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Background: Current methods of measuring disease progression of
neurodegenerative disorders, including Parkinson’s disease (PD), largely rely on
composite clinical rating scales, which are prone to subjective biases and lack the
sensitivity to detect progression signals in a timely manner. Digital health technology
(DHT)-derived measures offer potential solutions to provide objective, precise, and
sensitive measures that address these limitations. However, the complexity of DHT
datasets and the potential to derive numerous digital features that were not
previously possible to measure pose challenges, including in selection of the most
important digital features and construction of composite digital biomarkers.
Methods: We present a comprehensive machine learning based framework to
construct composite digital biomarkers for progression tracking. This framework
consists of a marginal (univariate) digital feature screening, a univariate association
test, digital feature selection, and subsequent construction of composite
(multivariate) digital disease progression biomarkers using Penalized Generalized
Estimating Equations (PGEE). As an illustrative example, we applied this framework
to data collected from a PD longitudinal observational study. The data consisted of
OpalTM sensor-based movement measurements and MDS-UPDRS Part III scores
collected at 3-month intervals for 2 years in 30PDand 10healthy control participants.
Results: In our illustrative example, 77 out of 235 digital features from the study
passed univariate feature screening, with 11 features selected by PGEE to include
in construction of the composite digital measure. Compared to MDS-UPDRS Part
III, the composite digital measure exhibited a smoother and more significant
increasing trend over time in PD groups with less variability, indicating improved
ability for tracking disease progression. This composite digital measure also
demonstrated the ability to classify between de novo PD and healthy control groups.
Conclusion: Measures from DHTs show promise in tracking neurodegenerative
disease progression with increased sensitivity and reduced variability as compared
to traditional clinical scores. Herein, we present a novel framework and
methodology to construct composite digital measure of disease progression
from high-dimensional DHT datasets, which may have utility in accelerating the
development and application of composite digital biomarkers in drug development.
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1 Introduction

Neurodegenerative diseases, including Parkinson’s Disease

(PD), are an area of vast unmet medical need. Drug development

efforts in this area have increasingly focused on the search for

disease-modifying therapies that slow down the underlying

disease progression mechanisms. However, a lack of validated

measures that allow for disease progression to be monitored

objectively, relatively rapidly, and with high precision makes it

challenging to effectively demonstrate therapeutic efficacy and

hinders drug development efforts. PD clinical trials generally use

the Movement Disorder Society—Unified Parkinson’s Disease

Rating Scale (MDS-UPDRS) to track disease progression

longitudinally. However, MDS-UPDRS is subjective in nature,

relies on patient and caregiver-reported symptoms and clinician’s

qualitative ratings (1), is slow to change, and has low

measurement precision, resulting in large and lengthy clinical

trials to test efficacy for potential disease modifying therapies (2).

Recent advances in digital health technologies (DHTs) offer

unprecedented opportunities to collect more objective, precise,

and sensitive measures, both in the clinic and remotely, that were

out of reach in the past. Such measures could provide new

insights into neurogenerative disease progression, including for

Parkinson’s disease. There are many studies that have

investigated using measures from sensor-based digital health

technologies in neurodegenerative diseases (3–11). These studies

have collectively demonstrated that many neurodegenerative

disease symptoms can be quantified by DHTs. Moreover,

multiple longitudinal observational studies have shown that

digital measures can pick up changes over time that are

indicative of disease progression (12–18). It is further thought

that the objective measures enabled by DHTs could offer

improved sensitivity and reduced variability (12, 19), which could

translate to smaller and shorter clinical trial designs (20) and, in

turn, potential for accelerated drug development. Despite

promising results, the longitudinal studies published to date have

used different DHTs and analysis methodologies to identify the

digital features of importance and to derive respective digital

clinical measures, making it difficult to compare across studies or

create consensus among the research community. Open

discussions on the methodology of digital clinical measure

development and evaluation are critically needed to move the

field forward.

It has been increasingly recognized that composite digital

measures, rather than reliance on individual digital features, are

needed for more effective measurement of disease progression as

compared to traditional clinical composite scores. Adams et al.

(21) showed that no individual digital feature (from gait, tremor,

turns, speech, and cognition) outperformed MDS-UPDRS Part

III (a composite clinical score) in terms of the standardized

change from baseline after 12 months in a PD observational

study (WATCH-PD). Furthermore, Czech et al. (22)

demonstrated individual sensor-based digital features of upper

and lower extremity bradykinesia often lacked strong sensitivity

to longitudinal changes, whereas digital composite scores showed

significant differences over 12 months in WATCH-PD.
Frontiers in Digital Health 02
There have been several examples where composite digital

measures were developed for disease classification and/or tracking

symptom progression (22–30); however, the approach taken has

varied, and there have been limited discussions on the

methodologies to effectively select informative digital features and

construct the most performant composite measures. For example,

Perumal and Sankar (23) developed a Linear Discriminant

Analysis (LDA) classifier using multiple gait features collected

from wearable sensors to distinguish between PD patients and

healthy control (HC) subjects. Czech et al. (22) constructed

composite digital scores using pre-defined combinations of

features from single tasks (pronation-supination and toe-tapping)

and used them to measure longitudinal progression of

bradykinesia after 1 year. Sotirakis et al. (30) developed a Random

Forest model to estimate the MDS-UPDRS III values using gait

and sway features and used the model to detect progression of

motor symptoms longitudinally. These efforts vary in terms of the

measure construction (pre-defined vs. supervised ML, choice of

models), the clinical label selection (MDS-UPDRS III total score

or single item), the selection of digital tasks (single task e.g., toe-

tapping or a combination of tasks), as well as the selection of

input features (e.g., whether features are pre-screened). Overall, the

field has not adopted consistent and systematic methods and/or

analysis frameworks. Therefore, there is an urgent need to develop

methodologies and analysis pipelines for the construction of

composite digital measures for disease progression tracking,

tailored for high-dimensional, longitudinal data with digital

features collected from sensor technologies.

The types of data generated by DHTs are often longitudinal and

high dimensional, which differs from traditional clinical measures,

calling for novel analytical strategies to handle such data for the

construction of composite digital measures. Unlike traditional

clinical measures that collect a defined set of measures at each

time point, DHTs leverage various sensors to generate large

amounts of time-series data (e.g., acceleration, screen touch, audio/

video, keyboard press), either collected from defined active task-

based assessments or from passive monitoring. Such data are often

not readily analysable statistically and need to be aggregated and

transformed into digital features first. For example, for

measurement of physical activity, continuous accelerometer signals

are often converted to epoch level activity counts and then

aggregated over time into features such as daily total activity

count, total steps, non-sedentary time, etc., for further statistical

analysis. There can be large numbers of features derived from the

high-frequency sensor signals; such features may have various data

types (i.e., categorical, continuous, duration, etc.) and clinimetric

properties, many of which may not yet have been fully explored as

it was not previously possible to measure them without use of

DHTs. These features could have intrinsic skewness in

distribution, floor/ceiling effects, as well as unknown redundancies

and covariances. In addition, the high frequency nature of DHT

data collection and potential for remote data acquisition can also

lend itself to higher levels of data missingness. Furthermore, not

all digital features that can be generated from sensor data may

have clinical significance or be valuable for creating composite

digital measures. These attributes of DHT data make it a unique
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challenge in the development of composite digital measures to track

longitudinal disease progression.

Machine learning (ML) methods offer a valuable tool for selecting

the most informative digital features to reflect disease progression and

to construct clinically meaningful composite digital measures. ML-

based techniques can often improve prediction performance in

analysing digital data in neurodegenerative diseases; however,

existing ML methodologies for longitudinal data analysis are also

challenged by the high dimensionality of DHT data. For example,

although the generalized estimating equations (GEE) method (31)

incorporating different patterns of working correlation matrix

across multiple timepoints has been widely used in longitudinal

data analysis, the direct use of classical unpenalized GEE in high-

dimensional longitudinal data analysis may lead to misleading

results (32). To address this, an ML-based penalized GEE (PGEE)

method (32) could be used to improve upon the GEE method in

handling DHT data. PGEE performs simultaneous coefficient

estimation and variable selection for longitudinal data analysis with

high-dimensional covariates by including a penalty term in the

GEE model, which can be better-suited to handle high-dimensional

feature sets.

