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A framework for processing
large-scale health data in medical
higher-order correlation mining
by quantum computing in
smart healthcare
Peng Mei1 and Fuquan Zhang2*
1Digital Governance Office, National Governance Teaching and Research Department, Party School of
the Central Committee of C.P.C, Beijing, China, 2Fujian Provincial Key Laboratory of Information
Processing and Intelligent Control, Minjiang University, Fuzhou, China
This study aims to leverage the advanced capabilities of quantum computing to
construct an efficient framework for processing large-scale health data, uncover
potential higher-order correlations in medicine, and enhance the accuracy of
smart healthcare diagnosis and treatment. A data processing framework is
developed using quantum annealing algorithms and quantum circuits. We call
it the quantum medical data simulation computational model (Q-MDSC). A
unique encoding method based on quantum bits is employed for health data
features, such as encoding symptom information from electronic health
records into different quantum bits and representing different alleles of
genetic data through superposition states of quantum bits. The properties of
quantum entanglement are utilized to relate different data types, and quantum
parallelism is harnessed to process multiple data combinations simultaneously.
Additionally, this quantum computing framework is compared with traditional
data mining methods using the same datasets, which include the Cochrane
Systematic Review Database (https://www.cochranelibrary.com), the BioASQ
Dataset (https://participants-area.bioasq.org), the PubMed Central Dataset
(https://www.ncbi.nlm.nih.gov/pmc), and the Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov). The datasets are divided into training and
testing sets in a 7:3 ratio during the experiments. Tests are conducted on
association mining tasks of varying data scales and complexities, ranging from
simple symptom-disease associations to complex gene-symptom-disease
higher-order associations. The results indicate that, when processing large-
scale data, the quantum computing framework improves overall
computational speed by approximately 45% compared to traditional
algorithms. Regarding uncovering higher-order correlations, the quantum
computing framework enhances accuracy by about 30% relative to traditional
algorithms. For early disease prediction, the accuracy achieved with the new
framework is approximately 25% higher than that of conventional methods.
Furthermore, for personalized treatment plan matching, the matching
accuracy of the quantum computing framework surpasses traditional
approaches by about 35%. These findings demonstrate the significant potential
of the quantum computing-based smart healthcare framework for processing
large-scale health data in the context of higher-order correlation mining,
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paving new pathways for the development of smart healthcare. This study utilizes
multiple public datasets to achieve breakthroughs in computational speed, higher-
order correlation mining, early disease prediction, and personalized treatment plan
matching, thus opening new avenues for advancing smart healthcare.

KEYWORDS

quantum computing, smart healthcare, higher-order correlation, quantum annealing
algorithm, quantum circuits
Introduction

With the rapid development of information technology and

computational science, the demand for medical data collection

and analysis in the current healthcare field is increasing (1).

Particularly when addressing complex disease models and

personalized medical plans, traditional computational techniques’

limitations in processing speed and correlation analysis have

become evident (2). Quantum computing-based smart healthcare

offers a novel solution that leverages the properties of quantum

physics, such as quantum superposition, entanglement, and

parallelism, providing unprecedented computational power and

speed to tackle these complex issues (3). As a technology with

immense potential, quantum computing has demonstrated

performance that surpasses traditional computing in various

fields, particularly in optimization problems, physical simulations,

and artificial intelligence (4). Although the application of

quantum computing in medical data processing and analysis is

still in its early stages, it has already shown significant promise.

Quantum computing can process vast amounts of data extremely

quickly, providing in-depth analysis of complex data

relationships, which is particularly important for developing

smart healthcare (5).

Data mining and analysis are crucial for disease diagnosis,

treatment, and health management in smart healthcare. As

quantum computing technology has emerged in recent years,

more studies have explored its potential applications in medical

data processing. Early research, such as that by Coccia et al.,

highlights that the unique physical properties of quantum

computing, such as quantum superposition and entanglement,

offer new insights for processing complex medical data.

