analysis. By limiting the

variables to those that were the most important, we not only

improved the interpretability of our model, but also reduced

computational complexity and the risk of over-fitting (41).

Importance scores provided by the GB model highlighted key
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TABLE 5 Description of top 10 GB importance variables.

Variable name Description Type
Triage acuity Triage acuity [emergency severity index (1:

Resuscitation/2: Emergent/3: Urgent/4: Less
urgent/5: Non-urgent)]

Categorical

Arrival transport
unknown

Indicator for unknown mode of patient
arrival to the ED (YES/NO).

Boolean

Elixhauser
comorbidity index
(ECI)

Elixhauser Comorbidity Index (ECI) score,
representing the comorbidity burden of the
patient.

Numeric

Disposition admitted Indicator for whether the patient was
admitted to the hospital from the ED (YES/
NO).

Boolean

Chief complaint
abdominal pain

Indicator for whether the chief complaint at
triage was abdominal pain (YES/NO).

Boolean

Arrival transport
ambulance

Indicator for whether the patient arrived at
the ED via ambulance (YES/NO).

Boolean

Age Age of the patient. Numeric

Medication event Indicator for whether the patient was given
medication in a prior visit (YES/NO).

Boolean

Disposition home Indicator for whether the patient was
discharged home from the ED (YES/NO).

Boolean

Disposition left
without being seen

Indicator for whether the patient left the ED
without being seen by a clinician (YES/NO).

Boolean
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variables such as patient demographics, initial triage vital signs, and

comorbidities that significantly affect ED LOS. The list of extracted

variables and their description is provided in Table 5.
3.6 Machine learning and evaluation
methods

3.6.1 Machine learning methods
Following the successful data preprocessing and feature

selection, we evaluated four machine learning methods: Gradient

Boosting (GB), Random Forest (RF), Logistic Regression (LR),

and a Multi-Layer Perceptron (MLP) neural network. We used

the scikit-learn package (42) for tree-based methods and

logistic regression, and Keras (43) to implement the MLP model.

The MLP architecture, consisting of an input layer of 10

neurons and a single hidden layer of 64 neurons with ReLU

activation as seen in Supplementary Figure S1, was inspired by

previous work in healthcare prediction tasks (7). The

hyperparameters and model parameters used for each machine

learning method, and MLP, are summarized in Table 6.

3.6.2 Evaluation methods
To thoroughly assess the performance of our prediction models,

we examined the receiver operating characteristic (ROC) curve and
TABLE 6 Machine learning modeling parameters.

Algorithm Parameter Default value
Logistic regression Maximum iterations 1000

Random forest No. of estimators 100

Gradient boosting No. of estimators 100

Multi-layer perceptron Learning rate 0.001

Batch size 200

Epochs 20
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reported the area under the curve (AUC) as the primary indicator

of overall predictive performance. Furthermore, additional

evaluation metrics such as accuracy, sensitivity, specificity, and F1

score were calculated during model training and testing to gain a

comprehensive understanding of each model’s effectiveness.

In addition, to ensure robustness, we used five-fold stratified

cross-validation during model training. This technique ensures

that each fold has a similar class distribution, providing a more

reliable evaluation of the model performance (44).

Furthermore, we used McNemar’s test (45) to compare the

performance of the models pairwise. McNemar’s test, a non-

parametric statistical test, was used to see if the differences in the

misclassification rates between models were statistically

significant. The contingency tables were created using the model

predictions, and p-values less than 0.05 were used to indicate

significant differences in model performance.
3.7 Rule extraction

The purpose of extracting rules from the ensemble

techniques is to make the model decision logic clearer and

more transparent to domain experts while retaining the

predictive power and precision that the ensemble methods

offer (46). In this paper, we used TE2Rules (47) rule

extraction algorithm which has four primary stages:

• At first, TE2Rules generates initial rule candidates by associating

rules with distinct TE tree nodes. These rules describe the

decision paths that lead from the root to each node.

• The second stage assesses these candidates based on two criteria:

the presence of positive instances covered by the rule and rule

precision greater than a predefined threshold. Rules that do

not meet these requirements are eliminated.

• In the third stage, TE2Rules develop stricter rule

candidates by merging pairs of existing candidates. This

process is repeated in phases, eventually refining the

rules. Importantly, TE2Rules often converges to a high

level of fidelity in a few stages, minimizing the

requirement for in-depth processing.

• Finally, once TE2Rules has identified rules that cover all positive

cases, it reduces the rule list by identifying the smallest subset of

rules that cover all positives collectively. This phase minimizes

redundancy and improves the interpretability of the rules,

making it helpful for understanding the Tree Ensemble

model’s decision-making process (47).
3.8 Rules analysis

In order to substantiate the reliability and effectiveness of the

rules derived from the Gradient Boosting model, we performed a

comprehensive analysis of the rules by extracting and evaluating

three key metrics. The generated metrics include overall

coverage, relative coverage, and rule accuracy, each of which is

crucial to evaluate the practical utility and precision of the rules.
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TABLE 7 Average performance of imputation methods.

Sample
size

Imputation
method

Average
MSE

Average
MAE

50,000 Median imputer 24.89 1.23

KNN imputer 26.38 1.27

Iterative imputer 16.45 0.98

Autoencoder imputer 32.10 2.79

250,000 Median imputer 24.83 1.23

KNN imputer 27.23 1.29

Iterative imputer 16.44 0.98

Autoencoder imputer 26.68 1.85

Boldface denotes lowest average MSE/MAE.
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3.8.1 Overall coverage
Overall coverage quantifies the proportion of the data set that is

covered by a given rule (10). It indicates how extensively a rule

applies across the entire dataset. A higher coverage suggests that

the rule is applicable to a larger segment of the data, which can

be indicative of its general relevance.