In this paper, we propose a principled, scalable, and

comprehensive methodology framework for the development of

novel composite digital biomarkers, derived from DHT data and

anchored to the MDS-UPDRS score, to measure neurodegenerative

disease progression. This framework includes data processing,

univariate digital feature screening, multivariate (composite) digital

biomarker construction (using PGEE methods), and composite

biomarker performance evaluation.

We further demonstrate the utility of this framework by applying

it to a sample dataset containing high-dimensional, longitudinal

movement data collected by a body-worn accelerometer system

from a PD longitudinal observation study. The current analytical

challenges of high-dimensional and longitudinal digital data and

path forward for the application of composite digital biomarkers in

measurement of neurodegenerative disease progression are

also discussed.
2 Materials and methods

2.1 Study overview

To illustrate our proposed methodology to construct composite

digital measures for tracking longitudinal disease progression, we

applied the framework to data from 30 PD patients (10 de novo

PD patients, 10 mild-to-moderate PD patients on levodopa, and

10 advanced PD patients) and 10 healthy control subjects from a

PD longitudinal observational study conducted at John Radcliffe

Hospital in Oxford, UK (11, 30, 33). The participants visited the

clinic once every 3 months for 2 years. At each visit, they wore

six synchronized inertial measurement units (IMUs) (“Opal”

sensors, APDM Wearable Technologies, a Clario Company)

across their body and performed two-minute walk, postural sway,

and timed up-and-go (TUG) tasks. The Mobility LabTM software

(APDM Wearable Technologies, a Clario Company) was then
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used to process these raw sensor signals and generate epoch-level

digital features at each instance of a time period or physical

movement (e.g., per minute, per step, per turn, or per sit-to-

stand event). The MDS-UPDRS Part III assessments were also

conducted at these clinic visits. The MDS-UPDRS Part III score

and subscales (including Bradykinesia, Postural and Gait,

Rigidity, and Tremor, defined in Supplementary Table S1) were

calculated. Demographic data including age and sex of the

participants were also collected at the beginning of the study.
2.2 Statistical analysis

The workflow of our proposed comprehensive machine learning

based framework is illustrated in Figure 1, which comprises five

main steps: (1) data collection and processing; (2) univariate

feature screening; (3) univariate association testing; (4) multivariate

analysis (using PGEE) to construct a composite digital measure for

longitudinal disease progression; (5) performance evaluation. The

specifics of each step are described below.

2.2.1 Data processing and quality control
In this first step, data aggregation and pre-processing are

performed to convert high-frequency, epoch-level data into a set

of aggregated digital features for each task. The movement data

collected from DHTs often include epoch-level features (e.g., per

second, per minute, or per walking step) that are collected

repeatedly during an active task (e.g., two-minute walk). This

step simplifies such data and produces a clean, high-dimensional

feature set for each participant at each clinical time point, in

order to facilitate subsequent longitudinal analyses.

In our illustrative PD example, summary statistics (mean,

median, standard deviation, and mean absolution deviation) were

calculated to represent the repeated measurements across the

entire task for features that had repeated measurements during

the task. For example, during the two-minute walk task, step

lengths of every step that the participant took were recorded;

these were aggregated into task-level features such as mean step

length during the two-minute walk task period. After that, we

had 256 digital features generated in total. Then, distributions of

all features were examined, and the non-informative features that

had few distinct values, included a large amount of data

missingness, or contained extreme values were removed. For the

remaining features, missing data imputation was performed using

the mean of available data in each feature. Finally, additional

feature quality control steps were implemented, which included

removing highly correlated features, log-transforming skewed

features, and removing outliers. 141 unique digital features were

left for univariate progression screening in the next step.

2.2.2 Univariate progression screening
In the second step of our framework, univariate progression

screening is recommended to identify whether each digital feature

detected disease progression during the study duration. In this

step, a linear mixed effects model (LMM) is used to screen the

univariate features against a set of pre-determined criteria. Each
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FIGURE 1

The analysis pipeline to select relevant digital features from high-dimensional DHT data and construct a composite digital measure for disease
progression tracking, including (1) DHT data collection and processing, (2) univariate feature progression screening, (3) univariate association test
(optional), (4) multivariate/composite digital measure construction, and (5) performance evaluation.
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digital feature is used as the response variable for the screening

separately. Independent variables are added to the model as fixed

effects, including covariates to be adjusted, group membership,

visit, group-by-visit interaction, and covariate-by-visit interactions.

Random intercept and slope are added to the model as

random effects.

In our illustrative PD example, we applied relatively relaxed

screening criteria to select digital features for downstream

analysis. We considered a digital feature as a “candidate” if (1)

its longitudinal trend was flat in the HC group (i.e., the LMM

slope p-value of HC group was larger than 0.05) and (2) it
Frontiers in Digital Health 04
demonstrated a progression trend with time in PD groups (i.e.,

the LMM group-by-visit interaction p-value was <0.1 or the

p-value of the differential slope between de novo/mild-to-

moderate/advanced PD and HC was <0.1).

2.2.3 Univariate association test
To gain additional insights on the univariate associations

between the standard clinical measure (i.e., MDS-UPRDS Part

III) and the candidate digital features that passed the univariate

progression screening, our framework employs a univariate

association test step. In this step, a linear mixed effects model is
frontiersin.org
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employed, with the clinical measure as the dependent variable and

each individual digital feature as the independent variable.

Covariates to be adjusted are also included in the model.

Random intercepts for each subject are allowed in the model and

p-values are calculated to assess the significance of the

association between the clinical measure and digital features.

An optional procedure is to further filter the candidate digital

features based on their associations to the standard reference

measure (i.e., MDS-UPDRS Part III and its subscales in our

example) and exclude non-significant features. In our example,

we chose to implement relatively relaxed screening criteria to

retain more features for the subsequent feature selection, and

therefore, we did not exclude features that did not show

association with MDS-UPDRS Part III in our downstream analysis.
TABLE 1 Patient baseline characteristics (age and sex) for the three PD
groups and healthy control group.

de novo
PD

Mild-to-
moderate
PD (on-
therapy)

Advanced
PD

Healthy
Control

N 10 10 10 10

Age (years)
[mean (SD)]

66.2 (6.46) 61.6 (10.76) 71.2 (4.78) 65.6 (6.98)

Sex [Male
(%)/Female (%)]

5 (50)/5 (50) 9 (90)/1 (10) 5 (50)/5 (50) 3 (30)/7 (70)
2.2.4 Multivariate prediction model
In the final step of our framework, a multivariate prediction

model is developed to select a subset of digital features from those

that passed the univariate progression screening and combine

them into a composite digital biomarker of disease progression.

For feature selection, we used the longitudinal MDS-UPDRS

Part III data as the training endpoint in our illustrative example.

Additionally, we included features that were important for

classifying the de novo PD cohort from healthy controls in the

feature selection process since patient identification could also be

an important attribute for the composite digital biomarker.

Importantly, depending on the intended context-of-use of the

developed measure, one could use our proposed framework to

optimize the measure for disease progression tracking, or patient

identification, or both, by adjusting the screening criteria and the

training endpoints used.

To model the high-dimensional longitudinal data, our

framework includes a ML-based Penalized Generalized

Estimating Equations (PGEE) method (32), which performs

simultaneous coefficient estimation and variable selection.

