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Introduction: The aimof this study is to compare the injury patterns of femalewater
polo players before and after the implementation of the Male-Assisted Female
Training (MAFT) program. The study seeks to identify key factors influencing these
changes and propose corresponding injury prevention measures.
Methods: We utilized pattern analysis and classification techniques to explore the
injury data. A Hypergraph Neural Network (HGNN) was employed for pattern
extraction, where each athlete was represented as a node in a hypergraph, with
node dimensions capturing high-order relational embedding information. We
applied the graph Laplacian operator to aggregate neighborhood features and
visualize structural and feature differences in hypergraphs based on different
influencing factors. Additionally, we introduced graph structure regularization to
improve classification accuracy and prevent overfitting in the relatively small
dataset, enhancing our ability to identify critical factors affecting injury types.
Results: The analysis revealed significant differences in injury patterns before and
after the MAFT program, with specific influencing factors being identified through
both pattern recognition and classification techniques. The classification models,
supported by graph structure regularization, achieved improved accuracy in
distinguishing key features that contributed to changes in injury types.
Discussion: These findings provide insights into the critical factors influencing injury
patterns in female water polo players and highlight the effectiveness of the MAFT
program in mitigating certain injury risks. Based on the identified features, we
propose targeted preventive measures to reduce injury incidence, particularly in
relation to changes brought about by the MAFT training mode. Further research is
needed to refine these measures and explore their long-term effectiveness.

KEYWORDS

hypergraph, high-order connection, injury patterns, women’s water polo,
Male-Assisting-Female-Training

1 Introduction

Water polo, an aquatic sport that combines swimming, ball skills, and team tactics, has

evolved into a global competitive event since its inception in Europe in the late 19th

century. The Chinese women’s water polo team, established in 2004, has rapidly

progressed from regional competitions to the international stage. Their outstanding

performance in international tournaments not only showcases the team’s strength but
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2024.1503831&domain=pdf&date_stamp=2020-03-12
mailto:presum@126.com
https://doi.org/10.3389/fdgth.2024.1503831
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1503831/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1503831/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1503831/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1503831/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2024.1503831
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Feng et al. 10.3389/fdgth.2024.1503831
also reflects the advancement of the national sports sector. In

recent years, to further enhance their competitive level, the

Chinese women’s water polo team has introduced the Male-

Assisted Female Training (MAFT) program. This innovative

training method involves sparring with male athletes to simulate

higher-level competitive scenarios, thereby enhancing the female

athletes’ resilience and tactical execution.

However, the introduction of the MAFT program also presents

new challenges, particularly in managing the risk of injuries.

Compared to male athletes, female athletes exhibit differences in

physical strength and speed, which may increase the risk of

injuries during high-intensity sparring sessions. As a team-based

combative sport, water polo integrates swimming, throwing,

tactical skills, and physical fitness (1). The sport is characterized by

intense collisions and grappling in water, lacking the stability of a

land environment, leading to frequent injuries during training and

matches. Current research on women’s water polo primarily

focuses on combat techniques, while injury-related studies are

relatively scarce. To date, only one publication has analyzed

injuries related to the preparation for the Rio Olympics water polo

events (2). Therefore, studying the injury patterns of female water

polo players under the MAFT program is crucial for developing

effective training plans and injury prevention strategies.

Current research on injuries among elite female water polo

players is limited and often focuses on a single body part. Studies

have investigated shoulder injuries in elite female water polo

players (3), analyzing the incidence of shoulder injuries among

players in different positions during matches and the frequency

of specific shoulder injury sites. It was found that center

forwards and top shooters have the highest rates of shoulder

injuries, at 88.89% and 80.95% respectively, with the majority of

injuries concentrated in the joints and ligaments . Other research

has investigated the impact of water polo throws on the shoulder

joint (4), analyzing the effects of throwing actions on

injured players, assessing the external rotation stability of

injured vs. non-injured players, and providing corresponding

recommendations. Lv Zhouxiang and colleagues conducted a

study on female water polo players (5), analyzing the multiple

injury sites and potential causes, but the study did not delve

deeply into the associated movement patterns . The MAFT

training model, as a newly proposed strategy, has not yet been

subject to authoritative research analysis. Therefore, the research

presented in this paper on the injury patterns of female water

polo players under the MAFT plan is innovative and crucial for

developing effective training programs, reducing injuries during

training, and enhancing the performance capabilities of athletes.

The interactions among female athletes in practice are complex

and diverse. To better understand and analyze these interaction

patterns, this study introduces the concept of hypergraphs. A

hypergraph (6–10) is a mathematical model capable of

representing complex relationships among multiple nodes. It

connects multiple nodes through hyperedges (11–13), which can

more accurately simulate the many-to-many interactions among

female water polo players. For instance, in a match, not only are

there defensive and offensive confrontations between individual

players, but the strategic coordination between the entire defense
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and offense teams can also be represented through hyperedges.

