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This review focuses on integrating artificial intelligence (AI) into healthcare,

particularly for predicting adverse events, which holds potential in clinical

decision support (CDS) but also presents significant challenges. Biases in data

acquisition, such as population shifts and data scarcity, threaten the

generalizability of AI-based CDS algorithms across different healthcare centers.

Techniques like resampling and data augmentation are crucial for addressing

biases, along with external validation to mitigate population bias. Moreover,

biases can emerge during AI training, leading to underfitting or overfitting,

necessitating regularization techniques for balancing model complexity and

generalizability. The lack of interpretability in AI models poses trust and

transparency issues, advocating for transparent algorithms and requiring rigorous

testing on specific hospital populations before implementation. Additionally,

emphasizing human judgment alongside AI integration is essential to mitigate the

risks of deskilling healthcare practitioners. Ongoing evaluation processes

and adjustments to regulatory frameworks are crucial for ensuring the ethical,

safe, and effective use of AI in CDS, highlighting the need for meticulous

attention to data quality, preprocessing, model training, interpretability, and

ethical considerations.
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1 Introduction

The increasing use of artificial intelligence (AI) has proven to have a significant impact

on many areas of our daily lives. Among other factors the steady increase in the use of AI

is driven by the availability of structured large-scale data storage, often called big data (1).

Big data is a key factor in AI development because machine learning algorithms take

advantage of patterns present in the training data. Consequently, the size and variability

of the dataset strongly impact an algorithm’s performance when deployed.

Lately, AI has become embedded in healthcare. Fields such as intensive care, radiology,

and pathology gather mass amounts of data. In these areas, diagnostic support tools and

disease prediction software are topics of large scientific interest (2, 3). In industry,

healthcare companies are investing in AI, collaborating with hospitals and universities

to accelerate research projects (4, 5). Moreover, simplification of healthcare processes

with AI could potentially reduce the costs in healthcare by 5%–10% (6).

Although the impact of AI is revolutionary, its implementation in a sensitive field such

as medicine requires critical evaluation and consideration. Data collection for machine

learning raises moral and ethical questions: is the data collected representative of the
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environment in which it will be used? What will happen when

an algorithm, trained on data with an over-representation of a

certain group, is used on a different population? Recently, the

World Health Organization (WHO) prioritized big data and

artificial intelligence as one of the major topics in health

ethics. In April 2020, a special issue of the WHO bulletin was

released on this particular subject (7), raising concerns about

responsibility, accountability, as well as lack of empathy

by computers.

This manuscript focuses on a specific application of artificial

intelligence (AI) in hospitals: predicting adverse events. These

events, which include medication side effects, physical injury,

psychological trauma, and death, represent a major concern in

healthcare. Predicting such events is crucial as it allows

physicians to take preemptive actions, enhancing patient safety

and optimizing care delivery.

In clinical practice, substantial amounts of data are routinely

collected, especially in high-risk environments such as postoperative

care and intensive care units (ICUs). This data presents a valuable

resource for developing predictive models. By leveraging machine

learning and other AI techniques, researchers and clinicians can

identify patterns and signals that precede adverse events, enabling

timely interventions. Using this data, several methods have been

proposed to forecast these events (8–11).

Accurate adverse event prediction has profound clinical

implications. Effective models enable earlier detection of patient

deterioration, prompt treatment adjustments, and optimal

resource allocation, thereby reducing morbidity and mortality (8).

These models also support clinical decision-making by tailoring

interventions to individual patient risk profiles. However,

challenges such as data quality, model interpretability, and

integration into clinical workflows must be addressed (12, 13).

Overcoming these obstacles can enhance predictive accuracy and

reliability, allowing healthcare providers to better utilize AI for

improved patient care and outcomes.

In this paper, we aim to summarize and discuss the significant

challenges and key considerations involved in using AI for the

prediction of critical healthcare events. Our discussion centers on

issues like data biases, the lack of interpretability, the potential

impact on clinical skills, and ethical questions. Given the concise

nature of this mini-review, the issues and mitigation strategies

discussed are selective examples from broader fields. Nevertheless,

unlike other papers that address these challenges in isolation, this

review offers a unified perspective, covering data biases, model

interpretability, ethical concerns, and clinical integration in one

accessible overview. By doing so, it serves as a practical resource for

researchers and clinicians, highlighting the need for meticulous

development, rigorous validation, and responsible implementation

of AI in clinical decision support systems.

