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Early detection is crucial for managing incurable disorders, particularly autism

spectrum disorder (ASD). Unfortunately, a considerable number of individuals

with ASD receive a late diagnosis or remain undiagnosed. Speech holds a

critical role in ASD, as a significant number of affected individuals experience

speech impairments or remain non-verbal. To address this, we use speech

analysis for automatic ASD recognition in children by classifying their speech

as either autistic or typically developing. However, due to the lack of large

labelled datasets, we leverage two smaller datasets to explore deep transfer

learning methods. We investigate two fine-tuning approaches: (1)

Discriminative Fine-Tuning (D-FT), which is pre-trained on a related dataset

before being tuned on a similar task, and (2) Wav2Vec 2.0 Fine-Tuning (W2V2-

FT), which leverages self-supervised speech representations pre-trained on a

larger, unrelated dataset. We perform two distinct classification tasks: (a) a

binary task to determine typicality, classifying speech as either that of

a typically developing (TD) child or an atypically developing (AD) child; and

(b) a four-class diagnosis task, which further classifies atypical cases into ASD,

dysphasia (DYS), or pervasive developmental disorder-not otherwise specified

(NOS), alongside TD. This research aims to improve early recognition

strategies, particularly for individuals with ASD. The findings suggest that

transfer learning methods can be a valuable tool for autism recognition from

speech. For the typicality classification task (TD vs. AD), the D-FT model

achieved the highest test UAR (94.8%), outperforming W2V2-FT (91.5%). In the

diagnosis task (TD, ASD, DYS, NOS), D-FT also demonstrated superior

performance (60.9% UAR) compared to W2V2-FT (54.3%). These results

highlight the potential of transfer learning for speech-based ASD recognition

and underscore the challenges of multi-class classification with limited

labeled data.
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1 Introduction

Early detection of developmental disorders bears greatest

importance for a child’s life and future. It is only with early

diagnosis that we are able to impose early intervention treatment

plans. Some disorders such as autism spectrum disorder (ASD)

are incurable, however, they can be managed with treatments

such as special care and education as well as focus on social

development. ASD is a neurological disease correlated by

imbalances in the brain and could cause later difficulties such as

social, communication and learning issues. Speech comes as an

important factor amongst these issues, more so as individuals

with ASD experience speech difficulties that could be in the form

of a lack in verbal skills or continuing to be non-verbal/speaking.

Even verbal autistic children exhibit discernible acoustic

patterns in their speech (1, 2). For instance, a monotonous

speech pattern is evident in ASD speech and is considered as

one of the characteristic features of ASD communication that

children with ASD continue to exhibit even as they progress into

school age (3). In other words, their speech lacks the typical

variations in pitch, intonation, and expressive elements that are

commonly observed in the speech of typically developing (TD)

children (without ASD). Generally, autistic traits can be found in

ASD speech patterns, which can be recognised by a neural

network (4). Consequently, ASD can be recognised through the

analysis of speech. The abilities of deep learning models enable

the automatic recognition of medical conditions based on speech

(5). machine learning (ML) facilitates autism classification by

means of speech, including speech transcripts (6) and through

acoustic features characterisation of autism speech (7). Speech-

related research comprises of extracting and analysing various

acoustic features from speech recordings of individuals with

ASD, aiming to identify unique patterns or markers that

distinguish them from TD individuals. One widely used feature

extraction set is the ComParE feature set, which stands for the

Computational Paralinguistics Challenge (8), serving the purpose

of capturing diverse aspects of speech signals by generating a

comprehensive set of acoustic features. These features encompass

prosodic, spectral, and voice quality attributes, among others. ML

models are trained on these feature sets to distinguish between

ASD and non-ASD speech samples.

Machine Learning algorithms and audio data are leveraged to

classify speech samples into ASD and non-ASD (TD) categories.

These ML techniques include support vector machines (SVM)

(9) and Random Forests (10), and deep learning models like

convolutional neural networks (CNNs) (11) and recurrent neural

networks (RNNs). While other research explores multi-modal

classification, by combining audio features with other modalities

such as textual or visual information for an improved

classification performance. ML models have been used to

recognise autism in other varying use-cases, including through

the use of biomedical images of the brain (12) and facial features

and biomedical images leveraged in unison (13).

Obtaining datasets with human subjects and especially child

data is a difficulty often faced by researchers. Research ethics

committees (RECs) or ethics review boards (ERBs) such as

institutional review boards (IRBs) work to safe guard the

information of human subjects. With that in mind, we

investigate deep transfer learning that assists models that have

inadequate/insufficient training data, as it alleviates the

assumption that the training data needs to be independent and

identically distributed with the test data (14). We focus on

transfer learning techniques through fine-tuning models, a state-

of-the-art approach, and an existing method on two datasets

containing vocalisations of children aged 4 to 18 years old. We

implement a discriminative fine-tuning model that pre-trains on

child data and then fine-tunes on a fairly small dataset with child

speech data. We then implement a Wav2Vec 2.0 transformer

framework that leverages a model pre-trained on a 960 h of

unlabelled speech data, to be fine-tuned to the small child

dataset. We therefore test the abilities of fine-tuning methods

both tuned using the same dataset, though pre-trained on

unrelated and related tasks with differing sizes and tasks.