Traditional computing often faces limitations in computational

efficiency and the depth of data relationship exploration when

dealing with large-scale medical data (6). Quantum computing,

with its qubits capable of simultaneously representing multiple

states compared to classical bits, theoretically allows for

processing various data combinations in a single operation,

thereby enhancing data processing speed. Aithal focused on the

preliminary applications of quantum computing in medical

image analysis. Although it differed from the high-order

correlation mining explored in this study, his research

demonstrated the feasibility of quantum computing in handling

complex types of medical data. In medical imaging, quantum

computing optimizes the image feature extraction process

through specialized quantum algorithms, providing more

accurate image information for subsequent disease diagnosis.
02
This indicated that quantum computing held potential

application value across various aspects of medical data

processing. Traditional data mining methods have been widely

applied in the medical field (7). Radha and Gopalakrishnan

elaborated on applying traditional machine learning algorithms,

such as decision trees and support vector machines, in disease

diagnosis. These algorithms constructed classification models to

predict diseases by learning from known case data. However, as

the scale of medical data continued to expand and the

complexity of data increased, traditional methods faced

significant challenges. For instance, when processing large-scale

electronic health record data, the computational time for feature

selection and model training in traditional algorithms increased

significantly (8). As Coccia explored, traditional algorithms often

struggled to capture complex interactions among multiple

variables when mining high-order correlations, which limited the

understanding of deep-rooted disease causes and the formulation

of personalized medical plans. In handling large-scale data,

quantum computing has already shown tremendous advantages

(9). Abbas demonstrated through theoretical analysis that

quantum algorithms exhibited a significantly slower growth rate

in computational complexity when handling data optimization

problems with numerous variables and constraints compared to

traditional algorithms. This characteristic made quantum

computing more efficient in processing large-scale health

data (10). Giani and Eldredge used quantum annealing

algorithms to process large-scale bioinformatics data in practical

applications. They found that quantum computing could

quickly identify optimal or near-optimal solutions, providing

empirical solid support for its application in medical data

processing. Numerous studies have also achieved results

regarding quantum computing’s ability to mine data correlations

(11). Thomasian and Adashi proposed leveraging quantum

entanglement properties to extract correlations within financial

data, offering insights applicable to extracting correlations in

medical data. In the medical field, mining correlations between

data was crucial for disease diagnosis and treatment; for

instance, complex higher-order correlations might exist between

genes and diseases, as well as symptoms and diseases (12).

Saini et al. attempted to construct data association models

using quantum circuits to mine simple correlations in medical

data, laying a foundation for future research despite not

addressing higher-order correlation mining (13). In summary,

prior research has established a theoretical and practical

foundation for applying quantum computing in healthcare. This

study builds upon that foundation to innovate and expand the
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development of a more comprehensive quantum computing-

based smart healthcare framework, paving new avenues for

its advancement.

This study aims to explore and develop a quantum computing-

based smart healthcare framework, focusing on applying quantum

annealing algorithms and quantum circuit design in mining

higher-order correlations in medicine. By comparing traditional

data processing methods with quantum-based approaches, this

study not only investigates advantages in processing speed

and accuracy but also evaluates the potential of this method in

real medical applications using multiple publicly available

medical datasets, including Cochrane, BioASQ, PubMed Central,

and The Cancer Genome Atlas (TCGA). We use qubits to

process data, use quantum algorithms and processes in the

calculation process, and verify data accuracy and accuracy

through quantum measurements, ensuring efficient processing

based on large amounts of medical data. The quantum

computing model proposed in this paper belongs to the

embedded model, which has improved the data processing

performance by integrating with other traditional data processing

models. Quantum computing is significant for mining higher-

order medical correlations, as it can substantially enhance

diagnostic and treatment precision while advancing personalized

medical solutions, thereby improving patient outcomes and

quality of life.
Construction of a quantum
computing-based smart healthcare
framework

Application concepts of quantum computing in
the smart healthcare system
(1) Alignment of Quantum Characteristics with Smart Healthcare

Needs: The properties of quantum computing—quantum

superposition, entanglement, and parallelism—align closely

with the requirements of smart healthcare (14). Quantum

superposition can efficiently represent complex information

such as genetic data. The entanglement property can

correlate various types of medical data, including symptoms,

genes, and lifestyle habits, aiding in exploring disease

causation and formulating personalized treatment plans.

Parallelism allows quantum bits to process multiple data

combinations simultaneously, significantly enhancing the

speed of large-scale medical data processing (15).

(2) Patient-Centric Concept: A patient-centric approach is at the

core of the quantum smart healthcare framework. Patient

data serves as the foundation, encompassing multifaceted

information. In diagnosis, quantum computing can integrate

data mining to uncover higher-order correlations and

identify early disease signs. In treatment, it can analyze

higher-order correlations among genes, symptoms, and

diseases to predict treatment outcomes, assisting doctors in

developing personalized plans (16).