Compared to the traditional GEE method, PGEE introduces a

penalty term to the estimating function of GEE (details of PGEE

is provided in Supplementary Method S1).

To determine the optimal number of digital features (P) to be

included into the final multivariate prediction model, a cross-

validation (CV) strategy is implemented into the framework to

avoid overfitting (34). Specifically, all digital features are first

ranked by their PGEE estimates from the training set, then a

series of PGEE models with different numbers of top features are

built and evaluated in the testing set. The optimal number of

features is then determined to be the number of features from

the model with the smallest Root Mean Squared Error (RMSE).

The approach is further described in Supplementary Method S2.

Once P is determined, the PGEE estimates of the digital

features that pass the univariate screening are calculated again

using the whole dataset, and the top P features with the largest

PGEE estimates were selected. Two sets of digital features were

identified based on a PGEE model for MDS-UPDRS Part III

progression and another PGEE model for de novo PD vs.

Healthy Control classification, respectively. These two feature sets
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were merged into a final feature set for the composite digital

measure construction.

A GEE model is then fitted, with this final feature set plus the

covariates as independent variables, and MDS-UPDRS Part III as a

continuous dependent variable. This generates our final composite

digital measure for performance evaluations.
3 Results

3.1 Patient demographics and baseline
characteristics

The baseline demographic characteristics for the participants

included in our illustrative analysis are shown in Table 1 and

Supplementary Figure S1. The mean ages of four groups (de

novo PD, mild-to-moderate PD, advanced PD, and HC) were

66.2, 61.6, 71.2, and 65.6 years, respectively. The ratios of male-

to-female subjects in the four groups were 5:5, 9:1, 5:5, and

3:7, respectively.

To determine if age and sex needed be considered covariates to

be adjusted for in our models, we calculated the age-by-visit and

sex-by-visit interaction p-values in linear mixed effects models

with MDS-UPDRS Part III as the response in the pooled PD

group. The results, summarized in Supplementary Table S2,

suggested that age would affect the slope of MDS-UPDRS Part

III progression (with p-value = 0.04) while sex would not (with

p-value = 0.19). We therefore considered only age as a covariate

to be adjusted in our data analysis models.
3.2 Univariate progression screening results

In our illustrative example, our univariate progression

screening criteria were such that a digital feature would “pass” if

the LMM model for that digital feature showed (1) no

progression in the control group and (2) a progression in at least

one of the three PD groups. 77 digital features out of 141

screened passed these criteria, including 15 features from

postural sway task, 5 features from timed up-and-go (TUG) task,

and 57 features from two-minute walk task. Among these, Walk

GLLGS (Gait—Lower Limb—Gait Speed) had the smallest group-

by-visit interaction p-value (6.0 × 10−7) and the smallest de novo

PD vs. HC progression slope p-value (4.7 × 10−4); Walk GLLDS
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(Gait—Lower Limb—Double Support) had the smallest mild-to-

moderate PD vs. HC progression slope p-value (0.01); and Walk

GLLSD (Gait—Lower Limb—Step Duration) had the smallest

advanced PD vs. HC progression p-value (1.2 × 10−6). P-values of

TUG TPV (Timed Up and Go—Turn Peak Velocity) for group-

by-visit interaction, de novo PD vs. HC progression slope, mild-

to-moderate PD vs. HC progression slope, and advanced PD vs.

HC progression slope were 0.008, 0.001, 0.147, and 0.013,

respectively. A summary heatmap of all 77 digital features that

met the screening criteria is displayed in Figure 2, and the

heatmap of all the digital features that were screened is displayed

Supplementary Table S3.
3.3 Univariate association analysis results

Figure 3 shows the univariate association testing results between

the 77 digital features that passed the univariate screening in our

illustrative example and MDS-UPDRS Part III scores (and its

subscales). 37 of these 77 digital features (48.1%) showed

significant associations (i.e., p-value < 0.05) with MDS-UPDRS Part

III scores (including 32 features from the Walk task, 3 features

from the TUG task, and 2 features from the Sway task). The

associations of digital features with the MDS-UPDRS Part III

scores were generally consistent with their associations with the

Bradykinesia (BK) subscale within MDS-UPDRS Part III.

Specifically, 40 of the 77 digital features were associated with the

BK subscale (including 31 features from the Walk task, 3 features

from the TUG task, and 6 features from the Sway task). In

addition, 59 of the 77 digital features were associated with the

Postural Instability and Gait (PIGD) subscale (including 54

features from the Walk task, 4 features from the TUG task, and 1

feature from the Sway task), while only 3 of the 77 features (TUG

TPV, TUG TA, and Walk GULMV) were associated with the

Tremor Dominant (TD) subscale.

Turn Peak Velocity (TPV), obtained from the Timed Up and

Go (TUG) test (35), demonstrated the most significant

association with MDS-UPDRS Part III. TUG TPV is defined as

the maximum achieved angular velocity of trunk rotation in the

y-axis during 180-degree turns (deg/sec) and has been found to

be related to PD progression in multiple studies (12, 36–38). The

progression characteristics of TUG TPV are shown in Figure 4,

where the group-wise and subject-wise lines were obtained from

the linear mixed effect model and the points represented the

observed data. In terms of TUG TPV, the mild-to-moderate, on

therapy PD and HC groups were stable, while the de novo and

advanced PD groups showed progression.

In general, the univariate association observations were

consistent with the progression patterns seen in the MDS-

UPDRS Part III and its subscales, which is shown in

Supplementary Figure S2. Specifically, compared to the HC

group, the BK subscale progressed across all PD groups (at

α = 0.1 level). The PIGD subscale progressed in de novo and

advanced PD groups while staying stable in the mild-to-

moderate, on-therapy PD group. This pattern was similar to

most of the digital features included in the analysis, as indicated
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in Figure 2. In contrast, the TD subscale progressed in the mild-

to-moderate, on-therapy PD group, while remaining unchanged

in de novo and advanced PD groups.
3.4 Multivariate feature selection and
prediction results

3.4.1 Feature selection
We first conducted multivariate feature selection to determine

the optimal number of features to be selected for inclusion into the

composite score and prediction model in our illustrative example

analysis. Supplementary Figure S3 indicated that for developing a

composite digital measure for disease progression tracking, using

9 top features (ranked by their PGEE estimates in training sets

during cross-validation) overall yielded the smallest RMSE; and

for classifying disease status, using 3 top features resulted in the

largest AUC via internal cross-validation.

We then ranked all pre-screened features (i.e., digital features)

according to their PGEE estimates in the whole dataset supervised

by the continuous endpoint (i.e., MDS-UPDRS Part III) and the

binary endpoint (i.e., de novo PD vs. HC), respectively. Nine

digital features (TUG TD, TUG TPV, TUG STSD, Walk TA,

Walk GLLC, Walk GLLSW, Walk GLLLSM, Walk APAMAA,

and Sway PSAN95ESA) were selected for disease progression

tracking; additionally, three digital features (TUG TPV, Walk

GLLTOA, and Walk GULMV) were selected for PD vs. Control

classification. Table 2 lists the description of these selected

features. The two sets of digital features were further merged;

since one of the features (TUG TPV) was in both feature sets, 11

unique digital features were included in the final feature set. This

feature set was then used to create the composite digital

biomarker by fitting a GEE model.

3.4.2 Composite digital biomarker for tracking
MDS-UPDRS part III

The performance of the composite digital biomarker was

evaluated using 10-fold cross-validation in PD and HC groups,

respectively. As shown in Figure 5, the composite digital measure

showed a pattern of no change vs. time in the HC group as

expected (with RMSE in HC group = 2.8). On the other hand, it

had a smoother increasing trend in the overall PD group, as well

as each PD subgroup (with RMSE in PD group = 12.7).