2 Search strategy

PubMed and Google Scholar were used for the research, with

only articles in the English language, using terms similar to:

“Clinical Decision Support,” “Artificial Intelligence” and “Adverse

Events.” Articles included in this review were reviews, original

papers, and opinion articles. Literature was searched from

inception to February 2024. This mini-review synthesizes

evidence by categorizing selected articles into thematic groups

based on the application of AI in adverse event prediction,

challenges faced in clinical implementation, and ethical

considerations. Each article was reviewed to extract relevant

challenges, solutions, and conclusions. Table 1 provides

an overview of the relevant literature categorized in

thematic groups.

3 Data acquisition and preparation

Data acquisition is critical for AI applications as learning hinges

on data. Biases that are present within the data will result in biases

during the learning process. In machine learning, bias can lead to

erroneous assumptions created during the learning process, and

illustrations of these types of errors can be found in Figure 1. These

errors can arise from several factors in the learning process, the

most important of which is the data. In risk prediction, biases can

lead to wrongful determination of the supposed risk that a patient

has of suffering an adverse event. For example, in one scenario,

there is a hospital focused on cardiology that conducts numerous

high-risk cardiac surgeries but only a handful of low-risk oncology

surgeries. Conversely, another hospital specializes in oncology and

handles many high-risk oncology surgeries. In this setup, a risk

prediction model developed by the cardiology-focused hospital

might show bias towards cardiac surgery, potentially leading to an

underestimation of risk when applied to oncology surgeries at the

second hospital.

The biggest problem in the prediction of adverse events is that

these are not randomized controlled trials. Whether a patient is

assigned to the control group or suffers from an adverse event is

TABLE 1 Evidence and solutions for challenges in AI implementation.

Challenges Possible solutions

Data acquisition and preprocessing

Bias in event defintion (14, 15) Adapting outcome definition (15), use weighting

or resampling strategies (16)

Imbalance in data (17) Use weighting or resampling strategies (16)

Population shift (18) Out of distribution detection (19), external

validation (20, 21)

Data scarcity (22) Resampling and/or data augmentation (16)

Missing data (23) Remove or impute variables based on reason of

missing data (23)

Bias in model selection and training

Underfitting during model

training (24)

Increase model complexity or complexity of data

transforms (25, 26)

Overfitting during model

training (25, 27)

Regularization (26), early stopping (28), or

limiting model complexity (28)

Trust and adoption in clincal workflow

Black box AI and lack of

trust (22)

Employ explainable AI techniques (29–31)

Adoption in clinical workflow

(8, 32, 33)

Integrating alerts in existing workflow (32, 33),

adopting additional pathways for alerts (8)
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not determined randomly, but is instead a result of a multitude of

factors that may or may not have been observed during the data

acquisition. Additionally, the definition of adverse events is subject

to change and may be dependent on local hospital practices. CDS

algorithms often use mortality as the primary outcome for risk

stratification (14). However, this approach may not capture the

full spectrum of patient deterioration. For a more comprehensive

assessment, it could be beneficial to consider other indicators

of deterioration. These may include interventions such as

unanticipated ICU admissions, emergency surgeries, or the

administration of fluids or other medication (14, 15).

Additionally, many patients do not experience adverse events.

This lack of adverse events among a large number of patients

can lead to a skewed representation in the data, creating an

imbalance. When a dataset is imbalanced, it means that the ratio

of cases to controls is not one-to-one. If this ratio is different

compared to the targeted population this is called a population

or prevalence shift (17). This shift can occur because of the

demographic region where the data was collected or because of

the hospital population present in the data (18). The under-

representation of groups in the data can in some cases be solved

by weighting or resampling strategies. Applying higher weights to

certain groups will cause the training process to assign higher

losses to the wrong predictions of this group. Using resampling,

the underrepresented group is over-sampled, and/or the over-

represented group is under-sampled. This will have similar

results as reweighing (16). In risk prediction models, population

bias plays a large role. The best method to find and address this

type of bias is through external validation. However, systematic

reviews of risk prediction scores show that many of the studies

regarding risk prediction do not utilize external validation (20, 21).