Although Wav2Vec was initially created and utilised for

speech-to-text encoding, i. e., automatic speech recognition (ASR)

(15, 16), it has been successfully applied to emotion prediction

(17) and even language identification (18). In this research, we

implement the updated version, being Wav2Vec 2.0 (19), for the

classification of speech of ASD and typically developing children.

This classification can be accomplished by analysing suited

acoustic features (20). We compare our results to those of other

studies employing versions of this transformer model. As for

discriminative fine-tuning, it has successful applications in speech

recognition (21) and natural language understanding (22); to the

best of our knowledge, however, this is its first implementation

to ASD recognition from speech. In addition to the binary

typicality classification task (TD vs. AD, where AD encompasses

all non-typically developing cases), we implement a four-class

diagnosis task that classifies speech into one of four categories:

TD, ASD, DYS, and NOS. The experiments carried out for this

research are detailed throughout this paper to facilitate

reproducibility by interested readers. We conduct further

experiments in relation to fairness testing, to test whether the

models have bias towards one gender over the other.

2 Datasets

2.1 De-Enigma corpus

The De-Enigma corpus has been created for the De-Engima

research project, which has the goal of improving education for

children diagnosed with ASD (23). This is a Horizon 2020

initiative, see https://de-enigma.eu/ for more information on the

project. The participating 55 children are between the ages of 4

and 10 years (25 from Serbia and 25 from the United Kingdom).

The corpus does not include a control group and all instances are

solely of children diagnosed with ASD. It, however, does include

further annotations besides (1) vocalisations such as (2) speaking/

non-speaking, (4) emotion, (3) ASD behaviour, and (5) non-verbal

vocalisations. However, as we are only interested in ASD

recognition from speech, we focus on the vocalisations and speech
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of the children. For the purpose of our experiments, we use all the

child produced vocalisations, both speech and non-speech related.

The total duration of the dataset samples utilised is 115min.

2.2 Child pathological speech database
(CPSD)

The child pathological speech database (CPSD) (24) was built

with the goal of studying language-impaired children (LIC)

diagnosed with ASD. It contains diagnoses of pervasive

developmental disorder either of autism spectrum disorder

(ASD), specific language-impairment such as dsphasia (DYS), or

pervasive developmental disorder-not otherwise specified (PDD-

NOS). Throughout this research we refer to (PDD-NOS) as

(NOS). The recordings were collected from monolingual French-

speaking children aged 6 to 18 years, in Paris, France (Université

Pierre et Marie Curie/Pitié-Salpêtière Hospital and Université

René Descartes/Necker Hospital). While a control group is

introduced and it consists of 64 Typically Developing children

(TD), 52 of which are males and 12 females. All the TD subjects

had no prior history of difficulties with learning, speech, hearing

or general learning. Recordings of all subjects were captured in

their typical environment, i.e clinic for the LIC subjects and

elementary, secondary, and high school for the TD subjects. The

database was designed with the main aim of comparing and

assessing the children’s language skills to replicate diverse types

of intonations (descending, falling, floating and rising contours).

This was achieved, examining intonation contours, by as- signing

subjects with an imitation task which consisted of imitating 26

pre-recorded sentences representing different modalities (i.e.,

declarative, exclamatory, and interrogative).

To conduct our experiments on the typicality task, we combine

vocalisations from children with Dysphasia specific language

impairment (DYS), autism spectrum disorder (ASD) and

pervasive developmental disorder-not otherwise specified (NOS)

into one class (AD). As in this task we are merely interested in

the automatic recognition of speech as of an AD or TD child.

Additionally, the previous dataset has ASD as one class, therefore

we combine instances collected of AD into a single class. For the

diagnosis task, speech samples are classified into four distinct

labels: TD, ASD, DYS, and NOS, treating each as a separate

category. In total, the samples add up to 62 min of audio.

The distribution of the datasets over the training, development,

and test sets for the typicality and diagnosis classification tasks is

displayed in Table 1. We use a split of 70% training, 15%

development, and 15% test, and further split the training set; 70%

training, 15% female, and 15% male. The same split strategy is

implemented to the four-class diagnosis classification task, therefore

both tasks use the same folds, we do this to enable fair

comparability between the two tasks. During the data pre-

processing, we split the data according to speaker rather than

samples, to ensure that samples from each child belong to one fold

only (training, development, or testing sets). This step is initiated to

prevent the model from over-fitting by learning speaker or

recording idiosyncrasies, and therefore deceptively excelling. The

De-Enigma corpus comprises significantly more vocalisation

samples than the CPSD, however, lacks a control group. CPSD is

64%–36% AD-TD labels, this introduces a data imbalance, which

must be addressed during pre-processing and network training.

The majority of the samples are of male samples, as opposed to

female; this is expected, as there is an observed 4:1 male-to-female

prevalence of ASD (25, 26). This could be due to the “female

camouflage effect”, which suggests that females are better at

masking ASD (27). The CPSD has 13 female participants making

334 samples and 54 males making 1,388 samples, creating a

gender imbalance of 19%-81% in the data. The De-Enigma

corpus similarly has a wide disparity with 11 females and 39

males, forming a 22%-78% percent split. Due to these gender

disparities, we perform fairness testing on the proposed models.