We further compared performances among MDS-UPDRS Part

III, the composite digital measure, and each of the univariate

digital features included in the composite digital measure (e.g.,

TUG TPV) quantitatively in terms of both progression and

variability. Detailed results are summarized in Table 3. Overall, the

group-by-visit interaction p-value of the composite digital measure

was close to that of MDS-UPDRS Part III (7.65 × 10−3 vs.

6.22 × 10−3). The increasing trend of the composite digital

measure was much more significant compared to MDS-UPDRS

Part III and individual digital feature TUG TPV in de novo and

advanced PD groups. Specifically, for de novo PD vs. HC, the

effect sizes of progression slope were 1.41, 2.14, and 1.37 for

MDS-UPDRS Part III, composite digital measure, and TUG TPV,
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FIGURE 2

Heatmap representation of the p-values of the 77 digital features that passed the progression screening. The screening criteria applied were (1) no time
progression in the HC group (i.e., LMM slope p-value of HC > 0.05), and (2) time progression in at least one of the three PD groups (i.e., LMM group-
by-visit interaction p-value < 0.1 or p-value of differential slope between de novo/mild-to-moderate/advanced PD and HC < 0.1).
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FIGURE 3

Heatmap of the univariate association testing p-values between MDS-UPDRS part III (and its subscales: BK, TD, PIGD, RG) and the 77 digital features
that passed the univariate screening. P-values were calculated from a linear mixed effects model with MDS-UPDRS Part III or its subscales as the
outcome variable. The 77 features were ranked based on their association p-values from the analysis with the MDS-UPDRS Part III score. Each
digital feature and age were included as independent variables. Random intercept was added as a random effect.
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FIGURE 4

Results from a digital feature, TUG TPV: turn peak velocity (TPV), obtained from the timed Up and Go (TUG) test, which showed the most significant
association with the MDS-UPDRS part III score. Each row represents the three PD groups and the HC group. Each panel within a row corresponds to a
particular subject. The thick lines and thin lines denote the group-wise and subject-wise estimates of progression lines fitted by the linear mixed
effects model, respectively. The points denote the observed data.

TABLE 2 Description of the selected features: 9 features selected for longitudinally disease progression tracking, and 3 features selected for de novo PD
vs. HC classification.

Objective for feature selection Feature Statistic Side Description PGEE Estimate
Disease progression tracking TUG TD Median Turns—Duration 0.39

TUG TPV Median Turns—Turn Velocity −0.38
TUG STSD Mean Stand to Sit—Duration 0.34

Walk TA Median Turns—Angle 0.26

Walk GLLC MAD A Gait/Lower Limb—Cadence 0.16

Walk GLLSW MAD L Gait/Lower Limb—Swing 0.07

Walk GLLLSM Median L Gait/Lower Limb—Circumduction −0.06
Walk APAMAA Mean Anticipatory Postural Adjustment—Forward APA Peak −0.06
Sway PSAN95ESA Mean Postural Sway/Angles—Sway Area 0.05

de novo PD vs. HC classification TUG TPV Median Turns—Turn Velocity −0.60
Walk GLLTOA MAD A Gait/Lower Limb—Toe Out Angle −0.43
Walk GULMV Median A Gait/Upper Limb—Arm Swing Velocity −0.27

MAD, Mean Absolute Deviation; A, Affected side; L, Less affected side.
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respectively. For advanced PD vs. HC, the effect sizes of progression

slope were 0.76, 0.90, and 0.76 for MDS-UPDRS Part III, composite

digital measure, and TUG TPV, respectively. On the other hand, the

composite digital measure didn’t show significant progression in the

mild-to-moderate, on-therapy PD group, which was consistent with
Frontiers in Digital Health 09
what is observed in Figure 5. Recall that none of the 11 selected

digital features had significant univariate progression in the mild-

to-moderate, on-therapy PD group (for example, the mild-to-

moderate PD vs. HC slope p-value of TUG TPV was not

significant, p = 0.15). Thus, it was not surprising that the
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FIGURE 5

Tracking PD progression via (A) the MDS-UPDRS part III and (B) the composite digital measure based on the 11 selected digital features. The dashed
lines represented the observed MDS-UPDRS Part III scores and the predicted composite digital measures in the combined PD group, respectively.

TABLE 3 Performance comparison among MDS-UPDRS part III, the composite digital measure, and TUG TPV in terms of both progression and variability.

MDS-UPDRS Part III Composite Digital Measure TUG TPV
Group-by-visit p-value 6.22 × 10−3 7.65 × 10−3 8.05 × 10−3

de novo PD vs. HC: slope p-value 0.02 8.28 × 10−3 1.35 × 10−3

Mild-to-moderate PD vs. HC: slope p-value 2.25 × 10−4 0.16 0.15

Advanced PD vs. HC: slope p-value 0.07 4.22 × 10−3 0.01

HC slope p-value 0.01 0.58 0.78

Between-subject coefficient of variation 39.0% 20.4% 17.2%

Within-subject coefficient of variation 34.1% 16.9% 9.7%

Effect size in progression slope between de novo PD and HC 1.41 (0.51, 2.31) 2.14 (1.24, 3.04) 1.37 (0.47, 2.27)

Effect size in progression slope between mild-to-moderate PD and HC 2.28 (1.40, 3.16) 0.86 (−0.02, 1.73) 0.60 (−0.28, 1.47)
Effect size in progression slope between advanced PD and HC 0.76 (−0.11, 1.64) 0.90 (0.02, 1.77) 0.76 (−0.12, 1.64)
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composite digital measure preserved the same pattern. Moreover, the

composite digital measure showed smaller between-/within-subject

coefficient of variation than MDS-UPDRS Part III. In summary,

the results from Figure 5 and Table 3 indicate that the composite

digital measure is an attractive aggregated measure for tracking PD

progression compared to MDS-UPDRS Part III and to individual

digital features.

3.4.3 Performance in classifying de novo PD and
HC

We further examined if the composite digital measure

developed above (for tracking PD progression longitudinally) was

also effective in classifying between de novo PD and HC subjects.

Results are shown in Figure 6, where the boxplot of composite

digital measures in the de novo PD subgroup is clearly higher

than the boxplot in the HC subgroup. The composite digital

measure had an AUC of 0.992 in such classification, which was

very similar to that achieved for the classification model based

on MDS-UPDRS Part III (AUC of 0.991). This demonstrated

that the composite digital measure was able to preserve the

ability to differentiate PD from HC groups and was effective in

classifying de novo PD and HC.
Frontiers in Digital Health 10
4 Discussion

DHT-derived measures have shown great promise in both

tracking disease progression and disease classification. However, it

remains challenging to identify digital features for predicting

disease progression longitudinally in a high dimensional space.

Furthermore, methodologies for combining individual digital

features into composite digital measures have not been fully

explored and standardized in the field of DHTs. Although there

have been several examples where composite digital measures were

developed for tracking symptom progression, many of these prior

efforts used simple sums of pre-defined, unweighted features

without optimizing for performance (22, 29). In other cases where

digital composite measures were trained/optimized to predict

clinical scores, machine learning methodologies were often used

without consideration of the longitudinal nature of the features

(15, 30). The field has not adopted consistent and systematic

methods and/or analysis frameworks that use statistical or

machine learning methods capable of handling high-dimensional

longitudinal data for feature selection and prediction while

considering the within-subject correlation across visits. Therefore,

there is an urgent need to develop this kind of new methodologies
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FIGURE 6