Overall coverage ¼ Number of samples where rule is activated
Total number of samples

� �
� 100

3.8.2 Relative coverage
Relative coverage measures the proportion of samples in a

specific category that are covered by the rule (48). This metric

helps us understand how well the rule performs for a particular

category such as long or short ED stays, reflecting the rule’s

effectiveness in distinguishing between different categories within

the dataset.

Relative coverage ¼
Number of samples where rule is activated

and belongs to category (ED LOS (short=long))
Total number of samples

0
BB@

1
CCA�100
3.8.3 Rule accuracy
Rule Accuracy measures the proportion of correctly classified

samples out of all samples where the rule is activated (10). This

metric evaluates how accurately the rule identifies the intended

category and misclassified. Greater accuracy demonstrates the rule’s

effectiveness in producing correct predictions upon activation.

Rule accuracy ¼ Number of correctly classified samples
Number of activated samples

� �
�100
4 Results

In this section, we present the findings of our investigations.

We begin by presenting our experimental results, feature analysis

to gain a better understanding of the data set. Next, we showcase

the benchmark task’s models and derived rules.
4.1 Imputation experiment results

To evaluate the effectiveness of different imputation methods,

we performed an extensive imputation experiment. Table 7

summarizes the average results from the experiments. Notably,

the Iterative Imputer performed the best, with the lowest average

MSE and MAE across both sample sizes (50,000 and 250,000)

and was used for replacing missing values earlier detected. The

KNN Imputer and Median Imputer performed similarly but

slightly underperformed compared to the Iterative Imputer.

Despite its complexity, the Autoencoder Imputer had a higher
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error rate, indicating that its performance may not be as

generalizable for this dataset.
4.2 Balancing datasets experiment results

The evaluation of various sampling methods combined with

machine learning models to predict ED LOS yielded insightful

findings. The sampling techniques employed were ADASYN,

SMOTE, SMOTEENN, SMOTETomek, and TomekLinks. The

performance metrics for testing and training–AUC, Accuracy, F1

Score, Sensitivity, and Specificity–are detailed in Supplementary

Materials S2, S3, with confusion matrices available in Figure 3

SMOTETomek emerged as the most balanced method across

all metrics. SMOTETomek consistently achieved high Area

Under the Curve (AUC) scores across models, with the MLP

model having the highest AUC of 0.731, followed by Gradient

Boosting at 0.729. SMOTETomek’s specificity was also

consistently high across multiple models, achieving 65.65% with

LR, demonstrating its ability to accurately identify patients

predicted to have a short ED LOS. The confusion matrix for

SMOTETomek combined with MLP also advocated for its

balanced performance, with 64.38% of short LOS and 70.53% of

long LOS correctly predicted, indicating that SMOTETomek

could maintain a well-distributed prediction across both classes

while maintaining relatively low FPs and FNs.

The analysis of the confusion matrices (Figure 3) provides

additional support for these findings. SMOTETomek combined

with GB produced a well-balanced prediction result, with 59.10%

of the short LOS cases correctly identified and 74.86% of the

long LOS cases correctly predicted. Similarly, SMOTETomek

with LR correctly identified 64.15% of long LOS cases and

predicted short LOS with 65.39% accuracy, achieving higher

specificity than sensitivity in this case. Another notable result

was TomekLinks combined with GB, which correctly predicted

88.78% of long LOS cases, the highest among all models and

sampling methods, demonstrating its efficacy in detecting

patients who may require prolonged hospital stays. TomekLinks

+ MLP also had a high true positive rate of 87.97%,

demonstrating its utility in accurately detecting long stays. In

contrast, ADASYN outperformed all other classifiers in terms of

specificity. Specifically, ADASYN combined with Logistic
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Regression achieved the highest specificity of 66.68% among all

methods and classifiers, while ADASYN combined with Gradient

Boosting demonstrated a strong AUC of 0.6998 and a specificity

of 60.61%. However, this came at the expense of sensitivity,

which was consistently lower than in other sampling methods.

Logistic regression, when combined with SMOTE, ADASYN,

and SMOTETomek, consistently achieves greater specificity than

sensitivity, as shown in Table S2. This distinct pattern, which

does not appear with other classifiers, suggests that LR is

effective in distinguishing Short ED LOS while maintaining a

reasonably balanced recall for Long ED LOS. For example,

SMOTE with LR correctly predicts 65.84% of short ED LOS

cases compared to 63.60% to long ED LOS. Specificity

outperformed sensitivity for the mentioned sampling methods,

indicating that the LR classifier was better at correctly predicting

Short ED LOS than Long ED LOS.