Population shifts pose a challenge in continuous risk prediction

models. These shifts occur when a prediction model is applied to

a population that does not match the underlying distribution of

the training population. This might happened because of a

change in hospital, hardware, laboratory protocol, drift in

population overtime, etc. For instance, if a model predicting

patient deterioration over time is applied in a clinical setting,

resulting actions by clinicians can influence subsequent

predictions. Actions deviating from the norm, prompted by risk

predictions, may lead to rare occurrences not seen during

training, causing inaccurate predictions. Notably, these actions

aren’t necessarily incorrect, just different from most training

data. It is possible to inform clinicians when this is occurring by

employing out-of-distribution detection (19). This method can

alert clinicians when the current data deviates from the training

data, but it does not improve the model’s prediction accuracy.

Prospective studies on the use of machine learning algorithms

are required to increase the accuracy since these studies allow us

to see if those predictions that deviate from the norm are

beneficial or detrimental.

Another bias that could occur during data acquisition is data

scarcity. Data scarcity means that there is too little data for the

model to represent small groups or rare occurrences, leading to

reduced performance and reliability. This underrepresentation is

present in most studies regarding risk prediction in clinical

practice since most adverse events are rare occurrences.

Additionally, over 50% of the studies applying machine learning

to analyze ICU data, utilized data from less than 1,000 patients

(22). Such small datasets tend to overestimate performance

without external validation. Remedying data scarcity ideally

involves collecting more data, but that is not always feasible.

Data scarcity can be mitigated by data augmentation or synthetic

data generation. Data augmentation alters available data with

appropriate transformations, to create a larger, diverse dataset

and can also infer missing data. Synthetic data generation uses a

model to generate data, potentially introducing bias depending

on the underlying model assumptions.

4 Data preprocessing and AI training

While proper data acquisition can prevent biases in the data,

improper data preprocessing and training can still result in

FIGURE 1

Illustration of how problems in data collection and processing can lead to errors during training. With I the positive class, and O the negative class. The

example of imbalance shows how the negative class dominated the training set therefore the learned distribution reflects this even though it would

still be possible for positive cases to occur. The population shift highlights how a decision boundary for one population is not always generalizable to

another population. The data scarcity example illustrates how a small dataset during training can lead to wrongful assumptions of the underlying

distribution. The final example displays what a decision boundary during under and overfitting might look like.
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biases. One of the most important factors is the handling of

missing data. Missing data occurs mainly in three ways (23).

The first is datamissing completely at random (MCAR), meaning

the missing data is unrelated to any variable observed and

unobserved. This is a very poor assumption, especially in risk

prediction. For example, data could be missing because of faulty

equipment. This process is random and therefore, not related to

any variables. The second way is data missing at random (MAR),

which means that the missing data is a consequence of observed

variables. For example, preoperative screening data is missing, but it

was observed that the patient was unconscious at hospital entry. In

this case, the fact that the patient was unconscious at hospital entry

could be used to infer something about the missing preoperative

screening. The final is data missing not at random (MNAR), which

means that the missing data is related to the unobserved variables.

For example, some laboratory equipment is unable to produce a

valid measurement if the value of the measurement is below

a certain level. Mathematically the forms of missing data could be

expressed as Equations 1–3,

MCAR: P(My) ¼ P(MyjX, Y) (1)

MAR: P(My)= P(MyjX) (2)

MNAR: P(My)= P(MyjY) (3)

with My being the missingness of the unobserved variables, X the

observed variable, and Y the unobserved variable.

Determining the cause of missing data is often impossible.

Therefore, the common assumption used is missing at random,

since this allows for the use of observed variables to impute the

missing data. When encountering missing data, attention should

be paid to the reasons why data may be missing, and if possible

these reasons should be included in the data used during the

training of a prediction model.

Biases can also arise during prediction model training, known as

under or overfitting. Underfitting occurs when a simpler model

attempts to represent a complex problem, often resulting in reduced

performance in both train and test sets (27). This bias may stem

from incorrect assumptions about the data. For instance, logistic

regression models assume linear relations between input and output

variables, leading to underfitting in complex problems with non-

linear relations between variables (25). Chances of underfitting

can be reduced by utilizing data transforms or machine learning

models which can represent and fit data distributions of

higher complexity (25).