Boxplots of (A) the composite digital measure vs. (B) the MDS-UPDRS Part III in de novo PD and HC groups, respectively. Each dot indicates the
composite digital measure or clinical score of each subject at each visit; the dotted line indicates the optimized threshold for classification: 12.14
for composite digital measure and 11 for MDS-UPDRS Part III. Dots above the line were classified into de novo PD, and dots below the line were
classified into HC. Values that lead to false classifications are shown in red. The composite digital measure has AUC of 0.992 and MDS-UPDRS
Part III has AUC of 0.991.
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and analysis pipelines for the construction of composite digital

measures for disease progression tracking, tailored for high-

dimensional, longitudinal data with digital features collected from

sensor technologies. In this paper, we propose a principled,

scalable, and comprehensive methodology for the identification of

relevant digital features of disease progression from large DHT

data sets, and subsequent construction of a composite digital

measure for disease progression tracking. Specifically, in Step 1,

data is collected and processed for aggregated observation and

quality control. In Step 2, we apply a linear mixed effects model

for univariate screening for longitudinal progression of digital

features. In Step 3, a univariate association test is conducted

between candidate digital features (i.e., features that pass the

univariate screening) and clinical scores, for example the MDS-

UPDRS Part III and/or its subscales. In Step 4, the candidate

digital features are ranked via a ML-based method, PGEE, for

high-dimensional longitudinal data analysis. The optimal number

of top features to be included into the composite digital measure

is further determined using a cross-validation based algorithm to

avoid overfitting. Note that PGEE (penalized GEE) method is

designed for longitudinal data analysis with high-dimensional

covariates by including a penalty term in the traditional GEE

model. PGEE is particularly useful in handling high-dimensional

feature sets, applicable for data from DHTs.

To demonstrate the utility of our methodology, we applied it to

the data collected from a PD longitudinal observational study,

which consisted of OpalTM sensor-based movement

measurements and MDS-UPDRS Part III scores collected from

PD patients at a range of disease stages and healthy controls over

a 2-year duration. Our primary interest in developing a

composite digital measure is to track disease progression. The

composite digital measure developed from this illustrative

example generally showed a smoother and more significant

increasing trend in PD groups and smaller between-/within-

subject coefficients of variation than MDS-UPDRS Part III in
Frontiers in Digital Health 11
this small dataset (N = 40), indicating potential utility for the

composite digital measures to be used to track disease

progression more sensitively and with less variability vs. standard

clinical measures. It should be noted that the dataset in our

illustrative example was small (N = 40), and therefore, results of

our analysis should be interpreted with caution. The analysis

reported here was presented as an illustration of our proposed

methodology and framework and was not intended as a

proposed composite measure for use in future studies. We also

note that the composite digital measure shows less significant

progression trending in mild-to-moderate, on-therapy PD

patients compared to in de novo and advanced PD patients. This

outcome is consistent with the trends observed by Brzezicki et al.

(11) using data derived from the OxQUIP study. We further

evaluated the classification performance between de novo PD and

HC using the composite digital measure built from our

methodology (primarily for tracking PD progression). The

measure had an AUC ROC of 0.992 for classification (vs.

AUC = 0.991 when using MDS-UPDRS Part III), indicating that

the composite digital measure also had a good performance in

classifying between de novo PD and HC subjects, comparable to

MDS-UPDRS Part III.

Note that in our analysis, the top digital features (i.e., those

with the largest PGEE estimates from the multivariate penalized

regression model) were selected for both tracking MDS-UPDRS

Part III progression and classifying between de novo PD and HC.

While the digital feature TUG TPV ranked high in both subsets

of selected features, we observe that the digital features that are

important for disease progression tracking are not necessarily the

same as digital features important for patient identification. We

constructed the composite digital biomarker with the merged

feature list in this example.

Regarding performance, this composite digital biomarker keeps

the main characteristics of individual digital features but exhibits a

more significant increasing trend indicative of disease progression.
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On one hand, this composite digital biomarker shows progression

in de novo and advanced PD groups but remains flat in mild-to-

moderate, on-therapy PD and HC groups which is consistent

with the general behaviours of individual digital features

(Figure 2). On the other hand, it exhibits a more significant

increasing longitudinal trend compared to individual digital

features (including TUG TPV). It is worth noting that the

features selected using the PGEE model tend to have diverse

measurement properties. The final feature set is not a

combination of the best-performing individual features in terms

of individual progression signal (i.e., neither features with the

most progressions in PD groups nor features with the most

significant univariate association with MDS-UPDRS Part III).

A possible explanation is that combining top features with high

correlations doesn’t necessarily add additional information to the

composite; there could be redundancy among digital features. It

also suggests opportunities to further improve the performance

of the composite digital measure by enriching the feature set

with different assessments/tasks and measures.

The superior performance observed in the multivariate analysis,

albeit from a small pilot dataset, suggests promises for use of

composite digital measures for progression tracking in future

studies. Recent modelling efforts have shown that an increased

precision made possible by more objective and frequent composite

digital measures could lead to smaller and shorter proof-of-

concept studies to demonstrate disease-modifying treatment effect

(20), which is critical in enabling and accelerating drug

development. Open discussions on methodologies to identify the

relevant digital features (from the multitude of digital measure

possible with DHTs) and construct composite digital measures are

critical to enable the adoption of such digital measures, and we

present a methodology for this herein.

We see broad applicability of our proposed framework in

handling high-dimensional, longitudinal DHT datasets and

developing novel digital biomarkers for disease progression. To

gain confidence in the use of such biomarkers for decision-making

in clinical development, we anticipate that further efforts in

technical validation and clinical validation will also be needed to

build confidence in the constructed composite digital measures.

Additionally, operational feasibility and user acceptance are critical

to ensure that the measure can be successfully collected in clinical

trials. All these elements will be part of the evidence package to

support the fit-for-purpose use of a new digital biomarker and will

be important to both clinical implementation and the

interpretation of results.

Lastly, although we propose here a machine learning-based

approach to develop composite digital biomarkers as indicators of

traditional clinical endpoints, it is also valuable to further explore

the clinical and biological relevance of the identified features. For

example, one could examine the univariate associations between

individual digital features and the clinical scores or domain sub-

scores (as included in our pipeline and illustrated in Figure 3).

Further, the relevance of many symptom features to the

underlying disease mechanism have also been reported in the

literature. In our illustrative example, several turning features,

including peak velocity, duration, and angle, were identified to be
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valuable for progression tracking; coincidentally, turning has been

highlighted in many prior publications as a common challenge in

PD (39–42) and is also included in a Phase 2 interventional study

as a key digital feature (38).

There are several limitations of our work. First, a major caveat

of the results reported from the illustrative example herein is that

this analysis only used a small number of participants. Our

proposed analysis workflow for digital biomarker development

needs to be applied to additional studies with larger N to further

demonstrate utility. The identified individual digital features of

Parkinson’s disease progression and the composite digital

measure presented herein is solely for purposes of illustrating the

methodology approach. They would need to be validated and

verified in an independent dataset in further research before they

can be used as digital biomarkers of disease progression and

treatment response. Second, the digital features in our study were

obtained from sensor-based movement measurements using one

DHT system used during supervised, in-clinic tasks. Different or

expanded digital features may be available with different DHTs,

different task-based assessments, use of passive monitoring

approaches, technology evolution, and further algorithm

development. It is worth noting that we mainly use this feature

set to demonstrate the methodology, and our proposed high-

dimensional longitudinal data analysis framework (including

feature selection and predictive modelling) is adaptive for

different feature sets collected from different sensor technologies.

Third, in our illustrative example, we examined potential

confounders (i.e., age and sex) in the pooled PD group to

identify factors that might significantly impact the progression

trending. As a result, age was identified and included into our

model as a covariate to be adjusted. It would have been preferred

to assess potential confounders in each PD subgroup (i.e., de

novo PD, mild-to-moderate PD, and advanced PD) rather than

the pooled PD group; however, the small sample size and

imbalanced datasets within the subgroups posed challenges to

doing so.