Overall, SMOTETomek appears to provide the most balanced

performance, with high AUC, Sensitivity, and relatively high

Specificity across multiple classifiers. Although TomekLinks had

the highest sensitivity, it tended to sacrifice Specificity, making

SMOTETomek the more robust option when considering overall

balance. Other methods, such as SMOTEENN and ADSYN, also

performed well, particularly in maintaining a high F1 score,
TABLE 8 Summary statistics and gradient boosting (GB) importance for ED L

Variable name Outcom

ED LOS

Short (�4.5 h)

Triage acuity 2.78 (0.79)

Disposition admitted
YES 42,837 (26.96%)

NO 116,061 (73.04%)

Elixhauser comorbidity index score (ECI) 2.10 (4.06)

Arrival transport unknown
YES 18,316 (6.49%)

NO 148,582 (93.51%)

Chief complaint abdominal pain
YES 10,212 (6.43%)

NO 148,686 (93.57%)

Arrival by ambulance
YES 43,313 (27.26%)

NO 115,585 (72.74%)

Age 48.19 (20.47)

Medication administered during previous visit
YES 100,382 (63.17%)

NO 58,516 (36.83%)

Disposition left without being seen
YES 5,092 (3.20%)

NO 153,806 (96.80%)

Disposition home
YES 104,881 (66.01%)

NO 54,017 (33.99%)

All variables were found to be statistically different (S) with p-value < 0.01.
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which may be appropriate when balancing precision and recall is

the main goal. This balancing experiment ensured that the

models developed to predict ED LOS could learn equally from

both categories, resulting in better and more actionable

clinical insights.
4.3 Feature analysis

Our analysis provides critical information on the factors that

influence ED LOS. It contains detailed information about patient

characteristics, including a broad age range and various

influencing variables. Table 8 shows key variables related to ED

LOS classified as short (�4.5 h) and long (>4.5 h), along with

their Gradient Boosting (GB) importance scores and t statistics

where continuous variables are presented as mean (sd), while

categorical variables are presented as count (percentage). All

variables were found to be statistically significant with a p-value

<0.01, as indicated by t statistics, underscoring their influence on

ED LOS.

The t statistic indicates significant differences between the short

and long stay groups in all variables. The mean triage acuity scores

are slightly higher for patients with short stays (2.78) than long
OS outcomes.

e T-Statistic GB importance

Long (>4.5 h)

2.53 (0.63) 109.311 (S) 0.397

�116.812 (S) 0.118
112,957 (44.82%)

139,072 (55.18%)

3.73 (5.10) �107.314 (S) 0.102

90.953 (S) 0.101
3,334 (1.32%)

248,695 (98.68%)

�81.656 (S) 0.077
37,063 (14.71%)

214,966 (85.29%)

�98.076 (S) 0.061
106,363 (42.20%)

145,666 (57.80%)

55.65 (20.17) �114.811 (S) 0.053

�105.107 (S) 0.040
199,693 (78.04%)

55,336 (21.96%)

83.000 (S) 0.033
427 (0.17%)

251,602 (99.83%)

94.958 (S) 0.018
128,794 (51.10%)

123,325 (48.90%)
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stays (2.53), with a high GB importance score of 0.397. 6.49% of the

patients with a short stay arrived by unknown means of transport,

compared to 1.32% of the long-term patients, with an importance

score of 0.083. The Elixhauser Comorbidity Index Score averages

2.10 for shorter stays and 3.75 for longer stays, with an

importance score of 0.102. Furthermore, 44.82% of the long-term

patients were later admitted, compared to 26.96% of the patients

with a short-term stay, with an importance score of 0.118.

Moreover, 27.26% of patients who had a short stay arrived by

ambulance, whereas 42.20% of long stay patients arrived by

ambulance, with an importance score of 0.061.

Additionally, 63.17% of patients who had a short stay in the ED

were recorded to have received medication during a previous visit,

compared to 78.04% of those with a long stay, with an importance

score of 0.040. Moreover, 66.01% of the patients with a short stay

were discharged home, while 51.10% of patients with a long stay

experienced the same result, whereas 3.20% of patients with

short stays left without being seen, compared to 0.17% of

patients with long stays. The importance scores for these are

0.018 and 0.033, respectively.
4.4 Model evaluation

The top 10 previously identified variables were used to

categorize ED LOS. Table 4 shows the distribution of training

and test data based on ED LOS outcomes. In the original

unbalanced data set, the training data have 61.32% long stays

and 38.68% short stays, while the test data have 61.40% long

stays and 38.60% short stays. After using SMOTETomek, the

training set has a perfectly balanced distribution of 50.00% long
TABLE 9 Average of 5-folds model performance on original and balanced da

Model Accuracy Sensitivity

Original data set (average training scores + S.D)
Gradient boosting 69.98% + 0.0006 88.24% + 0.005

Random forest 73.29% + 0.03 83.67% + 0.002

Logistic regression 69.30% + 0.0002 85.81% + 0.0008

MLP 69.75% + 0.002 83.59% + 0.029

Original data set (average test scores + S.D)
Gradient boosting 69.93% + 0.001 88.20% + 0.005

Random forest 67.99% + 0.002 79.26% + 0.002

Logistic regression 69.29% + 0.0008 85.81% + 0.0009

MLP 69.71% + 0.003 83.51% + 0.029

Balanced data set (SMOTETomek) (average training scores + S.D)
Gradient boosting 68.89% + 0.001 75.39% + 0.004

Random forest 71.54% + 0.0005 71.58% + 0.001

Logistic regression 64.61% + 0.002 63.99% + 0.005

MLP 68.55% + 0.002 72.89% + 0.013

Balanced data set (SMOTETomek) (average test scores + S.D)
Gradient boosting 68.86% + 0.002 75.36% + 0.002

Random forest 65.43% + 0.0003 66.61% + 0.0014

Logistic regression 64.64% + 0.001 64.00% + 0.004

MLP 68.53% + 0.003 72.90% + 0.013

Boldface denotes best performing model with respect to metric.
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stays and 50.00% short stays. In general, the data set had a

distribution of 61.33% long stays and 38.67% short stays in the

original data, vs. 51.93% long stays and 48.07% short stays in the

balanced data set of SMOTETomek.