This representation method can more comprehensively reflect

the tactical layout and collaboration patterns among athletes

during matches.

In summary, this study aims to explore the injury patterns,

characteristics, and potential coping strategies for female water

polo players under the MAFT program. By thoroughly analyzing

injury data from training and matches, combined with advanced

analytical techniques from hypergraph neural networks (HGNN)

(7), we hope to reveal the impact of the MAFT program on the

injury risk of female water polo players. The findings will

provide scientific evidence for reducing injury incidents,

optimizing training methods, and improving athlete performance

while ensuring their health and safety. Our contributions are

as follows:

1. We analyzed the hypergraph patterns before and after the

introduction of the MAFT training program. By

comparing the overall hypergraph structure, feature

patterns, and the impact of key factors on these structures

and patterns, we identified the critical influencing factors

associated with the introduction of MAFT.

2. From a classification perspective, we employed graph

structure regularization to effectively enhance the accuracy

of different injury types in our dataset. This allowed us to

more precisely establish an optimized hypergraph

structure, thereby identifying the key influencing factors

for each injury type before and after the MAFT program.

3. Based on the comprehensive analysis from the

aforementioned perspectives, our approach effectively

identifies crucial features and subsequently provides

recommendations for injury prevention measures.

2 Materials and methods

This study aims to explore the injury patterns, characteristics,

and potential coping strategies of female water polo players by

comparing injury incidents before and after the implementation

of Male-Assisted Female Training (MAFT) and conducting an

in-depth analysis of related indicators. To achieve this, we employ

the Hypergraph Neural Network (HGNN) as our foundational

model to capture the complex relationships and higher-order

associative features among athletes, as shown in Figure 1.

Subsequently, we perform detailed pattern recognition and factor

analysis from a classification perspective to comprehensively

analyze the injury characteristics of female water polo players.

The selection of Hypergraph Neural Networks (HGNN) as an

analytical method is attributed to its superior capacity in handling

complex interrelations and high-dimensional data. In the analysis

of injury patterns among elite female water polo players, multiple

factors interact and influence each other, such as training load,

psychological state, and physiological indicators. Traditional

network analysis methods may fail to capture these intricate

associations effectively. Firstly, HGNN is a hypergraph-based

neural network model capable of managing many-to-many

relationships among multiple nodes. This enables HGNN to
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FIGURE 1

Overview of Hypergraph-enhanced analysis of injury patterns in women’s water polo under Male-Assisting-Female-Training (MAFT) mode.
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more comprehensively consider the interplay between various

factors when analyzing injury patterns in water polo athletes.

Secondly, by constructing hypergraphs, HGNN can visualize the

association between different factors and extract key features,

aiding researchers in identifying significant factors influencing

changes in injury patterns. Lastly, in terms of classification

analysis, the study introduces graph structural regularization

techniques to enhance classification accuracy and more effectively

determine key features that distinguish different types of injuries.

The results demonstrate that the rHGNN model, which employs

HGNN for classification analysis, exhibits excellent performance

in terms of accuracy, positive predictive value, negative predictive

value, sensitivity, and specificity. In summary, HGNN, as a

network analysis method capable of managing complex

interrelations and extracting key features, offers distinct

advantages in analyzing injury patterns among water polo

players. It assists researchers in gaining a more comprehensive

understanding of the factors influencing injury patterns and

provides scientific evidence for developing personalized training

interventions and injury prevention strategies.
2.1 Study design

The study involved 26 athletes from the National Women’s

Water Polo Team training between February and July 2021,

before and after the implementation of the MAFT mode. Among

them, 12 were international-level athletes and 14 were national-

level athletes. Their ages ranged from 21 to 32 years, with an

average age of 24.9 years. The athletes had been participating in

professional sports for 8 to 16 years, averaging 10.9 years, and
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had been involved in water polo for 8 to 15 years, averaging 9.8

years. They had participated in national-level training for 1 to 14

years, averaging 5.6 years. Twelve athletes had participated in

preparation for two Olympic Games. The team positions were

distributed as 3 centers, 3 defensive centers, 15 perimeter players,

and 5 goalkeepers.
2.2 Data collection

In this study, we employed a combination of surveys and

clinical diagnoses to analyze and compare the evolution of injury

characteristics before and after the implementation of the Male-

Assisted Female Training (MAFT) program. The research team

spent an extended period residing with the athletes, closely

observing the development and progression of injuries. To gather

comprehensive data, we used questionnaires to collect basic

information, including names, ages, years of athletic experience,

injury locations, and causes. Additionally, we recorded pre-

analyzed indicators such as training frequency, intensity,

duration, recovery time, and physiological metrics like heart rate,

blood lactate levels, and VO2 max. The survey also aimed to

identify unique injury patterns that emerged following the

implementation of the MAFT program. All questionnaires were

meticulously collected and processed. During this period, our

team was actively involved in diagnosing and treating all athlete

injuries, meticulously documenting the occurrence of common

injuries and conducting thorough physical examinations. We

paid particular attention to any differences in injury processes

and severity compared to previous same-gender training

scenarios. In summary, through the combination of survey data
frontiersin.org
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and clinical records, we captured detailed information on injury