Notably, the current dataset is longitudinal but only contains

in-clinic visit data. One advantage of DHTs is that they may

offer the ability to capture data outside of the clinic much more

frequently. Other studies, including the Phase 2 Trial of Anti α-

Synuclein Antibody in Early Parkinson’s Disease (PASADENA)

study (10) (daily tasks) and the Personalized Parkinson Project

(PPP) study (43) (bi-weekly tasks), have shown utility in

capturing remotely collected DHT data with increased

measurement frequency. Increased measurement frequency could

further enhance the performance of digital measures in

quantifying disease progression, as it could address the day-to-

day symptom fluctuations and reduce the measurement

variability. Such remotely acquired digital features could also be

applied to the methodology and framework we’ve reported here.

In addition, there is emerging research into characterization of

the neurodegenerative disease progression directly from raw sensor

signals recorded by DHTs (e.g., wearable sensors, environmental

sensors, smartphone sensors) using deep neural networks and

other black box algorithms (44, 45). Germane to these efforts is

an important question about the interpretability of the ensuing
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models and results (46, 47). In our work, we identified candidate

digital features of disease progression using inherently

interpretable linear models. We did not explore deep learning of

the raw sensor data directly; such an approach is an interesting

future direction of research.

In summary, with the rapid development of DHTs, digital

measures are playing an increasingly important role in not only

neurodegenerative disease detection, but also longitudinally

tracking disease progression over time and detection of

therapeutic response. Our proposed ML-based framework for

identifying digital features of progression and constructing

composite digital measures adds to the existing body of literature

on digital measure analysis methodologies and may help

accelerate the translation of digital measures to utility for drug

development and clinical practice.
Data availability statement

The datasets presented in this article are not readily available

because the original data presented in this paper is from the

ongoing OxQUIP study and cannot be shared until completion

of the whole study and full dissemination of results. This is

expected to become possible within 24 months from the end of

the study. Qualified researchers will be able to contact the

Principal Investigator at the University of Oxford. Requests to

access these datasets should be directed to Chrystalina

A. Antoniades, chrystalina.antoniades@ndcn.ox.ac.uk.
Ethics statement

The studies involving humans were approved by a research

ethics committee and the Health Research Authority (REC16/

SW/0262). The studies were conducted in accordance with the

local legislation and institutional requirements. The participants

provided their written informed consent to participate in

this study.
Author contributions

SZ: Writing – original draft, Writing – review & editing,

Conceptualization, Data curation, Formal Analysis, Methodology,

Software, Visualization. AL: Conceptualization, Formal Analysis,

Methodology, Writing – review & editing, Visualization. JS:

Conceptualization, Methodology, Writing – original draft,

Writing – review & editing, Supervision. YX: Data curation,

Formal Analysis, Writing – review & editing. VS:

Conceptualization, Methodology, Writing – review & editing. JF:

Funding acquisition, Investigation, Writing – review & editing.

CA: Funding acquisition, Investigation, Writing – review &

editing. DH: Methodology, Writing – review & editing. MD:
Frontiers in Digital Health 13
Supervision, Writing – review & editing. JR: Writing – original

draft, Writing – review & editing, Conceptualization, Data

curation, Methodology, Supervision. RB: Writing – original draft,

Writing – review & editing, Conceptualization, Data curation,

Methodology, Supervision.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. J.J.F and

C.A.A were supported by the National Institute for Health

Research Oxford Biomedical Research Centre. J.J.F has received

consulting fees from Abbott and Medtronic, unrelated to this

study. J.J.F and C.A.A have received research grant support from

UCB Pharma and MSD Laboratories. We thank the participants

and their families for their endless support with our research work.
Conflict of interest

SZ, AL, JS, YX, VS, DH, MD, JR and RB were employed by

Merck & Co., Inc. JS is a review editor for Statistical Genetics

and Methodology in Frontiers in Genetics. JF is an Associate

Editor for Neuroprosthetics in Frontiers in Neuroscience. CA is a

review editor for Perception Science in Frontiers in Neuroscience

and Frontiers in Psychology. JR is a review editor for Soft Matter

Physics in Frontiers in Physics. RB is a review editor for Medical

Physics and Imaging in Frontiers in Physiology and Frontiers

in Physics.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdgth.2024.

1500811/full#supplementary-material
frontiersin.org

mailto:chrystalina.antoniades@ndcn.ox.ac.uk
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1500811/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1500811/full#supplementary-material
https://doi.org/10.3389/fdgth.2024.1500811
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Zhai et al. 10.3389/fdgth.2024.1500811
References
1. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al.
Movement disorder society-sponsored revision of the unified Parkinson’s disease
rating scale (MDS-UPDRS): scale presentation and clinimetric testing results.
Movement Disord. (2008) 23(15):2129–70. doi: 10.1002/mds.22340

2. Committee for Medicinal Products for Human Use. Qualification Opinion on
Dopamine Transporter Imaging as an Enrichment Biomarker for Parkinson’s
Disease Clinical Trials in Patients with Early Parkinsonian Symptoms. European
Medicines Agency:EMA/CHMP SAWP/765041/2017 (2018).

3. Horak FB, Mancini M. Objective features of balance and gait for Parkinson’s
disease using body-worn sensors. Mov Disord. (2013) 28(11):1544–51. doi: 10.1002/
mds.25684

4. Heldman DA, Espay AJ, LeWitt PA, Giuffrida JP. Clinician versus machine:
reliability and responsiveness of motor endpoints in Parkinson’s disease.
Parkinsonism Relat D. (2014) 20(6):590–5. doi: 10.1016/j.parkreldis.2014.02.022

5. LeBaron V, Hayes J, Gordon K, Alam R, Homdee N, Martinez Y, et al. Leveraging
smart health technology to empower patients and family caregivers in managing
cancer pain: protocol for a feasibility study. Jmir Res Protoc. (2019) 8(12):e16178.
doi: 10.2196/16178

6. Evers LJ, Raykov YP, Krijthe JH, de Lima ALS, Badawy R, Claes K, et al. Real-life
gait performance as a digital biomarker for motor fluctuations: the Parkinson@home
validation study. J Med Internet Res. (2020) 22(10):e19068. doi: 10.2196/19068

7. Erb MK, Karlin DR, Ho BK, Thomas KC, Parisi F, Vergara-Diaz GP, et al.
Mhealth and wearable technology should replace motor diaries to track motor
fluctuations in Parkinson’s disease. NPJ Digitl Med. (2020) 3(1):6. doi: 10.1038/
s41746-019-0214-x

8. MahadevanN,Demanuele C, ZhangH,VolfsonD,HoB, ErbMK, et al.Development
of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable
device. NPJ Digit Med. (2020) 3(1):5. doi: 10.1038/s41746-019-0217-7

9. Burq M, Rainaldi E, Ho KC, Chen C, Bloem BR, Evers LJW, et al. Virtual exam
for Parkinson’s disease enables frequent and reliable remote measurements of motor
function. NPJ Digit Med. (2022) 5(1):65. doi: 10.1038/s41746-022-00607-8

10. Pagano G, Boess FG, Taylor KR, Ricci B, Mollenhauer B, Poewe W, et al. A
phase II study to evaluate the safety and efficacy of prasinezumab in early
Parkinson’s disease (PASADENA): rationale, design, and baseline data. Front
Neurol. (2021) 12:705407. doi: 10.3389/fneur.2021.705407

11. Brzezicki MA, Conway N, Sotirakis C, FitzGerald JJ, Antoniades CA.
Antiparkinsonian medication masks motor signal progression in de novo patients.
Heliyon. (2023) 9(11):e16415. doi: 10.1016/j.heliyon.2023.e16415

12. Pagano G, Taylor KI, Anzures-Cabrera J, Marchesi M, Simuni T, Marek K, et al.
Trial of prasinezumab in early-stage Parkinson’s disease. New Engl J Med. (2022) 387
(5):421–32. doi: 10.1056/NEJMoa2202867

13. Robin J, Xu M, Detke M, Simpson W. Validation of an objective, SpeechBased
object content score for measuring disease progression in AD. J Prev Alzheimer’s Dis.
(2022) 9:S190. doi: 10.14283/jpad.2022.97 (P143).