(3) Data Integration and Security Considerations: Data

integration is crucial. Medical data originates from diverse
Frontiers in Digital Health 03
sources and varies in format, necessitating the establishment

of unified standards and interfaces to convert data formats

while preserving semantic information (17). Additionally,

data security is paramount. Quantum computing’s quantum

key distribution can ensure the security of data transmission

and storage, and it can be combined with differential

privacy techniques to achieve data sharing while

safeguarding privacy and adhering to privacy protection

regulations and ethical principles (18). Figure 1 illustrates

the application concepts of quantum computing technology.

In Figure 1, quantum computing technology demonstrates

significant advantages for its application within the smart

healthcare system. The property of quantum superposition allows

quantum bits to exist in multiple states simultaneously, providing

a distinct advantage in medical data processing (19). For instance,

the complex states found in genetic data can be represented more

efficiently through quantum computing, reducing data storage

requirements and processing complexity. Quantum entanglement

enables deep correlations between different types of patient data,

such as symptoms, genes, and lifestyle habits, offering a

comprehensive perspective for exploring disease causation and

assisting in accurate clinical assessments. Quantum parallelism

facilitates the simultaneous processing of numerous combinations

of vast medical data, such as extensive electronic health records

and genetic databases, significantly shortening data processing

times, accelerating disease diagnosis, and formulating personalized

treatment plans (20). Moreover, the security features of quantum

computing, particularly quantum key distribution, ensure the

safety of medical data during transmission and storage, effectively

protecting patient privacy (21).

Integration of quantum computing with medical
higher-order correlation mining

Quantum algorithms and programs are essential tools to

improve medical big data, and qubit representation is used in

data processing and presentation to provide data processing

efficiency. Quantum measurement makes the reception and

output of extensive data more accurate and has a higher fault

tolerance rate.

(1) Quantum Bit Encoding and Medical Data Representation:

Quantum bit encoding is crucial when integrating quantum

computing with medical higher-order correlation mining.

Medical data is complex and diverse, including electronic

health records and genetic data (22). Traditional encoding

methods struggle to process this efficiently, while quantum

bits offer a novel solution. For example, symptoms

in electronic health records can be encoded as different states

of quantum bits, allowing multiple symptoms to coexist in

superposition. Different alleles in genetic data can also be

represented through superposition states of quantum bits,

improving data representation efficiency and richness, thus

laying a foundation for higher-order correlation mining (23).

(2) Utilizing Quantum Entanglement to Mine Data Relationships:

Quantum entanglement is extraordinarily significant for mining

higher-order correlations in medicine. The relationships among
frontiersin.org
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FIGURE 1

Application concepts of quantum computing technology.
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genes, symptoms, and diseases are complex and often involve

interactions among multiple factors. Quantum entanglement

can link different types of data, such as entangling the quantum

bits of genes and symptoms so that manipulating one instantly

affects the state of the other, allowing for discovering hidden

higher-order correlations—something traditional methods

struggle to achieve (24).

(3) Accelerating Higher-Order Correlation Analysis with Quantum

Parallelism: Quantum parallelism offers clear advantages in

analyzing higher-order correlations in medicine. Analyzing

higher-order correlations involves searching through vast

combinations of data, a task that traditional methods

undertake sequentially, which is time-consuming. Quantum

computing can leverage quantum parallelism to process

multiple data combinations simultaneously. For example,

studying higher-order correlations among genes, symptoms,

and diseases can analyze all possible combinations

simultaneously, drastically reducing time and providing

critical insights for clinical applications (25).

(4) Application of Quantum Algorithms in Medical Higher-Order

Correlation Mining: Quantum algorithms play a vital role in

medical higher-order correlation mining. The quantum

annealing algorithm has unique advantages in addressing

optimization problems, enabling it to quickly find global or

near-optimal solutions when searching for the best
Frontiers in Digital Health 04
correlation models (viewed as optimization problems).

Quantum circuit algorithms can be customized to accurately

mine higher-order correlations among different data types,

advancing the deep integration of quantum computing with

medicine (26). For a system with n quantum bits, its

quantum state jCi can be expressed as shown in Equation (1):

Ci ¼
X2n�1

x¼0
ax

��� ���xi (1)

x is a binary number. x can be expressed as shown in Equation (2).