locations, types, and severity, providing a comprehensive

overview of the impact of the MAFT program on female water

polo athletes.
2.3 Statistical analysis

Statistical analysis was conducted using SPSS software version

20.0 (SPSS Inc., USA). The proportions of injuries to the neck,

shoulder, elbow-wrist, thoracic spine, lumbar-sacral region, hip,

knee, ankle, forearm lateral, and sternoclavicular joint were

treated as quantitative data. Injury proportions, presented as

counts (percentages), were compared between groups using

Fisher’s exact test to assess the significance of changes in injury

patterns before and after the MAFT mode, with the level of

significance set at a two-tailed p-value of 0:05. There was a

noticeable increase in the proportion of injuries to joints

involved in confrontational activities after the implementation of

the Male-Assisting-Female-Training mode. The most common

injury site was the shoulder, accounting for 34.6% of injuries,

which further increased to 42.3% post-implementation. This was

followed by injuries to the lumbar-sacral-hip region, with an

increase from 26.9% to 34.6%. Injuries to the elbow-wrist area

showed a significant upward trend, rising from 7.7% to 26.9%.

Conversely, injuries to the knee and ankle joints, primarily

involved in non-confrontational sliding motions, showed a

decreasing trend. Notably, two goalkeepers sustained injuries,

including bilateral forearm ulnar side hitting injuries and a

dominant hand side sternoclavicular joint injury. The details of

the sports-related injuries, including the number of cases and the

proportion of each injury, are summarized in Table 1. In water

polo, the increase in proportional injuries to confrontational

joints is particularly notable. Shoulder injuries occur at a rate of

24% to 51%, primarily due to the frequent use of the dominant

hand in passing and shooting, as well as the non-dominant hand

in defensive actions, leading to bilateral shoulder injuries

(14, 15). In confrontational training with male athletes, female
TABLE 1 This table shows a comparison of injuries to different body parts
of female water polo players in traditional training mode and male-
assisted Female Training (MAFT) mode. The “Number of Injuries” column
in the table shows the frequency of injuries in each part under the two
training modes, while the “Injury Proportion” column shows the
proportion of injuries in the corresponding part to the total number of
injuries. This will provide a key basis for exploring the factors that cause
such differences in hypergraph pattern recognition.

Injury Number of
injuries

Injury proportion

Location Tradition MAFT Tradition MAFT
Neck 2 1 7.7% 3.8%

Shoulder 9 11 34.6% 42.3%

Elbow & Wrist 2 7 7.7% 26.9%

Chest & Back 1 1 3.8% 3.8%

Lumbar, sacral & hip 7 9 26.9% 34.6%

Knee 11 6 42.3% 23.1%

Ankle 4 3 15.4% 11.5%

Forearm ulnar side 0 1 0% 3.8%

Sternoclavicular joint 0 1 0% 3.8%
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athletes need to pass the ball more frequently and attack from

various angles, increasing the burden on the dominant hand and

raising the injury probability to about 57 Elbow and wrist

injuries are also common, with wrist injuries occurring at a rate

of 13.6% to 23.1% and elbow injuries at a rate of 6% to 18.2%

(16–19). In confrontations with male athletes, female athletes

need to find more flexible passing and offensive paths, increasing

the burden on the wrist and elbow joints and leading to an

increased risk of injury (20, 21). Conversely, the proportion of

injuries to stability joints has decreased. The incidence rate of

knee and ankle injuries is 4.5% to 10.8% and 6% to 18.2%,

respectively (16). Confrontations with male athletes reduce the

time spent “treading water,” lowering the tension on the knee

joint and thus reducing the injury rate. Among goalkeepers,

sternal-clavicular joint injuries are a new type of injury. These

injuries are usually caused by direct high-impact trauma, while

indirect force-related collateral injuries can be alleviated with rest

(22, 23). The inability of athletes to get adequate rest during the

preparation period is the main reason for persistent pain.
2.4 Hypergraph construction

A hypergraph is a structure capable of representing complex

relationships and multidimensional features, making it suitable

for capturing interactions and relationships among athletes. In

constructing the hypergraph, we first define nodes and hyperedges.