14. Liu Y, Zhang G, Tarolli CG, Hristov R, Jensen-Roberts S, Waddell EM, et al.
Monitoring gait at home with radio waves in Parkinson’s disease: a marker of
severity, progression, and medication response. Sci Transl Med. (2022) 14(663):
eadc9669. doi: 10.1126/scitranslmed.adc9669

15. Yang Y, Yuan Y, Zhang G, Wang H, Chen YC, Liu Y, et al. Artificial intelligence-
enabled detection and assessment of Parkinson’s disease using nocturnal breathing
signals. Nat Med. (2022) 28(10):2207–15. doi: 10.1038/s41591-022-01932-x

16. Kadirvelu B, Gavriel C, Nageshwaran S, Chan JPK, Nethisinghe S,
Athanasopoulos S, et al. A wearable motion capture suit and machine learning
predict disease progression in Friedreich’s ataxia. Nat Med. (2023) 29:86–94.
doi: 10.1038/s41591-022-02159-6

17. Ricotti V, Kadirvelu B, Selby V, Festenstein R,Mercuri E, Voit T, et al.Wearable full-
body motion tracking of activities of daily living predicts disease trajectory in Duchenne
muscular dystrophy. Nat Med. (2023) 29(1):95–103. doi: 10.1038/s41591-022-02045-1

18. Johnson SA, Karas M, Burke KM, Straczkiewicz M, Scheier ZA, Clark AP, et al.
Wearable device and smartphone data quantify ALS progression and may provide novel
outcome measures. NPJ Digit Med. (2023) 6(1):34. doi: 10.1038/s41746-023-00778-y

19. Giboin LS, Simillion C, Rennig J, Bamdadian A, Kinsella F, McColgan P, et al.
A digital motor score for sensitive detection of disease progression in early
manifest Huntington’s disease (2023). Available online at: https://medically.roche.
com/global/en/medical-material.a86d594d-0db2-42d9-9bef-6622e0b574d2.qr.html?
cid=slprxx2304nehdchdi2023 (Accessed December 19, 2024).

20. Mori H, Wiklund SJ, Zhang JY. Quantifying the benefits of digital biomarkers
and technology-based study endpoints in clinical trials: project moneyball. Digit
Biomark. (2022) 6(2):36–46. doi: 10.1159/000525255

21. Adams JL, Kangarloo T, Gong Y, Khachadourian V, Tracey B, Volfson D, et al.
Using a smartwatch and smartphone to assess early Parkinson’s disease in the
WATCH-PD study over 12 months. NPJ Park.’s Dis. (2024) 10:112. doi: 10.1038/
s41531-024-00721-2
Frontiers in Digital Health 14
22. Czech MD, Badley D, Yang L, Shen J, Crouthamel M, Kangarloo T, et al.
Improved measurement of disease progression in people living with early
Parkinson’s disease using digital health technologies. Commun. Med. (2024) 4(1):49.
doi: 10.1038/s43856-024-00481-3

23. Perumal SV, Sankar R. Gait and tremor assessment for patients with Parkinson’s
disease using wearable sensors. Ict Express. (2016) 2(4):168–74. doi: 10.1016/j.icte.
2016.10.005

24. Dinov ID, Heavner B, Tang M, Glusman G, Chard K, Darcy M, et al. Predictive
big data analytics: a study of Parkinson’s disease using large, complex, heterogeneous,
incongruent, multi-source and incomplete observations. PLoS One. (2016) 11(8):
e0157077. doi: 10.1371/journal.pone.0157077

25. Alaskar H, Hussain A. Prediction of Parkinson disease using gait signals. 2018
11th International Conference on Developments in ESystems Engineering (DeSE)
(2018). p. 23–6

26. Gao C, Sun H, Wang T, Tang M, Bohnen NI, Müller ML, et al. Model-based and
model-free machine learning techniques for diagnostic prediction and classification of
clinical outcomes in Parkinson’s disease. Sci Rep. (2018) 8(1):7129. doi: 10.1038/
s41598-018-24783-4

27. Tsoulos IG, Mitsi G, Stavrakoudis A, Papapetropoulos S. Application of machine
learning in a Parkinson’s disease digital biomarker dataset using neural network
construction (NNC) methodology discriminates patient motor Status. Frontiers Ict.
(2019) 6:10. doi: 10.3389/fict.2019.00010

28. Dadu A, Satone V, Kaur R, Hashemi SH, Leonard H, Iwaki H, et al.
Identification and prediction of Parkinson’s disease subtypes and progression using
machine learning in two cohorts. NPJ Park.’s Dis. (2022) 8(1):172. doi: 10.1038/
s41531-022-00439-z

29. Taylor K, Lipsmeier F, Volkova-Volkmar E, Rukina D, Anzures-Cabrera J,
Essioux L, et al. Prasinezumab reduced progression of Parkinson’s disease motor
features measured by roche PD Mobile application v2 sensor features: PASADENA
phase II part 1 [abstract]. Mov Disord. (2021) 36(suppl 1). https://www.
mdsabstracts.org/abstract/prasinezumab-reduced-progression-of-parkinsons-disease-
motor-features-measured-by-roche-pd-mobile-application-v2-sensor-features-
pasadena-phase-ii-part-1/

30. Sotirakis C, Su Z, Brzezicki MA, Conway N, Tarassenko L, FitzGerald JJ, et al.
Identification of motor progression in Parkinson’s disease using wearable sensors
and machine learning. NPJ Park.’s Dis. (2023) 9(1):142. doi: 10.1038/s41531-023-
00581-2

31. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models.
Biometrika. (1986) 73(1):13–22. doi: 10.1093/biomet/73.1.13

32. Wang L, Zhou J, Qu A. Penalized generalized estimating equations for high-
dimensional longitudinal data analysis. Biometrics. (2012) 68(2):353–60. doi: 10.
1111/j.1541-0420.2011.01678.x

33. Pereira MF, Buchanan T, Höglinger GU, Bogdanovic M, Tofaris G, Prangnell S,
et al. Longitudinal changes of early motor and cognitive symptoms in progressive
supranuclear palsy: the OxQUIP study. BMJ Neurology Open. (2022) 4:e000214.
doi: 10.1136/bmjno-2021-000214

34. Svetnik V, Liaw A, Tong C, Wang T. Application of breiman’s random forest to
modeling structure-activity relationships of pharmaceutical molecules. In: Roli F,
Kittler J, Windeatt T, editors. Multiple Classifier Systems. MCS 2004. Lecture Notes
in Computer Science, vol 3077. Berlin, Heidelberg: Springer (2004). doi: 10.1007/
978-3-540-25966-4_33

35. Zampieri C, Salarian A, Carlson-Kuhta P, Aminian K, Nutt JG, Horak FB. The
instrumented timed up and go test: potential outcome measure for disease modifying
therapies in Parkinson’s disease. J Neurology Neurosurg Psychiatry. (2010) 81(2):171.
doi: 10.1136/jnnp.2009.173740

36. Koop MM, Ozinga SJ, Rosenfeldt AB, Alberts JL. Quantifying turning behavior
and gait in Parkinson’s disease using mobile technology. Ibro Reports. (2018) 5:10–6.
doi: 10.1016/j.ibror.2018.06.002

37. Lowry K, Woods T, Malone A, Krajek A, Smiley A, Van Swearingen J. The
figure-of-8 walk test used to detect the loss of motor skill in walking among
persons with Parkinson’s disease. Physiother Theory Pract. (2022) 38(4):552–60.
doi: 10.1080/09593985.2020.1774948