Next, we evaluated various machine learning models for

predicting ED LOS using both the original unbalanced data set

and a balanced version generated by SMOTETomek. The

evaluation uses metrics such as accuracy, sensitivity, specificity,

AUC score, and F1 score, as shown in Table 9.

GB performed the best on the unbalanced dataset, with an

AUC score of 0.730, F1 score of 0.782, accuracy of 69.93%, and

sensitivity of 88.20%. This indicates that GB had strong

predictive power, particularly in distinguishing between patients

with long and short ED stays. However, the specificity for GB

remained low at 40.95%, indicating a tendency to overestimate

the majority class (long stays) at the expense of accurately

predicting the minority class (short stays). RF also performed

well, with an AUC of 0.701 and the highest specificity (50.11%)

among the models, implying that it was more effective in

correctly identifying patients with short stays than GB. MLP also

did well obtaining the highest accuracy on the original dataset

(69.71%). MLP performed similar to LR in terms of Specificity,

but MLP slightly outperformed LR.

The use of SMOTETomek significantly altered the model

dynamics. GB continued to outperform other models on the

balanced dataset, with the highest accuracy (68.86%), sensitivity

(75.36%), and F1 score (0.748). This suggests that GB was able to

maintain its robustness despite the use of SMOTETomek. RF

also performed well in the balanced context, achieving one of the

highest specificity (63.55%) but with a notable trade-off in

sensitivity. LR model improved its specificity to 65.65%, the
tasets.

Specificity AUC score F1 score

41.01% + 0.009 0.731 + 0.0007 0.783 + 0.0006

56.82% + 0.003 0.805 + 0.0004 0.794 + 0.0005

43.12% + 0.001 0.699 + 0.0002 0.774 + 0.0002

47.80% + 0.042 0.730 + 0.001 0.772 + 0.007

40.95% + 0.008 0.730 + 0.002 0.782 + 0.001

50.11% + 0.007 0.701 + 0.0016 0.752 + 0.0008

43.10% + 0.003 0.699 + 0.001 0.774 + 0.0004

47.82% + 0.040 0.730 + 0.002 0.772 + 0.008

58.59% + 0.004 0.730 + 0.0006 0.748 + 0.002

71.48% + 0.001 0.800 + 0.002 0.755 + 0.0005

65.59% + 0.004 0.699 + 0.0001 0.689 + 0.003

61.66% + 0.015 0.732 + 0.0011 0.740 + 0.005

58.55% + 0.003 0.729 + 0.002 0.748 + 0.002

63.55% + 0.002 0.700 + 0.002 0.703 + 0.0005

65.65% + 0.004 0.699 + 0.001 0.689 + 0.003

61.60% + 0.013 0.731 + 0.001 0.740 + 0.005
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TABLE 10 Rules and metrics for short (�4.5) and Long (>4.5 h) Outcomes.
(see Table 12 for rule performance metrics).

Outcome Details
Short stay
(ED LOS � 4.5 h)

Number of rules: 7

Overall prediction explanation: 96.91%

Positive prediction explanation: 93.99%

Negative prediction explanation: 97.29%

Rules Description
Short rule 1 Arrival transport ambulance = NO & chief complaint

abdominal pain = NO

& Elixhauser comorbidity index (ECI) score � 0.5 &
medication event = NO

& Triage acuity = [urgent/less urgent/non-urgent]

Short rule 2 Age � 30.5 & arrival transport ambulance = NO

& Chief complaint abdominal pain = NO & triage acuity =
[urgent/less urgent/non-urgent]

Short rule 3 Triage acuity = [less urgent/non-urgent]

Short rule 4 Arrival transport unknown = YES

Short rule 5 32:5 , Age � 37:5 & Arrival transport ambulance = NO

& Chief complaint abdominal pain = NO & elixhauser
comorbidity index (ECI) score � 0.5

& Triage acuity = [urgent/less urgent/non-urgent]

Short rule 6 38:5 , Age � 45:5 & arrival transport ambulance = NO

& Arrival transport unknown = NO & chief complaint
abdominal pain = NO

& Disposition admitted = NO & elixhauser comorbidity index
(ECI) score � 0.5

& Triage acuity = [urgent]

Short rule 7 Disposition left without being seen = YES

Long stay
(ED LOS > 4.5 h)

Number of rules: 6

Overall prediction explanation: 88.16%

Positive prediction explanation: 100%

Negative prediction explanation: 48.30%

Rules Description
Long rule 1 Age > 29.5 & Arrival transport unknown = NO

& Triage acuity = [resuscitation/emergent/urgent]

Long rule 2 Elixhauser comorbidity index (ECI) score > 0.5

Long rule 3 Arrival transport ambulance = YES

Long rule 4 Chief complaint abdominal pain = NO

& Disposition home = NO & Disposition left without being
seen = NO

Long rule 5 Chief complaint abdominal pain = YES

Long rule 6 Age � 70.5 & Triage acuity = [resuscitation/emergent]
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highest among all models. However, sensitivity decreased,

indicating an increased focus on correctly predicting short stays

at the expense of long stays.

Training scores across models followed consistent trends with

test scores, demonstrating the reliability of the evaluation metrics.

For example, MLP had the joint highest training AUC (0.730) in

the unbalanced dataset, which corresponded to its strong

performance in specific metrics during testing. Interestingly, the

F1 scores for GB and MLP remained relatively high in both the

original and balanced datasets, demonstrating the models’

consistent ability to balance precision and recall effectively.