3 Methods

3.1 Discriminative fine-tuning

Fine-tuning entails pre-training a source model on one task,

then tuning it on a target model for another similar task. We

TABLE 1 Typicality: Data distribution over different partitions and class
categories of the DE-ENIGMA dataset, and CPSD.

Typicality

DE-ENIGMA
P

AD TD

Train 3 834 3 834

Develop 793 793

Test 741 741
P

5 368 5 368

CPSD

Train 920 223 697

Develop 258 156 102

Test 284 78 206

Female 130 78 52

Male 130 78 52
P

1 722 613 1 109

TOTAL 7 090 5 981 1 109

Diagnosis

DE-ENIGMA
P

ASD

Train 3 834 3 834

Develop 793 793

Test 741 741
P

5 368 5 368

CPSD
P

DYS ASD NOS TD

Train 920 51 104 42 723

Develop 258 78 26 52 102

Test 284 26 26 26 206

Female 130 26 26 26 52

Male 130 26 26 26 52
P

1 722 233 208 172 1 109

AD stands for atypically developing; TD for typically developing. Note: The DE-ENIGMA

TD column is blank, as the dataset does not include a control group. Diagnosis: Data

distribution over different partitions and class categories of the DE-ENIGMA dataset, and

CPSD. ASD stands for autism spectrum disorder, DYS for dysphasia, NOS for pervasive

developmental disorder-not otherwise specified, and TD for typically developing.

Bold values indicates total refers to the sum across the two corpora.

Al Futaisi et al. 10.3389/fdgth.2025.1274675

Frontiers in Digital Health 03 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1274675
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


implement fine-tuning to test whether we are able to obtain a good

performing model without the need for extensive datasets and deep

learning techniques. This is based on the assumption that, if two

tasks are similar, some knowledge can be transferred between

models. More specifically, a discriminative fine-tuning model is

utilised, which is different from a generative adversarial network

(GAN) (28) as it excludes a generative model. It is commonly

used for classification and prediction tasks where explicit

modelling of the data distribution is not required. We choose to

implement a discriminative model as we are interested in task-

specific performance; this bears the ability to fine-tune and

optimise based on the unique characteristics of speech data.

Furthermore, omitting the generative model enables the network

to train faster and potentially perform better for the specific task

at hand while focusing the discriminative model on learning the

decision boundary between the classes.

Figure 1 outlines the proposed architecture for training the

discriminative fine-tuning model, which we refer to as the D-FT

model. The network is pre-trained on the source model using the

De-Enigma corpus, the same network parameters are shared by

the target task, with a classification layer added with the number

of classes of the target dataset. The new output layer in the

target model is then trained on the CPSD data. The model is

pre-trained using one class label, children diagnosed with ASD,

then fine-tuned using two class labels, ASD vs. TD. The same

model is utilised for the diagnosis task, but it is fine-tuned to

classify speech into one of four categories: TD, ASD, DYS, or

NOS, rather than using the binary TD vs. AD classification.

3.2 Wav2Vec 2.0 fine-tuning

Wav2Vec 2.0 introduced by Baevski et al. (19) is a self-

supervised learning framework, where representations are learnt

from raw audio data. It was first released as Wav2Vec for

automatic speech recognition (15, 16). The pre-trained model

can be fine-tuned to the specific task and dataset at hand. It is a

transformer-based model that predicts audio samples based on

quantisation. The model has the capability to outperform other

models with an amount of transcribed speech (labelled data) as

little as 10 min (29). We test this finding in our experiments, as

the training set from the CPSD comprises of 30 min of

labelled data.

Figure 2 outlines the framework for the Wav2Vec 2.0 fine-

tuned model, which we refer to as the W2V2-FT model. Starting

with raw waveform as input, we then produce latent space

representations which are then fed to the transformer. We

leverage the Wav2Vec 2.0 pre-trained model on the Libri-Speech

corpus comprising of 960 h of speech (30) by using the

facebook/wav2vec2-large-librispeech-960h, then fine-tune it

using the CPSD data. The De-Enigma corpus is not used here as

we are interested in the performance of a model pre-trained on a

large, yet unrelated dataset, being Libri-Speech then fine-tuned to

a small dataset, being CPSD, to use for comparisons to the

previous model. The diagnosis task utilises the same model but is

adapted for multi-class classification, distinguishing between TD,

ASD, DYS, and NOS, to further test the model’s performance at

multi-class classification.

FIGURE 1

Schematic diagram of the fine-tuning adopted architecture for the source model pre-trained on the De-Enigma corpus and the target model fine-

tuned on the CPSD corpus.
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4 Experimental setup

4.1 Discriminative fine-tuning

The audio is first pre-processed, from raw audio form to model

comprehensive data. Acoustic feature extraction is preformed using

ComParE16; a set comprising of 6,373 features created for the

INTERSPEECH 2016 computational paralinguistics challenge

(ComParE16) (31), available from the openSMILE (32) toolkit.