2.4.1 Node definition
In this study, each athlete is represented as a node vi, with a

feature vector xi encoding individual attributes such as training

intensity, training duration, and injury history. The set of nodes

is defined as V ¼ v1, v2, . . . , vn, with the node feature vector

defined as Equation 1:

xi ¼ [Training Intensity, Training Duration, Injury History, . . . ]

(1)

The selection of these features is based on their ability to

comprehensively reflect the athlete’s condition and performance.

Training intensity indicates the effort level during training, where

excessive intensity may lead to overtraining and injuries.

Accumulated training duration reveals the workload and fatigue

accumulation of the athlete, while injury history is a critical

indicator for predicting future injury risks. Understanding an

athlete’s injury history can help formulate more effective

prevention strategies. By incorporating these features, we gain a

comprehensive understanding of each athlete’s training status

and health condition, providing a solid foundation for

subsequent analysis.

2.4.2 Hyperedge definition
In constructing hyperedges, we consider various interactions

among athletes, such as passing and defensive actions. These

interactions are modeled as hyperedges ej, with weights wj
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representing the frequency and intensity of the interactions. The set

of hyperedges is defined as E ¼ e1, e2, . . . , em, where each

hyperedge ej connects a group of nodes, indicating interactions

among athletes. The rationale behind this choice is that

interactions among athletes significantly impact team

performance and individual injuries. For instance, frequent

passing interactions reflect the coordination and trust among

athletes, crucial for both offensive and defensive strategies. In

defensive scenarios, cooperation and coordination among athletes

are equally important, with the frequency and intensity of

defensive interactions revealing the execution and effectiveness of

team defensive strategies. Moreover, the choice of hyperedges

over simple edges is due to their ability to capture the

complexity of multi-party interactions. A hyperedge can connect

multiple athletes, representing their cooperation or confrontation

within a training unit, whereas simple edges can only represent

pairwise relationships, failing to comprehensively reflect the

complexity of multi-party interactions. Through this approach,

the hypergraph can thoroughly represent the complex

relationships among athletes, capturing the interaction patterns

and individual contributions within the team, thereby providing

richer information for subsequent analysis.
2.5 Pattern analysis

To capture the complex relationships within the team, we

designed a Hypergraph Neural Network (HGNN) model to learn

the embeddings of nodes and hyperedges. The architecture of the

HGNN model is designed to capture and represent complex

higher-order relationships through a multi-layer structure.
2.5.1 Model architecture
The HGNN model is designed to learn the embeddings of nodes

and hyperedges, thereby capturing complex relationships within the

team. The embedding function for nodes is defined as Equation 2:

zi ¼ s(WTxi þ b) (2)

where W and b are learnable parameters, and s is the activation

function. This approach maps the multidimensional features of nodes

to a high-dimensional space, facilitating subsequent aggregation and

analysis. The activation function s is typically chosen to be a

nonlinear function, such as ReLU (Rectified Linear Unit), to

introduce nonlinearity and enhance the model’s expressive power.

Specifically, forward propagation is conducted through

multiple hypergraph convolution layers to iteratively update the

node embeddings:

H(lþ1)v ¼ s
X

e [ E
1
jej
X
u[e

W(l)H(l)
u þ b(l)

 !
(3)

In Equation 3, H(l)
u denotes the embedding of node u in layer l, jej is

the number of nodes in hyperedge e, and W(l) and b(l) are the
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learnable parameters for layer l. The activation function s

introduces nonlinearity into the model. This formula updates the

node embeddings by aggregating the embeddings of all nodes

within the hyperedge, which allows the model to capture the

intricate relationships among nodes. In each layer, the node

embeddings are refined by aggregating the embeddings of all

nodes within their respective hyperedges. This multi-layer

structure enables the model to capture higher-order relationships

and complex patterns in the data.

2.5.2 Pattern recognition
The hyperedge embedding aj is aggregated as Equation 4:

aj ¼ AGG(zi j vi [ ej) (4)

where AGG is the aggregation function, typically chosen to be

mean or weighted mean. The choice of aggregation function

significantly impacts the effectiveness of hyperedge embeddings,

as it determines how the embeddings of multiple nodes are

combined. Subsequently, a multi-layer perceptron (MLP) in

Equation 5 is used to identify injury-related patterns:

pj ¼ MLP(aj) (5)

During training, we simultaneously train the HGNN

and MLP models to minimize the reconstruction error, defined

as Equation 6:

L ¼
Xm
j¼1

jaj � pjj2 (6)

Through this approach, the HGNN learns efficient representations

of nodes and hyperedges, while the MLP identifies injury-related

patterns. The minimization of reconstruction error L ensures

that the model accurately captures and reconstructs complex

higher-order relationships, thereby improving the accuracy of

pattern recognition.