Excessive use of complex models may lead to overfitting, the

opposite of underfitting. In overfitting, the learning process

identifies relationships in the training data that don’t generalize to

the test set, resulting in performance disparities (24). Specifically,

the model may perform better on the training set than on the test

set. Overfitting can be reduced through regularization.

Regularization imposes constraints or penalties during training on

the complexity of the method, such as adding cost terms to model

weights. This encourages the model to increase only the weights of

important features (26). Early stopping is another regularization

method where the training set is split into a training-validation

split, and training is halted when the validation loss begins to

increase (28). Additional regularization methods for tree-based

models often involve limiting the depth of the trees (28).

Besides complexity, another and perhaps more important aspect

of model selection is the intended application. As discussed

previously, CDS algorithms focus on the prediction of adverse

events. This can be a prediction made at a specific moment, but

more often it is used to create predictions along longitudinal data

(15, 34). Cascarano et al. provide a comprehensive review of various

methods for applying AI to longitudinal biomedical data (34). The

appropriateness of these methodologies is determined based on the

nature of the input and output data. This approach allows for a

more targeted and effective application of AI in CDS.

5 Interpretability and trust

AI can suffer from a lack of interpretability. This means it is

not easy to determine why a model would for example assign a

higher risk to one patient over another. The current clinical

practice employs scoring cards such as the early warning score

(EWS), which assigns a single score to a few chosen variables

which together add up to a warning score (35). For these types

of methods, determining the relevance of each variable is rather

straightforward. However, when using more complicated

methods, the influence of a single variable could be dependent

on one or multiple other variables. This becomes even more

complex when employing models containing hidden parameters

such as hidden Markov models or (deep) neural networks. These

parameters indirectly influence the input or output variables,

instead of individual variables. Although these methods are

becoming more commonly used because they can achieve higher

performance when dealing with complex problems they

inherently suffer from a lack of interpretability (22).

The primary problems created by the black-box nature of

machine learning are mistrust and the lack of insight in the cases

the model breaks down. A clinician will need to trust blindly

that the algorithm will give accurate results since reasoning how

the algorithm came to a specific conclusion is difficult. There are

interpretation methods that aim at achieving explainable AI (29,

30). In general, these methods are subdivided into global or local

interpretations. Global methods attempt to explain the general

behavior of the model by observing distributions or determining

the influence of features on the overall performance. Local

methods attempt to interpret how features affect individual

predictions. However, these algorithms do not answer the

question of why the relevant features influence the outcome.

That is where clinical interpretation remains key. For (deep)

neural networks, other interpretation methods are required since

the input data is often raw data instead of engineered features.

These interpretation methods work by determining the features

that the network encodes in the latent space, finding the relevant

raw data (attention maps), or making small changes in the raw

data until the model breaks (31). These methods are especially

useful for highlighting important artifacts in the raw data.
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Nevertheless, algorithms utilizing machine learning will still need

to be tested rigorously to eliminate any form of bias.

The best practice would be for every hospital to test an

algorithm on their specific hospital population before deciding to

implement it in clinical practice. The resulting performance will

be an indication of how reliable this algorithm could be in a

real-world pilot. However, performance should not be the only

metric to judge risk prediction algorithms. A more important

metric for risk prediction algorithms or, more in general, for

clinical decision support systems is the clinical outcome.

Evaluating clinical outcomes is, however, more challenging, as it

requires the design of a prospective study that employs a

randomized control trial to assign patients in a case group, for

which the algorithm is used for the clinical decision-making, and

a control group for which standard clinical practice is used. If a

significant improvement in the clinical outcome can be shown by

using AI, the acceptance of AI algorithm could greatly improve.

6 Clinical translation

Successful implementation of validated medical prediction

algorithms into healthcare environments requires more than

just technical functionality. Beyond the algorithms’ accuracy

and performance, these implementations involve an array of

considerations, spanning ethical, clinical, societal, and

organizational facets.

From a clinical standpoint, the adoption of AI tools involves

thoughtful integration into existing healthcare workflows. Health

professionals must be trained not only in the use of such tools, but

also in the interpretation of the algorithm’s outputs, considering

the potential for nuanced clinical situations that may require

human intervention. Such implementation may necessitate the

development of new clinical protocols, in which AI tools are

integrated into decision-making processes, while still retaining a

space for the clinician’s judgment. Studies by Escobar et al., Kollef

et al., and Evans et al. show how automated early warning scores

can be integrated into rapid response team (RRT) alerts (8, 32, 33).