McNemar’s test was run on both the unbalanced and balanced

datasets results to better understand the differences in model

performance. The results, which are summarized in

Supplementary Table S4, show that for the majority of

comparisons, the differences in model performance were

statistically significant, with the exception of GB vs MLP on the

balanced dataset, where the difference was not significant. This

implies that GB and MLP performed similarly on the balanced

data, indicating that both models were equally capable of

capturing the nuances of ED LOS predictions and the difference

in performance was not statistically significant.

In addition, we conducted minority class analysis for the short

stay. Although the labels were flipped and minority class was now

“long stay,” the overall model performance has remained largely

consistent, demonstrating robustness to change. The specificity

had generally increased in comparison to the sensitivity, indicating

a reversal of focus, with the models now correctly predicting the

minority class (long stays) more frequently, at the expense of

sensitivity. For example, Gradient Boosting (GB) had a specificity

of 88.43% and a sensitivity of 40.76% for the minority class,

indicating that it was more accurate in predicting “long stay”

cases. Similarly, Random Forest (RF) showed 79.75% specificity

and 49.22% sensitivity for the minority class. This is a significant

but expected contrast to the previous evaluation, in which

sensitivity was higher, indicating a shift in the models’ prediction

tendencies. Furthermore, Logistic Regression (LR) and Multi-Layer

Perceptron (MLP) demonstrated similar trade-offs, with both

models having higher specificity than sensitivity, highlighting the

consistent trend summarized in Supplementary Table S5.
TABLE 11 Summary of rule activation and stay categories.

Category Short stay
(�4.5 h)

Long stay
(>4.5 h)

No rules activated (short stay) 314,341 –

No rules activated (long stay) – 47,222

No rules activated (both) 0 0

Dilemma points (both rules activated) 49,364 49,364
4.5 Rules extracted

We used TE2Rules (47) to derive a global rule list from a

100-tree Gradient Boost Model, with a precision threshold of

90% set. Table 10 provides a detailed summary of the rules and

fidelity metrics for predicting Emergency Department Length of

Stay (ED LOS) for both long and short outcomes. Six rules for

long stays explain 88.16% of the overall predictions, including all

positive predictions and 48.30% of the negative predictions. The

key variables in these rules include age, type of arrival transport,

triage acuity, and chief complaint.

In contrast, the seven rules for short stays explain 96.91% of the

overall predictions. These rules cover 93.99% positive predictions

and 97.29% negative predictions. Factors such as arrival
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transport type, chief complaint of abdominal pain, and triage

acuity also play significant roles in these rules. Each rule is

detailed with specific conditions, allowing a clear view of the

model’s decision boundaries for distinguishing between short and

long ED LOS outcomes.

Furthermore, Table 11 summarizes the data observations

related to the activation of a certain rule. Notably, there are no
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TABLE 12 Rules empirical metrics (see Table 10 for rules).

Rule Overall
coverage

(%)

Category Relative
coverage

(%)

Accuracy
(%)

Short rule 1 10.54 Short 7.30 69.27

Long 3.24 30.73

Short rule 2 10.10 Short 6.77 66.97

Long 3.34 33.03

Short rule 3 7.06 Short 5.74 81.30

Long 1.32 18.70

Short rule 4 3.32 Short 2.51 75.58

Long 0.81 24.42

Short rule 5 2.28 Short 1.42 62.23

Long 0.86 37.77

Short rule 6 1.75 Short 0.97 55.33

Long 0.78 44.67

Short rule 7 1.34 Short 1.24 92.26

Long 0.10 7.74

Long rule 1 74.78 Short 23.49 31.42

Long 51.28 68.58

Long rule 2 43.24 Short 12.43 28.75

Long 30.81 71.25

Long rule 3 36.42 Short 10.54 28.94

Long 25.88 71.06

Long rule 4 18.11 Short 4.61 25.46

Long 13.50 74.54

Long rule 5 11.50 Short 2.49 21.60

Long 9.02 78.40

Long rule 6 7.45 Short 2.77 37.21

Long 4.68 62.79
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cases in which rules for both short and long stays are not activated,

and a total of 49,364 observations show simultaneous activations for

both short and long rules, indicating dilemma points.

Moreover, Table 12 provides metrics for each rule, including

coverage and accuracy. For long stay rules, rule 5 has the highest

overall accuracy at 78.40% whereas long rule 1 has the highest

overall coverage where it covers 74.78% of the data. Conversely, for

short stay rules, rule 7 has the highest accuracy at 92.26%, despite

having a lower overall coverage of 1.34%. This contrast highlights

the varying efficacy of rules in predicting different outcomes. long

stay rules have higher coverage but vary significantly in accuracy,

with some rules achieving high coverage while having lower

accuracy. Short stay rules, on the other hand, can achieve very high

accuracy despite covering less of the dataset, indicating that they are

more specialized in identifying true short stay cases.
5 Discussion

5.1 Summary of key findings

This section presents the key findings of the research extensively.

we start by examining the most important variables of our analysis,

moving towards model evaluation and finally rules analysis.

5.1.1 Key variables influencing ED LOS
The study identified several critical variables that significantly

influence the LOS of the ED, with the following the most impactful:
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1. Triage acuity: Patients with higher acuity levels were found to

have shorter LOS, likely due to prioritization in treatment

and faster resolution of less serious conditions.

2. Elixhauser comorbidity index (ECI): Significantly higher ECI

scores correlated with longer LOS, reflecting the increased

complexity and resource demands associated with treating

patients with multiple comorbidities.

3. Arrival methods: Patients who arrived via ambulance or other

known transport means had longer LOS, indicative of the

more severe nature of their conditions requiring extended

medical attention. Whereas, patients arriving with unknown

means of transport had a shorter stay in the ED.