These features capture various aspects such as spectral, energy,

F0, and cepstral coefficients (MFCCs) and other frame-level

features referred to as low-level descriptors (LLDs), enabling

comprehensive analysis of aspects of speech. The speech features

are then standardised, as this can enhance the model’s capability

to generalise and avoid bias towards certain features. Before

feeding the features to the model for training, we upsample due

to the considerable class imbalances. For the typicality task, a

factor of three is used to upsample the minority class (AD,

encompassing all non-typically developing children). In the

diagnosis task, a factor of five is applied to the minority classes

(DYS, ASD, NOS), while the majority class (TD) remains

unaltered.” The most suitable resampling technique for this

model we find to be upsampling by repeating the sparse

examples based on an upsampling dictionary. This is a useful

technique, especially when dealing with sparse or low-resolution

data. It is widely used in signal processing tasks, as it involves

increasing the resolution of a signal or dataset by generating

new samples.

4.2 Wav2Vec 2.0 fine-tuning

To employ a Wav2Vec 2.0 model, the audio samples need to be

resampled to 16 kHz which is what the pre-trained model is trained

on. The CPSD samples are already in 16 kHz form, therefore, we

skip the resampling step. The model includes a CTCtokeniser

for tokenising speech, which is then used by the

CTCFeatureExtractor for feature extraction, it encompasses 1,024

features. Wav2Vec 2.0 utilises a convolutional neural network

(CNN) as part of its architecture, more specifically for the

component responsible for extracting features from the input

audio data. Due to the class imbalances, the model is at risk of

over-fitting by favouring the majority class over the minority.

Therefore, we resample the data using various methods and

examine the model’s behaviour in order to find the most suitable

technique. These resampling methods include random (over and

under) sampling, Synthetic minority over-sampling technique

(SMOTE) (33), its variants support vector machine-SMOTE

(SVM-SMOTE) and borderline-SMOTE (BL-SMOTE) (34), and

finally adaptive synthetic (ADASYN) sampling (35). With

random under-sampling, which is not always recommended due

to important points in the dataset are being discarded, reducing

sample variety and resulting in the model not being able to

generalise to unseen data, the model struggles to avoid over-

fitting to one label at the early epochs of training. Similarly, with

the other techniques, the model over-fitted to the data fairly

quickly, except for SVM-SMOTE for the binary typicality

classification task, even though it does not produce an equal

number of samples for the minority class to the majority class

(see Table 2). The same network and parameters are used for the

four-class diagnosis task, where ADASYN proved to be the most

suitable resampling technique for handling class imbalances,

primarily due to the significantly larger number of TD samples

compared to ASD, DYS, and NOS. As displayed in Table 2, the

majority class (TD) remains the same while other class are

upsampled, though unequally.

5 Network training

5.1 Discriminative fine-tuning

We use a deep recurrent neural network (RNN) with gated

recurrent units (GRU) with a discriminative loss utilising

signmoid cross entropy with logits, and optimise with adam

optimization (Adam optimizer) and a regularisation rate of

FIGURE 2

Schematic diagram of the adopted architecture for fine-tuning the

Wav2Vec 2.0 model on the CPSD data.

TABLE 2 W2V2-FT training samples for the CPSD before and after
employing resampling techniques; SVM-SMOTE for the binary typicality
task and ADASYN for four-class diagnosis task.

Typicality

SVM-SMOTE
P

AD TD

Before 920 697 223

After 1,244 697 506

Diagnosis

ADASYN
P

DYS ASD NOS TD

Before 920 77 104 42 697

After 2,630 693 726 714 697

Al Futaisi et al. 10.3389/fdgth.2025.1274675

Frontiers in Digital Health 05 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1274675
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


0.0001. Additionally, a dropout rate of 0.3 is introduced to the

network. We use a grid search strategy to find the best

performing hyperparameters, and although it is time-consuming,

we found it to be more efficient and still requiring less time than

manual random search. After testing various parameters, we use

the following for our final model; five fully connected layers, a

learning rate of 0.001, a batch size of 128, and 1,024 hidden nodes.

5.2 Wav2Vec 2.0 fine-tuning

The pre-trained model uses a dropout rate of 0.1, even though

we test various rates and observe its behaviour, it performs best

with 0.1. We use a learning rate of 0.0001, as we find that the

model over-fits early in the training with larger rates. Once

again, the Adam Optimization is applied, specifically

adamw_torch. We further apply label smoothing, as it makes the

model less sure of it predictions and thus aids the model in

avoiding over-fitting. However, it did not necessarily improve

this model’s performance, and we settle for no smoothing applied.

6 Results

Our experiments use two feature extraction methods, the

ComParE16 feature set and the Wav2Vec2FeatureExtractor. We

explore the performance of the feature extractors and the

classifiers with their varying applied loss functions. To compare

the results, as displayed in Table 3, the unweighted average recall

(UAR) and F1-score of the models are considered. For the

typicality classification task, the baseline achieves a UAR of

94.1%, which is indicative of the classification ability of deep

learning models. For comparative reasons, the baseline utilises

the same network and hyperparameters of the fine-tuning D-FT

model using the CPSD data, as it includes the control group,

excluding the pre-training step. We choose this baseline, as we

further wish to explore the performance of deep learning models

with relatively small sets.