By employing the aforementioned methods, we can construct a

higher-order hypergraph structure within the overall information

and analyze the variation patterns of hypergraph structures

under specific influencing factors or indicators. As the final

hypergraph is capable of expressing higher-order associations, we

can assess the impact of the MAFT program on female water

polo athletes’ injuries by comparing the changes in hypergraph

structures before and after the implementation of MAFT.

Specifically, by evaluating the significance of differences in

hypergraph structures and node features, we can identify the key

influencing factors.
2.6 Classification analysis

We preprocess the data to obtain a feature vector of total

dimension RD(D ¼ 320), representing the records of all injury-
frontiersin.org
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related indicators for the corresponding individual. Then, we use

KNN to establish the initial hypergraph structure and utilize the

features learned by HGNN for injury type prediction. To better

learn the hypergraph structure, we analyzed the characteristics of

the dataset and found that introducing a graph regularization

mechanism preserves the local geometric structure of the

hypergraph data more effectively, preventing overfitting and

enhancing the model’s generalization capability. This leads to

better classification accuracy, which is beneficial for accurately

extracting key influencing factors of injuries before and after the

introduction of the MAFT model. Specifically, given an initialized

hypergraph structure H(V, E, W), where the symbols denote a set

of vertices V, a set of hyperedges E, and a weight matrix W,

which is a diagonal matrix representing the weights of the

hyperedges. This hypergraph can be succinctly represented by an

incidence matrix H [ RjVj�jEj, where each entry h(v, e) is defined

as Equation 7:

h(v, e) ¼ 1, ifv [ e
0, ifv � e,

�
(7)

Graph regularization in HGNNs aims to preserve the local geometric

structure of hypergraph data and improve the model’s generalization

capability. This is achieved by adding a regularization term to the

loss function that measures the smoothness of node embeddings.

Given the H ¼ (V, E, W), the incidence matrix H, the vertex

degree matrix by Dv, and the hyperedge degree matrix by De. The

Laplacian matrix L for a hypergraph can be defined as:

L ¼ De �HTWH

where De is the degree matrix of hyperedges, H is the incidence

matrix, and W is the weight matrix. During training, we wish for

the low-dimensional representations X of the vertices to preserve

the local structure of the hypergraph. The regularized objective

function for HGNNs can be written as Equation 8:

JrHGNN ¼ 1
2
XTLX þ lV(X) (8)

Here, JrHGNN is the regularized loss function, rHGNN represents the

regularized form of HGNN in our proposed model, V(X) represents

other possible regularization terms (such as weight decay), and l is

the regularization parameter that controls the strength of the

regularization term. The optimization process involves minimizing

JHGNN through gradient descent or other optimization algorithms,

thereby learning the low-dimensional representations X of the

vertices while maintaining the local structure of the hypergraph.

This regularization method helps improve the performance of

HGNNs on various downstream tasks such as node classification

and clustering.

Notably, The regularization term V is constructed to ensure

that the node embeddings preserve the local structure of the

hypergraph. Specifically, V(X) includes both a weight decay term
Frontiers in Digital Health 06
that discourages overly complex models and a graph Laplacian

smoothness term that encourages nearby nodes in the

hypergraph to have similar embeddings. Mathematically, V(X) is

defined as Equation 9:

V(X) ¼ a �
X
i,j

WijkXi � Xjk2
 !

þ b �
X
i

kXik2
 !

(9)

whereWij represents the elements of the graph Laplacian L, Xi and

Xj are the embeddings of nodes i and j, respectively. The first term

encourages smooth embeddings across the hypergraph, while the

second term, weight decay, penalizes large embedding values. a

and b are hyperparameters that control the relative importance

of the smoothness and weight decay terms, respectively.
3 Experiments

3.1 Evaluation and metrics

For pattern analysis, we focus primarily on visualization

differences. This involves visualizing the structure and features of

the hypergraph after optimizing reconstruction loss. We visualize

differences in the global hypergraph and the MAFT-induced

changes under single-factor influences. Specifically, when

visualizing the hypergraph structure, we highlight the clustering

of nodes. For visualizing hypergraph features, we employ

dimensionality reduction techniques to create 2D visualizations.

For classification analysis, to assess the model’s performance, we

utilize several key metrics. Firstly, Accuracy (ACC) is calculated as
TPþTN

TPþTNþFPþFN, reflecting the model’s overall ability to correctly

classify instances across all categories. Sensitivity (SEN), given by
TP

TPþFN, measures how effectively the model identifies true positive

cases. Specificity (SPEC), defined as TN
TNþFP, evaluates the model’s

capability to accurately recognize true negative cases without

misclassifying them as positive. The Positive Predictive Value

(PPV), calculated as TP
TPþFP, represents the fraction of correctly

identified positive cases among all cases predicted as positive.