4. Previous medication history: A history of medication during

previous ED visits was a strong predictor of longer LOS,

indicating that ongoing treatment needs significantly

influences the duration of stay.

5.1.2 Model performance and comparison
5.1.2.1 Gradient boosting (GB) and Multi-layer perceptron
(MLP)
Gradient Boosting (GB) and Multi-Layer Perceptron (MLP)

outperformed all other models tested, with high AUC scores,

sensitivity, and consistent reliability across multiple metrics. GB

performed slightly better overall, with an AUC score of 0.730,

accuracy of 69.93%, sensitivity of 88.20%, and specificity of

40.95%. This suggests that GB was particularly effective at

correctly predicting long-stay cases, while its specificity was

relatively higher, indicating a greater emphasis on avoiding false

positives, which is critical in emergency department settings.

TomekLinks sampling paired with GB achieved the highest test

sensitivity of 75.36%, making this model combination

particularly suitable for scenarios where identifying all patients

needing long stays is critical. However, this comes at the expense

of specificity, which leads to a higher number of false positives

for short stays.

Similarly, MLP showcased competitive performance with an

AUC of 0.730, accuracy of 69.71%, and sensitivity of 83.51% and

specificty of 47.82%. Although it did not surpass GB, MLP’s

ability to balance between sensitivity and specificity makes it a

strong candidate for ED LOS classification. Confusion matrix

analysis for SMOTETomek + MLP reveals a balanced trade-off

between sensitivity and specificity, indicating that it can correctly

classify both long and short stays. For example, 72.90% of long

stays were correctly predicted, and the true negative rate was also

relatively high, resulting in fewer unnecessary prolonged

hospitalizations than TomekLinks.

5.1.2.2 Random forest (RF)
The Random Forest (RF) model performed well, but fell short of

GB and MLP in terms of overall metrics. With an AUC of 0.701

and a specificity of 50.11%, RF was more effective in identifying

patients who needed a short stay, providing a relatively balanced

trade-off between true positives and true negatives. However, the

sensitivity of 79.26% remained relatively moderate, indicating a

slight weakness in accurately predicting long stays compared to

the other models. The confusion matrices show that RF benefited
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significantly from the use of SMOTETomek, resulting in a balanced

classification for both the ED and LOS classes. The true negative

rate was 63.55%, indicating improved specificity after resampling.

According to Bentéjac et al. (49), gradient boosting

outperforms random forest in terms of generalization, especially

when dealing with class imbalances. GB’s sequential nature

allows for iterative error correction, which makes it better suited

to the task of discriminating between short and extended ED

stays (13, 17). This is consistent with our findings, in which GB

outperformed RF in terms of accuracy and AUC. Gradient

boosting has the advantage due to its focus on misclassified

samples during training, allowing for more efficient adaptation to

the minority class (49).

5.1.2.3 Logistic regression (LR)
Logistic Regression (LR) served as a baseline model and showed

high specificity, especially when combined with SMOTETomek

and ADASYN. LR had a test accuracy of 69.71% and a sensitivity

of 85.81% on the unbalanced dataset, indicating its ability to

accurately predict long stays and identify high-risk patients.

However, the model lacked specificity (43.10%), making it

unsuitable for predicting all patients who may require short stays.

LR consistently demonstrated higher specificity than sensitivity

across various sampling methods, which corresponds to its lower

complexity and linear decision boundary, effectively

distinguishing short stays but missing long stays. The confusion

matrices show that LR’s performance on the sampled data is

characterized by a higher true negative rate, demonstrating its

ability to prioritize minimizing false positives. The ADASYN +

LR combination had the highest specificity of 66.68%,

highlighting its utility in situations where reducing unnecessary

admissions(short stays) is a priority.

5.1.3 Confusion matrix analysis and practical
implications

The analysis of confusion matrices reveals the various trade-

offs each model makes between sensitivity and specificity.

SMOTETomek emerges as a robust balancing method, especially

when combined with MLP and GB, ensuring that long stays are

properly identified while not jeopardizing short stay detection.

This makes SMOTETomek suitable for clinical applications in

which it is critical to identify high-risk patients while

maintaining resource efficiency.

TomekLinks, when combined with GB or MLP, produced high

sensitivity rates, indicating that it is effective in identifying the

majority of patients who require extended care. However, this

resulted in an increased false positive rate, implying that it

should be used when patient safety takes precedence over

resource allocation. In contrast, ADASYN combined with LR or

RF provided greater specificity, emphasizing its efficacy in

situations where reducing unnecessary long stays is critical to

managing emergency department capacity.

Finally, GB and MLP consistently outperformed in terms of

balanced performance, with both demonstrating balanced

superior metrics. The clinical goal should determine the model

and sampling technique; for example, if the goal is to reduce
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missed high-risk cases, TomekLinks with GB or MLP would be

ideal. On the other hand, SMOTETomek combined with GB or

MLP remains the best option for balanced, general applicability,

ensuring a moderate trade-off between sensitivity and specificity.
5.1.4 Rule extraction and analysis
5.1.4.1 Overview of rules
A key innovation in this study was the use of a rule extraction

technique on the Gradient Boosting model, which was intended

to turn complex model decisions into human-interpretable rules.

The TE2Rules algorithm (47) extracted 13 rules (6 long stay and

7 short stay) that encapsulate significant patterns and

relationships identified by the model. The rules were developed

using key predictors such as triage acuity, age, arrival methods,

and specific patient conditions, and were intended to provide

actionable insights for emergency department decision-making.