D-FT yields a 94.8% UAR score, which is the highest score

from all approaches. Regardless of the De-Enigma corpus lacking

a control group, the pre-trained model aids the classification

done at the fine-tuning stage. The D-FT model being similar to

the baseline in terms of utilising the same fine-tuning network is

indicative of its ability to improve performance through the

additional related source model (the auxiliary pre-training step),

trained on the De-Enigma corpus. However, the improvement

not being significant could mean that the model reached its

potential with the given dataset. Whilst, the W2V2-FT model

produces a UAR of 91.5%. The model was not as robust to over-

fitting and generalisation when compared to the D-FT model. As

discussed in Section 5.2, the model was prone to over-fitting at

early epochs due to the class imbalance further proving that ML

models are highly reliant on the quality and quantity of the

datasets used for training. Furthermore, the feature extraction

method used is also a factor in model performance. The

ComParE16 feature set includes a higher number of features in

comparison to the Wav2Vec2FeatureExtractor, which means that

it can potentially capture more detailed and diverse information

from the audio data.

For the diagnosis task, classification performance is

significantly lower compared to the typicality task, likely due to

the increased complexity of distinguishing between multiple

conditions (ASD, DYS, NOS, TD) rather than a binary

classification. The D-FT model performs less accurate predictions

as the UAR score is 60.9%, which could be attributed to the

additional dataset used. In the four-class diagnosis task, the De-

Enigma corpus (which contains only ASD cases) does not fully

align with the CPSD dataset, which includes a broader range of

categories (DYS, ASD, NOS, and TD) Consequently, training

multiple datasets that have inconsistencies in their categories

hinders model performance (36). However, the baseline performs

considerably better with 62.4% on the test UAR, even though it

only uses the fine-tuning part of the D-FT model. Again, this

could be due to the process of training the baseline not

necessitating handling category mismatch. Finally, the W2V2-FT

strategy yields the lowest scores in performance metrics, with a

UAR of 54.3%. In this case, similar to the typicality task, the

model benefits from the pre-trained model, regardless of

the training being on unlabelled data and an unrelated task. On

the other hand, the D-FT model could perform comparatively

better due to the datasets utilised for training being of related

tasks. We assume that the D-FT model is better suited to

handling the additional complexity introduced by the four-class

diagnosis task, whereas the other model may struggle to

generalise across multiple conditions.

The diagnosis task, compared to the typicality task, is more

complicated and not only because there are more classes. Even

though the binary task suffers from class imbalance, the

imbalance is more severe in the four-class task. Moreover, in a

multi-class task there are more decision boundaries that the

model needs to learn. However, in a binary-task the model is

only required to learn one decision boundary to separate the two

classes (AD and TD). Finally, the evaluation metrics in binary

classification are more straightforward to interpret, compared to

multi classification metrics for each class. As a result, the

performance scores of the training models are lower than those

of the binary class.

TABLE 3 Results for F1 and UAR from the development and test sets.
Typicality refers to the 2-class task (ASD vs. TD) and diagnosis refers to
the 4-class task (DYS-ASD-NOS-TD).

[%] Develop Test

Approaches F1 UAR F1 UAR

Typicality

Baseline 73.8 77.2 93.1 94.1

D-FT 73.6 78.0 93.5 94.8

W2V2-FT 72.0 76.6 89.5 91.5

Diagnosis

Baseline 33.7 36.3 56.1 62.4

D-FT 34.4 37.9 59.3 60.9

W2V2-FT 33.6 34.3 44.3 54.3
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7 Discussion

Wav2Vec 2.0 has shown promising results when applied to

speech classification, being Autism Spectrum Disorder

recognition, although it was initially built for a different task,

being automatic speech recognition. Upon analysing and

contrasting the performances of our classification models, we

observe that during the early training stages the D-FT model did

not overfit to the data when the W2V2-DT model did, due to

the class imbalances. Moreover, the discriminative model’s

performance and behaviour was similar for both tasks even

without resampling the data, for instance, similar accuracy was

achieved in the typicality task. This can indicate that it is more

robust than the Wav2Vec 2.0 model. After further comparisons,

we conclude that training on a similar task using a dataset with a

large number of samples transfers knowledge to the fine-tuned

model training on a relatively smaller dataset. While knowledge

is similarly transferred when fine-tuning the same dataset on a

pre-trained model on a comparatively larger dataset of 960 h, it

does not necessarily result in better performance compared to

training two related tasks. Another notable difference in the

datasets used for training the two networks is the labelling.

Wav2Vec 2.0 is pre-trained on unlabelled data while our D-FT

model benefits from the labelled De-Enigma data used at the

pre-training stage. However, in the diagnosis task, the additional

dataset used for pre-training the D-FT model did not improve

predictive accuracy, likely due to differences in feature

distributions among ASD, DYS, and NOS. Additionally, the

datasets include three different settings, being Serbian, English,

and French – the diversity can aid the models generalise to

various settings and is more robust to language changes rather

than singularity, such as English for instance.