38. Lipsmeier F, Taylor KI, Postuma RB, Volkova-Volkmar E, Kilchenmann T,
Mollenhauer B, et al. Reliability and validity of the Roche PD Mobile application
for remote monitoring of early Parkinson’s disease. Sci Rep-uk. (2022) 12(1):12081.
doi: 10.1038/s41598-022-15874-4

39. Stack E, Ashburn A. Dysfunctional turning in Parkinson’s disease. Disabil
Rehabil. (2008) 30(16):1222–9. doi: 10.1080/09638280701829938

40. Hulbert S, Ashburn A, Robert L, Verheyden G. Narrative review of turning
deficits in people with Parkinson’s disease. Disabil Rehabil. (2014) 37(15):1382–9.
doi: 10.3109/09638288.2014.961661

41. Mak MK, Patla A, Hui-Chan C. Sudden turn during walking is impaired in
people with Parkinson’s disease. Exp Brain Res. (2008) 190(1):43–51. doi: 10.1007/
s00221-008-1446-1
frontiersin.org

https://doi.org/10.1002/mds.22340
https://doi.org/10.1002/mds.25684
https://doi.org/10.1002/mds.25684
https://doi.org/10.1016/j.parkreldis.2014.02.022
https://doi.org/10.2196/16178
https://doi.org/10.2196/19068
https://doi.org/10.1038/s41746-019-0214-x
https://doi.org/10.1038/s41746-019-0214-x
https://doi.org/10.1038/s41746-019-0217-7
https://doi.org/10.1038/s41746-022-00607-8
https://doi.org/10.3389/fneur.2021.705407
https://doi.org/10.1016/j.heliyon.2023.e16415
https://doi.org/10.1056/NEJMoa2202867
https://doi.org/10.14283/jpad.2022.97
https://doi.org/10.1126/scitranslmed.adc9669
https://doi.org/10.1038/s41591-022-01932-x
https://doi.org/10.1038/s41591-022-02159-6
https://doi.org/10.1038/s41591-022-02045-1
https://doi.org/10.1038/s41746-023-00778-y
https://medically.roche.com/global/en/medical-material.a86d594d-0db2-42d9-9bef-6622e0b574d2.qr.html?cid=slprxx2304nehdchdi2023
https://medically.roche.com/global/en/medical-material.a86d594d-0db2-42d9-9bef-6622e0b574d2.qr.html?cid=slprxx2304nehdchdi2023
https://medically.roche.com/global/en/medical-material.a86d594d-0db2-42d9-9bef-6622e0b574d2.qr.html?cid=slprxx2304nehdchdi2023
https://doi.org/10.1159/000525255
https://doi.org/10.1038/s41531-024-00721-2
https://doi.org/10.1038/s41531-024-00721-2
https://doi.org/10.1038/s43856-024-00481-3
https://doi.org/10.1016/j.icte.2016.10.005
https://doi.org/10.1016/j.icte.2016.10.005
https://doi.org/10.1371/journal.pone.0157077
https://doi.org/10.1038/s41598-018-24783-4
https://doi.org/10.1038/s41598-018-24783-4
https://doi.org/10.3389/fict.2019.00010
https://doi.org/10.1038/s41531-022-00439-z
https://doi.org/10.1038/s41531-022-00439-z
https://www.mdsabstracts.org/abstract/prasinezumab-reduced-progression-of-parkinsons-disease-motor-features-measured-by-roche-pd-mobile-application-v2-sensor-features-pasadena-phase-ii-part-1/
https://www.mdsabstracts.org/abstract/prasinezumab-reduced-progression-of-parkinsons-disease-motor-features-measured-by-roche-pd-mobile-application-v2-sensor-features-pasadena-phase-ii-part-1/
https://www.mdsabstracts.org/abstract/prasinezumab-reduced-progression-of-parkinsons-disease-motor-features-measured-by-roche-pd-mobile-application-v2-sensor-features-pasadena-phase-ii-part-1/
https://www.mdsabstracts.org/abstract/prasinezumab-reduced-progression-of-parkinsons-disease-motor-features-measured-by-roche-pd-mobile-application-v2-sensor-features-pasadena-phase-ii-part-1/
https://doi.org/10.1038/s41531-023-00581-2
https://doi.org/10.1038/s41531-023-00581-2
https://doi.org/10.1093/biomet/73.1.13
https://doi.org/10.1111/j.1541-�0420.2011.01678.x
https://doi.org/10.1111/j.1541-�0420.2011.01678.x
https://doi.org/10.1136/bmjno-2021-000214
https://doi.org/10.1007/978-3-540-25966-4_33
https://doi.org/10.1007/978-3-540-25966-4_33
https://doi.org/10.1136/jnnp.2009.173740
https://doi.org/10.1016/j.ibror.2018.06.002
https://doi.org/10.1080/09593985.2020.1774948
https://doi.org/10.1038/s41598-022-15874-4
https://doi.org/10.1080/09638280701829938
https://doi.org/10.3109/09638288.2014.961661
https://doi.org/10.1007/s00221-�008-�1446-�1
https://doi.org/10.1007/s00221-�008-�1446-�1
https://doi.org/10.3389/fdgth.2024.1500811
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Zhai et al. 10.3389/fdgth.2024.1500811
42. Ragothaman A, Miranda-Dominguez O, Brumbach BH, Giritharan A, Fair DA,
Nutt JG, et al. Relationship between brain volumes and objective balance and gait
measures in Parkinson’s disease. J Park.’s Dis. (2021) 12(1):283–94. doi: 10.3233/
JPD-202403

43. Bloem BR, Marks WJ, de Lima ALS, Kuijf ML, van Laar T, Jacobs BPF, et al. The
personalized Parkinson project: examining disease progression through broad
biomarkers in early Parkinson’s disease. BMC Neurol. (2019) 19(1):160. doi: 10.
1186/s12883-019-1394-3

44. Atri R, Urban K, Marebwa B, Simuni T, Tanner C, Siderowf A, et al. Deep
learning for daily monitoring of Parkinson’s disease outside the clinic using
wearable sensors. Sensors. (2022) 22(18):6831. doi: 10.3390/s22186831
Frontiers in Digital Health 15
45. Khan P, Fazlul Kader MD, Riazul Islam SM, Rahman AB, Sshahriar Kamal MD,
Uddin Toha M, et al. Machine learning and deep learning approaches for brain disease
diagnosis: principles and recent advances. IEEE Access. (2021) 9:37622–55. doi: 10.
1109/ACCESS.2021.3062484

46. Rudin C, Chen C, Chen Z, Huang H, Semenova L, Zhong C. Interpretable
machine learning: fundamental principles and 10 grand challenges. Stat Surv.
(2022) 16:1–85. doi: 10.1214/21-SS133

47. US Food and Drug Administration. Good machine learning practice for medical
device development: guiding principles (2021). Available online at: https://www.fda.
gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-
medical-device-development-guiding-principles (Accessed December 19, 2024).
frontiersin.org

https://doi.org/10.3233/JPD-202403
https://doi.org/10.3233/JPD-202403
https://doi.org/10.1186/s12883-019-1394-3
https://doi.org/10.1186/s12883-019-1394-3
https://doi.org/10.3390/s22186831
https://doi.org/10.1109/ACCESS.2021.3062484
https://doi.org/10.1109/ACCESS.2021.3062484
https://doi.org/10.1214/21-SS133
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://doi.org/10.3389/fdgth.2024.1500811
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

	A novel machine learning based framework for developing composite digital biomarkers of disease progression
	Introduction
	Materials and methods
	Study overview
	Statistical analysis
	Data processing and quality control
	Univariate progression screening
	Univariate association test
	Multivariate prediction model


	Results
	Patient demographics and baseline characteristics
	Univariate progression screening results
	Univariate association analysis results
	Multivariate feature selection and prediction results
	Feature selection
	Composite digital biomarker for tracking MDS-UPDRS part III
	Performance in classifying de novo PD and HC


	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