The extracted rules serve two primary functions: improving

model interpretability and increasing transparency in clinical

decision-making. By translating a Gradient Boosting model’s

decision boundaries into a set of simple rules, healthcare

professionals can gain a better understanding of why certain

decisions were made. For example, these rules can be used to

determine which patients are likely to spend long or short

periods of time in the emergency department (ED), assisting

with resource allocation and prioritizing patient care.

The rules were evaluated using several key metrics to determine

their utility and reliability, including Overall Coverage. Higher

overall coverage indicates that a rule is widely applicable across

the dataset, implying general relevance. Rule 1 (Long Stay) had

74.78% coverage, indicating it applies to a significant portion of

patient data. The broad applicability of the rule makes it

especially useful for general triage decision-making. In addition,

the accuracy of the rule is defined as the percentage of correctly

classified samples among all samples where the rule is activated.

High rule accuracy indicates that the rule is very effective in

predicting the correct outcome in those cases. For instance, Rule

7 (Short Stay) had an extremely high rule accuracy of 92.26%,

underscoring its strong predictive power in the subset it covers.

5.1.4.2 Extracted rules and their implications
The extracted rules revealed important patterns, for instance:

• Mid aged or older patients (>29.5) with critical triage acuity

ratings [Resuscitation/Emergent/Urgent] and known arrival

methods are likely to experience long stays (Rule 1, Long

Stay). Such rules allow ED staff to preemptively allocate more

resources to patients fitting these criteria.

• Conversely, specific scenarios like patients leaving without being

seen, strongly correlated with shorter stays (Rule 7, Short Stay).

This insight can be used to identify potential gaps in care, such

as situations in which patients may leave due to excessive

wait times.

The rules have significant practical implications, particularly in

terms of increasing transparency and trust in clinical machine

learning models (8, 9). The model supports and enhances clinical

judgment by providing healthcare professionals with easily
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interpretable rules. These rules could help with triage decisions,

predict resource demands, and ultimately, improve patient

outcomes by allowing for targeted interventions.
5.2 Comparison with previous studies

In this section, we compare the results of our study with those

of previous research in predicting ED LOS. This analysis highlights

the contributions of our methodology, especially in terms of the

performance, interpretability, and importance of the identified

factors. The studies are summarized in Table 1.
5.2.1 Overview of methodologies and models
Several studies have utilized machine learning approaches to

predict ED LOS, employing a spectrum of models ranging from

conventional statistical techniques to advanced deep learning

frameworks. For instance, Pedro et al. (15) used a PRO-AGE

scoring system combined with bootstrapping to predict LOS in

older adults, achieving an AUC of 0.79. Ala et al. (13) focused

their efforts on fast-tracking patients (<4 h) in the ED, using

models such as MLP, CART, and SGB which achieved a an AUC

of 0.752. In contrast, Zebin et al. (14) employed an auto-encoded

deep neural network, achieving an accuracy of 77.7%.

In our study, similar to the work of Etu et al. (17), we applied

GB models, which consistently surpassed other models in terms of

Accuracy and AUC scores, demonstrating their robustness in

predicting ED LOS. Additionally, unlike Rahman et al. (19), who

used a decision tree model to predict ED LOS greater than 4 h

with an accuracy of 84.94%, our approach also integrates various

approaches to handle class imbalance and derives transparent

rule metrics, improving generalizability and transparency of

our models.
5.2.2 Feature selection and importance
The variables used in previous studies vary, but often include

vital signs, demographic information, and admission details. For

example, Ala et al. (13) highlighted chief complaints, age, and

vital signs as crucial predictors, which aligns with the features we

selected. Similarly, Zebin et al. (14) and Bopche et al. (16)

emphasized the importance of demographics and ICD-9

diagnosis codes (chronic diseases), which are also consistent with

our findings. Furthermore, factors such as age, mode of transport

and triage acuity were identified as key predictors, supporting the

findings of other studies, such as Chang et al. (18), who also

highlighted similar variables as important in the prediction

of ED LOS.
5.2.3 Comparison of model performance
Gradient Boosting (GB) and Deep Learning models are

frequently reported as top performers (7, 13, 14, 16, 17, 20). As

an illustration, Etu et al. (17). reported a GB model with an

AUC of 0.93, outperforming other tree-based classifiers such as

Decision Trees and Random Forest in both imbalanced and

SMOTE-balanced datasets. Similarly, our study demonstrated
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that the GB models provided the highest accuracy and AUC

scores, reinforcing their effectiveness in ED LOS classification.

However, unlike previous studies, our research goes beyond

typical performance metrics by integrating a novel rule extraction

process (46). This approach improves interpretability and

provides transparent actionable insights for clinical decision

making (11). This process translates the complex decision logic of

the model into simple, human-interpretable rules. Each extracted

rule was analyzed for its overall coverage, relative coverage, and

rule accuracy, metrics that have not been previously implemented

in the context of ED LOS prediction. Few studies, such as

Rahman et al. (19) and Bopche et al. (16), have explored this

avenue using the J48 decision tree algorithm and SHAP,

respectively. Our work builds upon this by applying and

evaluating human-readable rules that require minimal expert

interpretation, using various metrics for comprehensive assessment.
5.2.4 Comparison of explainability methods
In the field of ED LOS prediction, explainability methods such

as SHAP (Shapley Additive Explanations) and LIME (Local

Interpretable Model-agnostic Explanations) have been used to

clarify machine learning model decisions (16, 50, 51). For

example, SHAP has been used to interpret feature contributions

in predicting in-hospital mortality, long-term LOS and sepsis

onset, providing consistent explanations across models. Similarly,

LIME has been used to provide local approximations of model

behavior, aiding understanding of individual predictions.