In Table 4, a comparison to other works on CPSD is given. The

CPSD dataset was used for the INTERSPEECH 2013 Autism Sub-

Challenge (8); we therefore compare our baseline results to the

challenge baseline and winners (37). For fair comparisons, we

only compare our baseline model as it utilises the same dataset

as the challenge without additional the training set, such as the

other two models (D-FT and W2V2-FT). Comparisons between

UAR for the test set are shown in Table 5. The challenge

includes a four-class (DYS-ASD-NOS-TD) classification task

using all dataset labels as well as two class (AD-vs.-TD)

classification. The challenge baseline uses linear kernel support

vector machines (SVM)/support vector regression (SVR) with

sequential minimal optimization (SMO) for static classification

(regression). The SVM complexity parameter C is selected from a

set of values to optimise performance, and logistic models are

fitted to SVM hyperplane distances for obtaining class posteriors.

Resampling is employed to address the class imbalance, by

upsampling the under-represented classes. In the diagnosis task,

the minority classes (DYS, ASD, NOS) are upsampled by a factor

of five, whereas in the typicality task, the AD class is upsampled

by a factor of two to balance the dataset.

In the study by Asgari et al. (37), a support vector classifier was

used to recognise Autism Spectrum Disorder (ASD) cases, and

support vector regression was employed to identify the subtypes.

The regression and classifier models were trained using the open-

source WEKA toolkit, with a hyperparameter value of C ¼ 0:001

retained from the baseline system. Similar to the challenge baseline,

upsampling is implemented on the samples of the atypicality

categories (DYS-ASD-NOS) by a factor of five. The feature

extraction is done through: voice quality features (obtained through

harmonic analysis), energy-related features, spectral features, and

cepstral features. Our baseline model scores higher than the

INTERSPEECH2013 autism sub-challenge research studies for the

typicality task. Although our experiments and the challenge baseline

use the ComParE feature set, in our experiments we employ a later

version, released in 2016 while they use the 2013 set. This is

indicative of the technological advancements in the AI field as one

must remember that there is a decade gap between the experiments.

As for the diagnosis task, neither does our base nor none of our

models perform better classification than the other studies.

We compare our results, presented in Table 5, with the findings

of other research studies that have employed different versions of

the Wav2Vec 2.0 model for classifying ASD-vs.-TD, whereas our

study focuses on AD-vs.-TD in the typicality task. While both

approaches involve distinguishing between typical and atypical

development, our classification includes a broader range of

atypically developing children (ASD, DYS, NOS), whereas

previous studies focus solely on ASD. An additional study by

Hansen et al. (38) is excluded due to the lack of available scores,

with reported F1-scores ranging between 0.54 and 0.75. Chi et al.

(39) fine-tune the facebook/wav2vec2-base variant on crowd

sourced semi-structured data, whereas we fine-tune the facebook/

wav2vec2-large-librispeech-960h variant. While the study by Lee

et al. (40) utilises the Wav2Vec 2.0 model for feature extraction

and employs a bidirectional long short-term memory (BLSTM)

classifier for the downstream task. Lee et al.’s W2V-BLSTM

model has two versions: W2V-BLSTM-FT and W2V-BLSTM-JT.

In W2V-BLSTM-FT, the BLSTM classifier is fine-tuned using the

downstream task of ASD-vs-TD classification on the pre-trained

base model on the LibriSpeech data. The quantisation process in

the Wav2Vec 2.0 model is removed, and context representations

are derived solely from the input signal. These context

TABLE 5 Results of the W2V2-FT model compared to other research using
an implementation of Wav2Vec2.

[%]

Approaches Accuracy Precision Recall F1

W2V2-FT 91.2 88.0 91.5 89.5

Chi et al. (39) 76.9 78.2 74.6 76.8

Lee et al. (40) 71.7 73.1 60.5 66.2

TABLE 4 Results compared to other research using the same dataset,
being CPSD.

[%] Test UAR

Studies Typicality Diagnosis

Baseline 94.1 62.4

Schuller et al. (8) 90.7 67.1

Asgari et al. (37) 93.6 69.4
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representations are extracted for a given waveform and used to

train the BLSTM-based classifier. On the other hand, the W2V-

BLSTM-JT model is trained by jointly optimising all parameters,

including those of the Wav2Vec 2.0 model and the BLSTM-

based classifier. This model combines the feature extraction

capabilities of Wav2Vec 2.0 with the classification power of the

BLSTM network. Our W2V2-FT model achieves comparatively

higher UAR and accuracy scores than those reported in the

studies reviewed in this work, underscoring the potential of our

fine-tuning approach for distinguishing between typically and

atypically developing children across a broader classification task.

However, given the variation in datasets and methodologies

across studies, direct comparisons should be interpreted

with caution.

8 Fairness testing

Discrimination and bias are two of the main concerns

regarding ethical AI, along with privacy and surveillance. With

developing AI models, and more so algorithmic decision making,

there is potential bias and discrimination that must be taken into

account from design to generated predictions. This is crucial in

our experiment, specially that we are adhering to a vulnerable

group. The 4:1 male-to-female prevalence of ASD serves as an

additional significant rationale for undertaking fairness testing.

While this is expected behaviour of the model when it has more

samples from one gender, tests must be performed to find ways

to address and prevent the bias. Conclusively, in our data, there

is a ratio of 8:2 male-to-female. This can bias the model analysis

towards males as females are underrepresented in the data. For

this reason, we perform fairness testing by testing equalised odds,

which is where the protected and unprotected groups should

have equal rates for true positives and false negatives (41, 42).