A vector transformation of x can be expressed as shown in

Equation (3). Equation (4) is the sum result.

x ¼ xn�1xn�2 � � � x0 (2)

jxi ¼jxn�1i � jxn�2i � � � � �jx0i (3)

X2n�1

x¼0
jaxj2 ¼ 1 (4)

In the representation of medical data, for example, n disease-

related features (such as genetic loci, symptom indicators, etc.)

can be encoded as n quantum bits, and the values of ax can be

determined based on the joint probability distribution of these
frontiersin.org
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features in the overall dataset (27). When measuring jCi, the
probability of obtaining the result x is given by Equation (5):

P(x) ¼ jaxj2 (5)

For instance, when analyzing a set of quantum states related to

disease-associated genes and symptoms, measuring the

probability of a specific combination of genes and symptoms can

be used to assess the likelihood of these combinations in disease

occurrence (28). For a quantum system consisting of subsystems

A and B, with an overall quantum state represented as rAB, the

reduced density matrix for subsystem A is given by Equation (6):

rA ¼ TrB(rAB) (6)

TrB denotes the trace operation taken over subsystem B. The

relative entropy entanglement measure ER(rAB) is defined by

Equation (7):

ER(rAB) ¼ min
s[D

S(rAB k s) (7)

D represents the set of separable states, S stands for entropy.

Entropy is a representation for calculating quantum energy or

work and the quantum relative entropy is given by Equation (8):

S(rAB k s) ¼ Tr(rAB(logrAB � logs)) (8)

In medical data mining, calculating the relative entropy

entanglement between the gene and symptom data subsystem

allows for quantifying their entangled relationship, thereby

facilitating the exploration of high-order correlations (29). For a

search space of size N ¼ 2n containing possible gene-symptom-

disease association combinations, the number of iterations k for

the quantum search algorithm is defined by Equation (9):

k ¼ p

4

ffiffiffiffiffi
N
M

r$ %
(9)

M is the number of target states in the search space. This formula

accounts for the case where the target state is not unique. In the

context of high-order medical correlation mining, M can

represent the number of states that satisfy specific disease

association patterns (30). Assuming there are m medical data

features (such as genes, symptoms, environmental factors, etc.),

these can be mapped to spin variables si i ¼ 1, 2, � � � , m in the

quantum annealing algorithm, where si ¼ +1. The energy

function E(s1, s2, � � � , sm) can be expressed as Equation (10):

E(s1, s2, � � � , sm) ¼ �
Xm

i¼1

Xm
j¼iþ1Jijsisj�Xm

i¼1hisi

þ
Xm

i¼1

Xm
j¼iþ1

Xm
k¼jþ1Kijksisjsk þ � � � (10)
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Jij represents the second-order interaction term, indicating the

strength of the correlation between features i and j; hi is the

external bias term, reflecting the inherent tendency of a single

feature; Kijk is the third-order interaction term, representing

high-order correlations among three features. Higher-order terms

can be added based on the actual complexity of the medical data

and the requirements for high-order correlation mining (31). In

quantum support vector machines, the kernel function is a

critical component. Suppose there are two medical data samples

j~xi and j~yi. The quantum kernel function K(~x,~y) can be defined

by Equation (11):

K(~x,~y) ¼ ~xh jUyU j~yi (11)

U is a unitary transformation operation, and Uy is its conjugate

transpose (32). This kernel function measures the similarity

between two samples in the quantum feature space. It can be

employed to differentiate gene-symptom patterns under different

disease states in high-order medical correlation mining. For a

training dataset {(j~xii, yi)}, the decision function is represented

by Equation (12):

f (j~xi) ¼ sign
Xn

i¼1
aiyiK(~xi,~x)þ b

� �
(12)

ai is the coefficient obtained through optimization algorithms, and

b is the bias term (33). In Figure 2, the results of the model

algorithm design are displayed.

In Figure 2, electronic medical records and genetic data are

extracted from raw medical data and mapped to quantum state

representations of symptoms and genetic markers during the

data preprocessing phase. Next, entanglement discovery is

conducted, creating entangled states from the quantum states of

symptoms and genes and calculating entanglement metrics.

Following this, high-order correlation mining is performed,

applying correlation functions to the entangled states and

utilizing quantum parallel processing to combine results and

measure high-order correlations. Finally, in the optimization

phase, correlations are mapped to the Ising model, defining an

energy function and using quantum annealing to find the

optimal state, which is then mapped back to obtain the

optimized correlation model. Singh et al. evaluated six different

models using the computational efficiency of alternative models

and selected Kriging for subsequent analysis based on their

superior performance in approximating the relationship between

the design parameters and the objective function (34).
Research data

The datasets used in this study include: (1) Cochrane

Systematic Review Dataset (https://www.cochranelibrary.com):

This dataset is a vital resource in the field of evidence-based

medicine, comprising numerous rigorously selected and evaluated

medical research reviews covering various aspects of treatment,
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FIGURE 2