The authors employed a nurse who would transfer actionable data

to RRTs based on alerts by an automated early warning score.

These kinds of integrations ensure that the AI is leveraged as an

aid, not as a replacement for human expertise. Moreover, seamless

integration should account for data security, privacy, and

interoperability with existing systems, given the highly sensitive

nature of healthcare data. These aspects are key to building trust

with clinicians and patients alike and to compliance with various

data protection regulations. Additionally, it is important that these

algorithms are not a burden on the medical staff, for example by

further increasing alarm fatigue. In the abovementioned studies,

this was achieved by setting the thresholds of alarms at a rate that

was deemed acceptable for the nursing staff.

Another important aspect of clinical translation is trust in the

algorithms. Often transparency of the algorithm is brought up as a

way to increase trust in AI algorithms. However, transparency in

complex algorithms often comes at the cost of simplification, which

could hurt performance and thereby create a false form of trust.

Instead, we should aim at rigorous testing of AI algorithms, before

implementation. Similar to how drugs with unknown mechanisms of

action are still used in clinical practice after thorough investigation (36).

The adoption of AI tools in healthcare may also raise questions

about the potential deskilling of healthcare practitioners (37). If AI

algorithms are increasingly used to carry out diagnostic or

prognostic tasks, it is possible that clinicians’ skills in these areas

might diminish over time. There is also the risk that over-reliance

on AI tools may lead to complacency, causing clinicians to overlook

or misinterpret signs that the AI might miss. It therefore seems

important that training for healthcare professionals emphasizes the

continued importance of their own judgment and clinical skills.

Finally, evaluation processes must be put in place to assess the

real-world effectiveness and utility of AI tools post-implementation.

This involves regular review and iteration of the algorithms,

addressing any discovered biases or inconsistencies, and assessing

user satisfaction and overall system impact. These reviews will

ensure that AI prediction tools remain clinically relevant, ethically

sound, and beneficial to both patients and healthcare practitioners.

AI regulation in healthcare is an evolving landscape, largely

focusing on privacy, data protection, and the safety of AI systems.

Regulatory frameworks like the Health Insurance Portability and

Accountability Act in the U.S. and the General Data Protection

Regulation and AI Act in the E.U. provide guidelines for legally

compliant deployment of AI. However, as these regulations were

not initially designed for AI in medicine, their adequacy for AI-

driven healthcare solutions is subject to ongoing discussions (38).

Moreover, the increasing prevalence of AI in healthcare prompts

considerations around accountability for AI errors, transparency of

its operations, potential algorithmic biases, and implications for

patient consent and autonomy. Policymakers worldwide should

address these unique challenges of AI through adjustments to

existing laws or the formulation of new ones, aiming for a balanced

approach that promotes innovation, builds trust, safeguards patient

rights, and ensures the safe and effective use of AI in healthcare.

7 Limitations

This review has several limitations. Its brevity restricts in-depth

exploration of technical or ethical nuances, and it does not

extensively address unique challenges of specific AI approaches,

such as large language models (LLMs) or deep learning. Due to

the limited scope, the discussion is not exhaustive but aims to

highlight significant areas for further exploration. Additionally,

while ethical and regulatory considerations are highlighted,

practical guidance on navigating these issues is limited.

8 Conclusion

The implementation of AI for predicting adverse events in

healthcare is a complex endeavor that demands meticulous attention

to data quality, preprocessing, model training, interpretability, and

ethical considerations. Clarity on the populations used in the

development of AI-driven tools can expose certain biases and proper
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use of regularization techniques can improve the generalizability of

CDS algorithms outside their original population. Rigorous testing

of these tools before implementation is required to build trust. In

this regard, black-box AI algorithms can be treated the same as

drugs with unknown mechanisms of action, as both require

randomized controlled trials to ensure that their use achieves the

desired effect. Implementation will also require the training of

healthcare professionals not only to ensure the effective use of the

algorithms but also to prevent deskilling. Addressing these

challenges is essential to realizing the transformative potential of AI

while ensuring its responsible and trustworthy integration into

clinical decision-making processes.
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