In order to test whether our model fairly classifies without bias,

we analyse its performance in predicting AD among males-to-

females. This was a challenging task as the female samples are

significantly lower in comparison. This is carried out by analysing

the model’s performance when tested on samples from one

gender, noting that these samples must be new to the model and

both models must be tested on the same female and male sets.

The data distribution over the two genders is displayed in Table 1.

Testing for equalised odds is conducted from a confusion

matrix by calculating and comparing true positive rates

(sensitivity) to false positive rate (specificity) across the gender

groups. Ideally, for model fairness, the disparity between the two

groups should be relatively small. Sensitivity, also referred to as

recall, is obtained by calculating the ratio of true positives (TP)

to the sum of true positives and false negatives (TP+FN).

Specificity is the ratio of true negatives (TN) to the sum of true

negatives and false positives (TN+FP).

Mathematically, sensitivity is calculated as (see Equation 1):

Sensitivity ¼
TP

TP þ FN
(1)

While specificity is calculated as follows (see Equation 2):

Specificity ¼
TN

TN þ FP
(2)

The confusion matrices for the testing sets from the CPSD dataset

of female, male, and mixed-gender are used to compare the fairness

performance of the D-FT and W2V2-FT models for the binary

typicality classification task. The matrices with the true and

predicted labels are displayed in Figures 3 and 4 which are used

for the equalised odds testing.

Table 6 displays the sensitivity and specificity for D-FT and

W2V2-FT across the two gender groups; for comparisons, we

further include the ratios for the mixed-gender test set. Testing

the D-FT model on the male set has a higher sensitivity than

female, suggesting that the model performs better at correctly

identifying AD for male compared to female. The same can be

said for correctly identifying TD, this is indicated by the higher

specificity for male compared to female. As for the W2V2-FT

model, sensitivity and specificity are also lower for females and

higher for males. This shows that the W2V2-FT model is less

effective in correctly identifying AD and TD for females, but

better for males. Comparatively, the W2V2-FT model displays

lower sensitivity scores than those of the D-FT model, suggesting

its reduced capacity at precisely recognising AD within both

genders. Finally, the specificity for the W2V2-FT model being

higher for both genders than the D-FT model suggests that

W2V2-FT better captures AD instances for each gender.

However, it is evident that both models perform better

identifying TD than ASD.

The testing results, displayed in Table 7, indicate that the

models performed considerably better for males than females,

revealing a potential gender bias in classification accuracy. This

suggests that the imbalance in training data, where male samples

are overrepresented, may have influenced model generalisation.

The uneven gender distribution in the dataset likely impacted the

model’s ability to generalise across both genders, giving the

majority group (males) an advantage over the minority group

(females) and resulting in better predictions. The testing metrics

further indicate that the D-FT model outperforms the W2V2-FT

model in all instances, except for male testing in the diagnosis task.

Conducting fairness testing on the models for the diagnosis

task displays similar behaviours to the typicality task. For

instance, all the training models perform better classification for

males than females. We further observe that in the diagnosis

task, testing only male samples on the W2V2-FT model yields

marginally higher scores compared to testing a combined-gender

dataset. This implies that the female samples in the mixed-

gender test set hinders performance, noting that the mixed set

consists of more samples. In fact, the model struggles to correctly

identify AD cases for females, also expected with the gender

sparsity in the dataset.

Previous work predicts that there exists a subtle yet discernible

gender bias with end2end models such as Wav2Vec2 (43). Our

work supports this, as the W2V2-FT model was unable to

Al Futaisi et al. 10.3389/fdgth.2025.1274675

Frontiers in Digital Health 08 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1274675
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


perform similarly for both genders due to the unbalance and

considerably larger portion of the data being of males. The same

applies to both models in this study. Additionally, from the

confusion matrices above we can deduct that both models are

better at predicting TD than AD, presumably due to the dataset

comprising of more TD samples. This is evident from the

models in Figures 3 and 4 not predicting AD as TD.

9 Limitations

The initial aim of the study was autism recognition from earlier

ages between 1 and 3 years; however, as aforementioned in Section

1, obtaining datasets with sensitive subjects is difficult and thus the

course of research was changed to older ages between 6–18 years.

However, pre-linguistic vocalisations have linguistic value, and

the same applies to individuals on the spectrum as non-verbal

vocalisations are a form of speech and hold communicative value

(44). Moreover, analysing infant vocalisations can facilitate early

ASD detection (45), which can be as early as the pre-linguistic

vocalisation they produce (46). The D-FT model utilises both

speech and non-speech vocalisations from the De-Enigma

corpus, suggesting its potential to predict vocalisation patterns in

children younger than four years old.

One of the limitations of this study is that the data in the two

datasets is collected at different settings. The De-Enigma corpus

was collected at-home, while the CPSD was recorded in lab-

settings. Speech collected from a child’s natural environment,

however, such as home, is more accurately reflective of their real

life experience, which explains the massive shift we have been

witnessing in recent years towards collecting and analysing day-

long audio recordings (47). On the other hand, difference in data

collection settings can help in generalising to various

environments, while also potentially leading to a domain shift,

meaning that the characteristics of the data may vary

significantly between the two settings. Models trained on diverse

FIGURE 3

Confusion Matrices for testing the D-FT model on female vs. male. (a) Results for the female test set. (b) Results for the male test set. (c) Results for the

mixed-gender test set.
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datasets may struggle to generalise well to unseen data, as they

might not effectively capture the variations and characteristics

specific to each setting. As the D-FT uses both dataset, it is at

risk of domain discrepancy which can result in reduced

performance when the model encounters data from either

setting. Additionally, as one dataset has significantly more

samples, the D-FT model, which utilises both datasets, could

potentially become more biased towards the more

dominant setting.