Lastly, the Negative Predictive Value (NPV), given by TN
TNþFN,

indicates the proportion of true negatives among the cases

predicted as negative. These metrics collectively provide a

comprehensive evaluation of the model’s classification performance.
3.2 Implementation details

For pattern analysis, the MLP consists of two hidden layers

with 64 and 32 neurons respectively, followed by a ReLU

activation function. The output layer uses a sigmoid activation

function to produce the final pattern recognition output. The

HGNN and MLP models are trained simultaneously using the

Adam optimizer with a learning rate of 0.001. The training

process includes early stopping with a patience parameter set to

10 epochs to prevent overfitting. The models are trained for a

total of 100 epochs or until the validation loss stops improving.
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1503831
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Feng et al. 10.3389/fdgth.2024.1503831
For classification analysis, the rHGNN model is trained by

minimizing the Equation 8. We employ stochastic gradient

descent (SGD) as our optimization algorithm, with a learning

rate of 0.01 and a decay schedule to adjust the learning rate over

time. The training process is carefully monitored to ensure

convergence towards a minimum of the loss function. The

hyperparameters l, a and b in the regularization term V(X) are

crucial for balancing the weight decay and smoothness

constraints. The default values are set as l ¼ 0:2, a ¼ 0:03, and

b ¼ 0:005. For more details on the ablation experiments, please

refer to the subsequent sections.
3.3 Comparison methods

We selected several comparative methods for our evaluation,

including MLP, SVM, GNN, B-GNN, HGNN, and HGNNP.
• MLP (24): MLP is a class of feedforward artificial neural

networks consisting of multiple layers of nodes, each fully

connected to the next. It is widely used for classification

and regression tasks due to its ability to capture

non-linear relationships.

• SVM (25): SVM is a supervised learning algorithm that is

effective for both classification and regression challenges. It

works by finding the optimal hyperplane that maximizes

the margin between different classes in the feature space.

• GNN: GNNs (26) are designed to perform inference on data

described by graphs. They leverage the graph structure to

perform node classification, link prediction, and graph
FIGURE 2

We visualize the positions of all features in the hypergraph within a stand
implementation of the MAFT program, we can observe the most impactfu
psychological state, and physiological indicators.
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classification tasks by aggregating feature information from

neighboring nodes.

• B-GNN (27): B-GNN is a scalable graph neural network

designed to handle large-scale graph data. It introduces

techniques to efficiently manage large graphs while

maintaining performance, making it suitable for big

data applications.

• HGNN (7): HGNN extends traditional GNNs to

hypergraphs, which can capture higher-order relationships

among data points. This method is particularly effective in

scenarios where interactions involve more than two entities.

• HGNNP (13): HGNNP is an enhanced version of HGNN

that includes additional mechanisms to improve its

performance. It further refines the ability to capture

complex relationships in hypergraph-structured data.

Our proposed method, rHGNN, represents the regularized

form of HGNN, incorporating regularization techniques to

improve generalization and performance in the context of our

specific application.
4 Discussion

4.1 Study on pattern analysis

Figure 2 illustrates the distribution of various features in a two-

dimensional space, comparing the scenarios with and without the

application of MAFT. The figure is divided into four subplots,

each representing different types of features: Global Feature,

Training Load Factor, Psychological State Factor, and
ard 2D space. By visualizing the feature changes before and after the
l factors. We highlight the three most significant factors: training load,
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Physiological Indicators Factor. In the case of Global Features, it is

observed that without MAFT, the data points are sparsely

distributed with no apparent clustering pattern. However, when

MAFT is applied, the data points become more densely packed

and exhibit a certain degree of structural organization. This

indicates that MAFT effectively enhances the correlation among

global features. For Training Load Factors, a similar trend is

observed. Without MAFT, the data points appear scattered and

lack discernible patterns. Upon applying MAFT, the points

converge into tighter clusters, suggesting that MAFT can extract

more meaningful features from training load data. When

examining Psychological State Factors, it is evident that without

MAFT, the data points are randomly dispersed with no

significant clustering. With MAFT applied, small clusters begin

to form among the data points. This transformation implies that

psychological state data becomes more consistent and

interpretable after undergoing feature transformation through

MAFT. Lastly, for Physiological Indicators Factors, the

untransformed data exhibits a disordered scatter. However, post-

MAFT application, the data points reveal clearer structural

patterns. This suggests that physiological indicators processed

through MAFT better reflect their intrinsic relationships. In

summary, the comparison clearly demonstrates that applying

MAFT results in more compact and organized distributions

across all types of features.