Model algorithm design.
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FIGURE 3

Model computation speed evaluation (a) Cochrane Systematic Review Dataset; (b) BioASQ Dataset; (c) PubMed Central Dataset; (d) TCGA.
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prevention, and diagnosis of diseases. It provides high-quality

evidence support for medical decision-making and plays a crucial

role in researching the effectiveness of disease interventions. (2)

BioASQ Dataset (https://participants-area.bioasq.org): This

dataset primarily supports research in biomedical question-

answering systems, containing relevant information from

biomedical literature, aiding in the development of intelligent

systems capable of accurately answering biomedical questions. It

reflects the diversity and complexity of biomedical knowledge,

significantly enhancing healthcare information retrieval and Q&A

capabilities. (3) PubMed Central Dataset (https://www.ncbi.nlm.

nih.gov/pmc): PubMed Central is a comprehensive biomedical

literature repository, with datasets encompassing a vast array of

medical research papers and reviews, spanning from basic
Frontiers in Digital Health 07
medical research to clinical practice. This dataset provides a rich

information source for medical researchers, facilitating the

exploration of disease mechanisms and new treatment methods.

(4) TCGA (https://portal.gdc.cancer.gov): The TCGA dataset

focuses on tumor genomic research, collecting genomic and

clinical data from numerous tumor samples. Analyzing these

data allows for a deeper understanding of tumor onset and

progression mechanisms, discovering gene mutations associated

with tumors, and providing crucial evidence for precision

diagnosis, treatment, and drug development in oncology.

The performance evaluation of a quantum computing-based

intelligent healthcare framework is significant. To investigate the

performance enhancement of the proposed model, six traditional

models are selected for comparison to clarify the research value.
frontiersin.org
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FIGURE 4

Performance evaluation of the model in mining high-order correlations (a) Cochrane Systematic Review Dataset; (b) BioASQ Dataset; (c) PubMed
Central Dataset; (d) TCGA.
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The K-Nearest Neighbors (KNN) (35) algorithm relies on instance

learning, determining categories based on sample distances for

medical disease classification, but experiences a significant

computational burden with large-scale data and is sensitive to

feature scaling. The Principal Component Analysis-Logistic

Regression Hybrid Model (PCA-LRHM) (36) combines the

advantages of both methods to reduce dimensionality before

classification, alleviating issues related to high-dimensional data

complexity. However, PCA may lose information, and logistic

regression has a limited capacity for handling non-linear

relationships. The Gradient Boosting Decision Tree (GBDT) (37)

utilizes ensemble learning based on decision trees to improve

disease prediction accuracy gradually. Yet, it can be complex,
Frontiers in Digital Health 08
time-consuming to train, and prone to overfitting. The Hidden

Markov Model (HMM) (38) estimates disease states based on

sequence data; however, its assumptions do not fully align with

real-world medical scenarios, and increasing states lead to

exponential complexity. The Deep Belief Network (DBN) (39), a

deep learning model, can extract complex data information but

requires extensive data and long training times, exhibiting poor

interpretability. The eXtreme Gradient Boosting (XGBoost) (40)

algorithm performs well across various medical tasks. It can

enhance generalization ability, though it may lag behind the

quantum computing framework in handling large-scale and high-

order correlation mining. This comparison allows for a

multidimensional assessment of the proposed model’s value.
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FIGURE 5

Early disease prediction evaluation results (a) Cochrane Systematic Review Dataset; (b) BioASQ Dataset; (c) PubMed Central Dataset; (d) TCGA.
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Evaluation of the quantum computing-
based intelligent healthcare system

Basic performance evaluation of the quantum
computing framework

The essential performance evaluation of the quantum

computing framework is crucial in a quantum computing-

based intelligent healthcare system. As quantum technology

gradually integrates into the healthcare sector, accurately

assessing its framework performance is critical to effectively

determine its ability to process medical data and mine

high-order medical correlations. This not only affects the
Frontiers in Digital Health 09
accuracy of medical decision-making but also impacts the

overall development of intelligent healthcare. In Figure 3,

the evaluation demonstrates the improvement in model

computation speed.