Class imbalances in the CPSD dataset was limiting the

performance of the W2V2-FT model, with a 64% of the samples

being TD and 34% being of AD. Although we address this in the

pre-processing and network training with methods such as

resampling, the W2V2-FT model performance deteriorates.

Resampling methods including SMOTE and ADASYN can be

beneficial in some tasks, while also insufficient in other

applications (48). Moreover, methods such as SMOTE affect

classification performance (49). The same can be said regarding

the data used for the diagnosis task, class imbalances did hinder

prediction accuracy. There is a further imbalance in the gender

distribution in our datasets, having substantially more male

participants, with 95% in the De-Enigma corpus and 90% in the

FIGURE 4

Confusion Matrices for testing the W2V2-FT model on female vs. male. (a) Results for the female test set. (b) Results for the male test set. (c) Results for

the mixed-gender test set.

TABLE 6 Typicality: Sensitivity and specificity percentages for equalised
odds fairness testing across models and gender groups.

Typicality

Model Sensitivity Specificity

D-FT

Mixed-Gender 94.8 94.7

Female 43.6 86.5

Male 61.5 94.2

W2V2-FT

Mixed-Gender 92.3 90.8

Female 24.4 92.3

Male 53.8 100
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CPSD. To investigate this, we perform fairness testing, resulting in

the models performing better classification within male than

female as they are trained on more male samples. Additionally,

the experiments evaluate and test on relatively small sets, which

could hinder the model improvement and possibly meaning it is

not fully representative of the real-world.

The UAR results of 78.0% on the development set and 94.8%

on the test set, for the D-FT model for instance, while can be

considered quite promising, they should be considered in the

context of the dataset’s specific characteristics. The CPSD is

relatively small, and we have additional splits (i.e., female and

male sets), which can lead to exhibiting more substantial

variation in performance. Additionally, we are dealing with a

class imbalance, where TD has more samples than AD. This

class imbalance can make it more challenging for the model to

perform predictions, especially for the minority class. In the

training set this imbalance was addressed by upsampling the

minority class, to enable learning better representation of this

class. Whilst the development and test sets remain intact with

their distributions unchanged, to be representative of real-world.

By initiating this, the evaluation of the model’s performance

reflects on the actual class distribution encountered in the real-

world application. However, due to the limitations in the dataset,

the results reported herein must be carefully interpreted. For

future work, stratified sampling can be utilised to mitigate the

imbalance in the various folds. Stratified sampling is a method of

sampling, it involves dividing a population into subgroups

(strata) based on certain characteristics (class in our case) and

then selecting samples from each group (stratum) to ensure

representation of the entire population.

Most importantly, however, the accuracies reported herein are

partially very high and have to be interpreted very carefully – they

depend on various factors and the specific test data set and cannot

easily be generalised to real-world diagnosis of autism condition,

which can be expected to significantly lower accuracies – see also

(50) for a discussion of potential over-expectation in speech

analysis tasks for real-world application.

10 Conclusions

The importance of early detection and speech in ASD pose the

point of our research. We therefore tested models based on fine-

tuning algorithms for classifying children with AD and TD from

their vocalisations and speech. The performance of the models

indicates the computational abilities of modern-day deep learning

models in the recognition of ASD from speech. We found that

deep transfer learning through fine-tuning helped in leveraging

multiple datasets and thus aided model performance in every

instance for the typicality task. However, differences in class

distributions between datasets in the diagnosis task negatively

impacted predictive accuracy, particularly due to the challenge of

integrating a dataset containing only ASD cases (De-Enigma

corpus) with a dataset that includes a broader range of atypical

developmental conditions (CPSD: ASD, DYS, and NOS). We

further observed that performance was impacted by the data

used in training and that resampling techniques, in the case of

addressing class imbalances, were highly influential on the

performance. Finally, testing the fairness of a model is crucial,

especially when sensitive groups are involved but

underrepresented in the data used for developing a model. The

fairness testing further proved that models can be reliant on the

data, as with more male samples in the datasets the models were

biased towards males.

Future work could explore multi-modal classification by

incorporating additional modalities such as facial expressions, as

this study focuses solely on speech-based uni-modal classification.

The De-Enigma dataset comprises further features which could be

leveraged; facial mapping coordinates, speech and vocal noises,

body posture as well as angle and rotation of the child’s head.

Adding further classification features could possibly improve the

model’s classification and prediction. Moreover, the class and

gender imbalances in the datasets can be tackled by collecting more

data. This will confront the over-fitting problem and better capture

the diversity and characteristics present in tangible environments.

Another plausible solution to the class imbalance is to utilise GANs

to generate synthetic data samples. When compared to SMOTE

and ADASYN resampling techniques, GANs have been found to be

more representative of real-world samples (51).
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