Figure 3 illustrates the changes in hypergraph structures for

specific factor indicators before and after implementing the

MAFT program, focusing on Heart Rate Variability (HRV) and

Training Frequency. Before MAFT, the HRV hypergraph shows

numerous dispersed connections with some isolated nodes,

indicating weak correlations. This disorganized structure may

hinder effective information capture by models. After applying

MAFT, the HRV hypergraph becomes more structured and

cohesive, with fewer isolated nodes. Enhanced connectivity

suggests improved correlation among nodes, facilitating better

data utilization by models. Similarly, the pre-MAFT hypergraph

for Training Frequency is characterized by scattered connections

and weak node associations. This loose network structure can

impede meaningful feature extraction. Post-MAFT application

reveals a more organized network with tighter clusters and
FIGURE 3

We visualize the changes in hypergraph structures under specific factor
highlighting the significant structural differences from the heart rate variabi
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stronger internal associations. This improved structure enhances

data consistency and information flow, aiding models in

accurately capturing training frequency impacts.
4.2 Study on classification analysis

Table 2 presents a comprehensive evaluation of various models,

highlighting the performance of our proposed method, rHGNN.

The results demonstrate that rHGNN consistently outperforms

other methods across all evaluated metrics, including Accuracy

(ACC), Positive Predictive Value (PPV), Negative Predictive

Value (NPV), Sensitivity (SEN), and Specificity (SPEC). The

ACC for rHGNN is notably high at 0.90635, surpassing

traditional models such as MLP and SVM, which achieve ACCs

of 0.68637 and 0.65817 respectively. This indicates a significant

improvement in overall model accuracy. In terms of PPV and

NPV, rHGNN achieves values of 0.92572 and 0.91092

respectively, reflecting its superior ability to correctly predict

positive and negative cases compared to other models like GNN

and B-GNN. Furthermore, the SEN value for rHGNN is the

highest among all methods at 0.93216, demonstrating its

exceptional sensitivity in identifying true positive cases. Similarly,

SPEC is also maximized at 0.92785, indicating robust specificity

in distinguishing true negatives. Overall, these results underscore

the efficacy of the rHGNN model in achieving superior

performance across multiple dimensions compared to

conventional approaches such as HGNN and HGNNP. The

consistent excellence across all metrics suggests that our method

offers a highly reliable solution for the given task, setting a new

benchmark for future research endeavors in this domain.
4.3 Study on graph regularization

In Table 3, we provide a detailed and comprehensive analysis of

how different regularization hyperparameters affect our accuracy. It

is evident that l is optimal around the 0.1 range, a is best suited for

the 0.01 range, and b performs well in the 0.001 range.
indicators before and after the implementation of the MAFT program,
lity (HRV) and training frequency indicators.
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TABLE 2 We compute the accuracy of the proposed method on the testing data, and our method achieves the best results.

Method ACC PPV NPV SEN SPEC
MLP 0:68637+0:0625 0:68762+0:0594 0:69993+0:0627 0:68873+0:0571 0:69026+0:0608

SVM 0:65817+0:0297 0:66373+0:0308 0:65843+0:0325 0:67367+0:0362 0:66267+0:0398

GNN 0:78716+0:0514 0:77621+0:0572 0:76523+0:0583 0:77276+0:0517 0:75862+0:0572

B-GNN 0:82796+0:0428 0:82781+0:0478 0:81872+0:0412 0:82664+0:0368 0:81654+0:0378

HGNN 0:86621+0:0381 0:85163+0:0365 0:88245+0:0327 0:87833+0:0392 0:86924+0:0461

HGNNP 0:86273+0:0367 0:86252+0:0387 0:87326+0:0352 0:86237+0:0371 0:87944+0:0308

rHGNN (Ours) 0:90635+0:0288 0:92572+0:0286 0:91092+0:0349 0:93216+0:0365 0:92785+0:0367

Bold values represent the highest scores.

TABLE 3 Comparison of model performance under different hyperparameters.

Method ACC PPV NPV SEN SPEC
rHGNN (Full) 0:90635+0:0288 0:92572+0:0286 0:91092+0:0349 0:93216+0:0365 0:92785+0:0367

l ¼ 0:01 0:89049+0:0338 0:90780+0:0215 0:89159+0:0442 0:91773+0:0333 0:91677+0:0382

l ¼ 0:1 0:89199+0:0233 0:91970+0:0240 0:90656+0:0416 0:93089+0:0348 0:92467+0:0351

l ¼ 1:0 0:87687+0:0427 0:89560+0:0207 0:88212+0:0314 0:90082+0:0274 0:91050+0:0273

a ¼ 0:001 0:88735+0:0236 0:90289+0:0352 0:89358+0:0452 0:91173+0:0274 0:90539+0:0415

a ¼ 0:01 0:89949+0:0184 0:91696+0:0311 0:90673+0:0225 0:92826+0:0511 0:91930+0:0346

a ¼ 0:1 0:88597+0:0147 0:89671+0:0222 0:88850+0:0397 0:91942+0:0438 0:90754+0:0235

b ¼ 0:0001 0:89944+0:0406 0:91289+0:0352 0:90275+0:0263 0:92961+0:0441 0:90086+0:0267

b ¼ 0:001 0:88206+0:0286 0:90511+0:0153 0:90949+0:0338 0:92774+0:0297 0:91953+0:0251

b ¼ 0:01 0:88584+0:0321 0:89636+0:0291 0:90519+0:0490 0:92634+0:0367 0:91799+0:0385