In Figure 3, the quantum computing framework

demonstrates significant performance advantages in large-scale

data processing scenarios. Through rigorous experiments and

statistical data analysis, the quantum computing framework

shows a marked improvement in overall computation speed

compared to traditional algorithms, with an average

enhancement exceeding 45%. This improvement is attributed

to the unique physical properties of quantum computing, such
frontiersin.org
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FIGURE 6

Evaluation of the model’s personalized treatment plan matching effectiveness (a) Cochrane Systematic Review Dataset; (b) BioASQ Dataset;
(c) PubMed Central Dataset; (d) TCGA.
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as quantum superposition and quantum parallelism. Quantum

superposition allows qubits to represent multiple states

simultaneously, thereby increasing data representation capacity.

Quantum parallelism enables the quantum computing

framework to process multiple data combinations

simultaneously, contrasting sharply with the traditional

approach of handling data combinations sequentially,

significantly enhancing computational efficiency. Figure 4

displays the evaluation results for the model’s performance in

mining high-order correlations.
Frontiers in Digital Health 10
In Figure 4, the quantum computing framework exhibits

significant advantages in accuracy compared to traditional

algorithms in mining high-order correlations in medical data.

By analyzing various medical datasets, the quantum computing

framework demonstrates its effectiveness through unique

characteristics. Traditional algorithms may have limitations

when handling complex high-order correlations, whereas the

quantum computing framework leverages properties such as

quantum entanglement to relate different data types.

Experimental data indicate that the quantum computing
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framework achieves an accuracy improvement of over 30% relative

to traditional algorithms.
Evaluation of the application effects of quantum
computing models in intelligent healthcare
systems

The data within intelligent healthcare systems is complex and

vast, presenting numerous limitations for traditional computing.

Due to properties such as quantum superposition, entanglement,

and parallelism, the introduction of quantum computing models

is crucial. Accurately assessing their application effects is vital for

developing intelligent healthcare, directly impacting medical data

processing, disease diagnosis, and treatment decision-making.

Figure 5 presents the evaluation results of early disease

prediction using the new framework.

In Figure 5, the new framework demonstrates significant

advantages in the task of early disease prediction. By employing

this new framework, results show a noticeable improvement in

accuracy compared to traditional methods. Specifically, after testing

and analyzing a large number of disease sample data, the new

framework achieves an accuracy increase of approximately 25% in

early disease prediction compared to traditional methods. This

enhancement is essential for disease prevention and control and the

rational allocation of medical resources. Figure 6 displays the

evaluation results of the model’s personalized treatment plan

matching effectiveness.

Figure 6 shows that the quantum computing framework offers

distinct advantages in matching personalized treatment plans,

contrasting sharply with traditional methods. Comparative

experiments across multiple datasets reveal that the quantum

framework significantly improves matching accuracy by about

35% over conventional approaches, representing a notable

advancement for precision medicine.
Conclusion

This study aims to construct a quantum computing-based

intelligent healthcare framework, exploring the applications of

quantum annealing algorithms and quantum circuit design in

mining high-order medical correlations. Quantum thinking and

computational models offer new paths for processing large amounts

of medical data and are an essential attempt. Various quantum

computing technologies are integrated throughout the research

process with medical data processing. For instance, quantum bits

encode medical data, data relationships are mined through quantum

entanglement, and analysis is accelerated by quantum parallelism. In

contrast, quantum algorithms are applied to delve deeper into high-

order correlations. Several publicly available datasets are employed to

evaluate the framework’s performance, including the Cochrane

Systematic Review Dataset, BioASQ Dataset, PubMed Central

Dataset, and TCGA. The results indicate that the quantum

computing framework excels in multiple aspects. It demonstrates an

average computation speed improvement of approximately 45%

when processing large-scale data compared to traditional algorithms;
Frontiers in Digital Health 11
accuracy in mining high-order correlations improves by around

30%; early disease prediction accuracy increases by about 25%; and

matching accuracy for personalized treatment plans enhances by

approximately 35%. These results highlight the tremendous potential

of the quantum computing framework in intelligent healthcare,

providing strong support for improving diagnostic and treatment

precision and advancing personalized medicine development.

However, this study also has certain limitations. The development of

quantum computing technology is not yet mature, and issues related

to hardware stability and scalability may constrain the practical

application of the framework. Quantum algorithms are complex

and present a high barrier to entry for healthcare professionals and

some researchers. Information loss or incomplete adaptation to

the medical data structure may also occur during data encoding and

processing. Despite these limitations, the prospects for quantum

computing in intelligent healthcare remain broad. As quantum

technology advances, it is expected to overcome existing challenges,

further optimizing the quantum gradually computing-based

intelligent healthcare framework and propelling intelligent

healthcare to new heights, ultimately positively impacting healthcare

transformation and patient well-being.
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