Our study distinguishes itself by incorporating the TE2Rules

algorithm for rule extraction from a Gradient Boosting model.

TE2Rules, in contrast to SHAP and LIME, which focus on

feature importance and local approximations, translates complex

model decisions into human-readable rules (46). This approach

not only enhances interpretability but also enables actionable

decision-making through explicit decision rules that clinicians

can directly apply (52, 53).

For instance, TE2Rules generates simple “if-then” rules that

summarize the underlying patterns in the data, making them

easy to understand for healthcare professionals. Compared to

feature importance scores (SHAP) or localized surrogates

(LIME), TE2Rules offers a distinct advantage in transforming

black-box models into user friendly rule-based logic. This rule-

based explanation can directly guide treatment strategies or triage

decisions, eliminating the need for additional interpretation

layers. Increased transparency also helps with clinical

accountability, as decision rules can be validated against medical

guidelines and expert judgment, fostering trust in AI-

driven recommendations.
5.2.5 Novel contributions
Our work provides a thoughtful combination of

methodological advancements and practical innovations that set

it apart from previous research in the field. We offer several

novel contributions that primarily aim to improve the

interpretability, robustness, and practical applicability of

predictive models for ED LOS:
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• Explainable AI techniques: We used the TE2Rules technique

for rule extraction, which greatly improves the interpretability

of ensemble methods such as Gradient Boosting. This

technique improves healthcare practitioner’s understanding of

the decision-making process and builds trust in the model.

Unlike traditional approaches that focus solely on model

performance metrics like AUC, sensitivity, and specificity, our

analysis offers a more granular analysis by dissecting the

performance of each individual rule. This not only improves

the interpretability of the model, but also provides a practical

framework for applying these rules in real-world scenarios

(10, 48). To our knowledge, the use of TE2Rules in predicting

ED LOS is novel, as previous research has primarily focused

on other explainability methods (50). For instance, some

studies have used SHAP to interpret models that predict ED

LOS, emphasizing feature importance but lack the simplicity

of rule-based explanations.

• Use of limited, clinically relevant features: Unlike many

previous studies, which relied on a relatively large number of

variables (15–19), we used only 10 readily available and

clinically significant features. This not only improves model

simplicity, but also makes it easier to implement in real-world

clinical settings while maintaining model accuracy and utility.

• Robust evaluation on balanced and imbalanced data: We

evaluated model performance on both balanced and real-

world imbalanced datasets in an exhaustive manner to ensure

the findings’ robustness and practical relevance.
5.3 Limitations and future directions

Although the study demonstrated the effectiveness of rule

extraction and model interpretability, it is necessary to highlight

several limitations and suggest future avenues.

This study relies on historical data from a single source, which

could introduce biases into model predictions and restrict the

generalizability of the results. The performance of the different

methods used in this study may vary in different healthcare settings.

The application of balancing in most cases improved specificity at

the expense of sensitivity, indicating that while models became better at

identifying theminority class (short ED LOS), they were less effective at

detecting the majority class (long ED LOS). This trade-off suggests that

the some balancingmethodmay not be suitable for all clinical contexts,

particularly where high sensitivity is crucial (54).

Furthermore, some rules, such as Long Rule 1, may exhibit a

high overall coverage but a lower relative coverage, indicating a

relatively high rate of misclassifications within the predicted

category. For instance, Long rule 1 has an overall coverage of

74.78%, but its relative coverage for short stays is 23.49% and for

long stays 51.28%, suggesting that while the rule applies to a

large portion of the entire dataset, it may sometimes not

accurately distinguish between short and long stays.

In addition, an argument-based framework that integrates

learning and reasoning (53) will be explored. In this framework,

knowledge is represented through object-level arguments that
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involve constructing arguments that link a set of premises

(conditions describing a scenario) to the argument’s claim (the

desired outcome). Two types of arguments are generated: object-

level and priority arguments. Object-level arguments are factual

claims and may support contradictory assertions, leading to

opposing arguments. However, priority arguments establish a

local preference between these arguments, determining their

relative strength and intensifying the conflict between them. This

framework will be exploited by analyzing the conflict between

long and short rules.

Future research will also investigate the application of these

techniques in diverse healthcare settings, evaluate the

generalizability of generated rules, and improve rule extraction

methods to better handle more complex cases and models.
6 Conclusion

This study demonstrates a robust machine learning-based

approach to predicting Emergency Department Length of Stay

(ED LOS), with Gradient Boosting (GB) emerging as the best

performer in our analysis. Key predictors for ED LOS included

Triage Acuity, Elixhauser Comorbidity Index, Arrival Methods,

and Patient Medication History. Our use of multiple data

balancing techniques, including SMOTETomek, effectively

addressed class imbalance, but a trade-off between sensitivity and

specificity persisted across models.

This work made an important contribution by extracting rules

from the GB model using the TE2Rules algorithm. This process

enabled us to create interpretable rules to aid clinical decision-

making. These rules capture important relationships, such as patient

age, triage acuity, and arrival conditions, which improves model

transparency. Our findings indicate that combining predictive

accuracy and interpretability via rule extraction can improve resource

management and decision-making in emergency departments.

While the models produced promising results, there is still

room for improvement in achieving a better balance of

performance metrics. Future efforts will center on improving rule

extraction processes, increasing model generalizability, and

ensuring adaptability across various healthcare settings.
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