Bold values represent the highest scores.
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When examining the impact of varying the hyperparameter l,

it is observed that smaller values such as l ¼ 0:01 result in a slight

decrease in ACC to 0:89049, while PPV and NPV also show minor

reductions compared to the full model. As l increases to 1:0, there

is a more pronounced decline in ACC to 0:87687, indicating that

larger values may negatively affect overall accuracy. Adjustments

to the hyperparameter a reveal similar trends; for instance, at

a ¼ 0:001, ACC drops to 0:88735 with corresponding decreases

in other metrics such as PPV and NPV compared to the baseline

model’s performance. For the hyperparameter b, we observe that

at b ¼ 0:0001, ACC remains relatively high at 0:89944. However,

increasing b leads to lower performance metrics, with b ¼ 0:01

resulting in an ACC of 0:88584. Overall, the full model

(rHGNN) consistently outperforms variations with different

hyperparameters. This suggests that optimal tuning plays a

crucial role in achieving superior model performance.
4.4 Study on MAFT

The introduction of the MAFT mode has had a significant

impact on the injury patterns among female water polo players.

HGNN provided valuable insights into the complex interactions

within the team and identified specific patterns associated with

increased injury risk. These findings suggest that tailored training

interventions and injury prevention strategies should be

developed, considering the unique demands of the MAFT mode.

Future research should focus on validating these findings and

exploring additional applications of HGNN in sports injury
Frontiers in Digital Health 09
prevention. We recommend paying attention to the following

points when implementing the MAFT training program:

1. It is essential to adjust the frequency of training sessions to

prevent overtraining and potential injuries. Sufficient rest

periods should be incorporated into the training plan to allow

athletes to fully recover. Excessive training frequency can lead

to fatigue, decreased performance, and an increased risk of injury.

2. Continuous monitoring of heart rate is crucial to ensure that

athletes maintain their heart rate within a safe range during

training. Wearable devices can be used for real-time heart

rate monitoring, allowing coaches to adjust training intensity

as needed. This approach helps prevent cardiovascular strain

and optimize performance.

3. Providing psychological support and counseling is vital for

helping athletes cope with the stress and challenges of high-

intensity training programs like MAFT. Establishing open

communication channels enables athletes to express their

needs and feedback, fostering a supportive environment.

5 Conclusion

This study investigated the impact of the Male-Assisted Female

Training (MAFT) program on the injury patterns of female water

polo players through hypergraph-based pattern analysis and

classification perspectives. We first summarized the overall

changes in injuries among female athletes under the MAFT

program. Using the collected data, we conducted pattern analysis

on the hypergraph structure and features, identified key

influencing factors, and proposed enhanced preventive measures

within the MAFT framework. Additionally, we analyzed the
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impact characteristics of various injuries before and after the

implementation of MAFT from a classification standpoint,

incorporating graph regularization techniques to achieve the

highest classification accuracy. Our main findings are as follows:

• The introduction of the MAFT program significantly altered

the injury patterns among female water polo players,

particularly increasing the proportion of joint injuries

involved in confrontational activities.

• Hypergraph Neural Networks (HGNN) provided in-depth

insights into the complex interactions within the team and

identified specific patterns associated with increased injury risk.

• Our rHGNN model, enhanced by graph regularization

techniques, excelled in classification accuracy, positive

predictive value, negative predictive value, sensitivity,

and specificity, providing reliable scientific evidence for

injury prevention.

These findings have important practical implications for water polo

training and injury prevention. By adjusting the frequency of MAFT

training sessions, continuously monitoring heart rates, and

providing psychological support and counseling, tailored training

interventions and injury prevention strategies can be developed to

meet the unique demands of the MAFT mode. These strategies

help optimize training methods, enhance athlete performance,

and ensure their health and safety. Future research directions:

• Validate the findings of this study and explore additional

applications of HGNN in sports injury prevention.

• Further investigate the impact of the MAFT program on

athlete performance and injury risk, especially under

varying training intensities and durations.

• Research how to more effectively monitor the physiological and

psychological states of athletes through technological means,

such as wearable devices, to adjust training plans in real-time.

• Explore the applicability of the MAFT program to athletes of

different levels and age groups, and how to adjust training

methods based on individual differences.
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