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The integration of artificial intelligence (AI) and machine learning (ML) into

wearable sensor technologies has substantially advanced health data science,

enabling continuous monitoring, personalised interventions, and predictive

analytics. However, the fast advancement of these technologies has raised

critical ethical and regulatory concerns, particularly around data privacy,

algorithmic bias, informed consent, and the opacity of automated decision-

making. This study undertakes a systematic examination of these challenges,

highlighting the risks posed by unregulated data aggregation, biased model

training, and inadequate transparency in AI-powered health applications.

Through an analysis of current privacy frameworks and empirical assessment

of publicly available datasets, the study identifies significant disparities in

model performance across demographic groups and exposes vulnerabilities in

both technical design and ethical governance. To address these issues, this

article introduces a data-driven methodological framework that embeds

transparency, accountability, and regulatory alignment across all stages of AI

development. The framework operationalises ethical principles through

concrete mechanisms, including explainable AI, bias mitigation techniques,

and consent-aware data processing pipelines, while aligning with legal

standards such as the GDPR, the UK Data Protection Act, and the EU AI Act.

By incorporating transparency as a structural and procedural requirement, the

framework presented in this article offers a replicable model for the

responsible development of AI systems in wearable healthcare. In doing so,

the study advocates for a regulatory paradigm that balances technological

innovation with the protection of individual rights, fostering fair, secure, and

trustworthy AI-driven health monitoring.

KEYWORDS

wearable technology, artificial intelligence, machine learning, data privacy, ethical
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1 Introduction

The proliferation of devices capable of continuous physiological monitoring, ranging

from consumer-grade smartwatches to clinically validated biosensors, has enabled the

capture of vast volumes of personal health data at an unprecedented scale and temporal

resolution. When analysed through advanced algorithmic techniques, these data streams

offer considerable promise in advancing diagnostic accuracy, facilitating personalised

interventions, and supporting population-level health insights.

Yet the very features that render these systems powerful also give rise to a complex set

of ethical, legal, and epistemological challenges. The passive and pervasive nature of data

collection, the opacity of model inference, and the risk of algorithmic discrimination all
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call into question the adequacy of existing regulatory frameworks.

In particular, the conflation of technical sophistication with

clinical utility has, in some cases, obscured the normative

dimensions of automated health decision-making. This is

especially pertinent where decisions are derived from models that

are neither explainable to end-users nor fully auditable by

developers, thereby eroding the conditions necessary for trust,

autonomy, and accountability. This raises many ethical issues on

data privacy, consent, bias and fairness, security vulnerabilities

(1), and poses significant risks if misused or inadequately

protected (2).

A growing body of scholarship has articulated the need for

ethical and regulatory reform in this domain. However, much of

the discourse remains either abstractly principled or overly

reactive to high-profile failures. What remains underdeveloped is

a systematic, implementable framework that aligns the

affordances of data-driven methodologies with the imperatives of

transparency, fairness, and regulatory compliance, particularly in

the context of wearable systems operating in health-

sensitive environments.

This article seeks to address that gap. It offers a critical

examination of the ethical tensions inherent in AI-enabled

wearables and introduces a new methodological framework

that operationalises core principles of responsible AI. By

embedding transparency and accountability throughout the

data lifecycle, from collection and preprocessing to

modelling and deployment, the framework provides a

normative and technical structure for aligning innovation

with public values. In doing so, this study contributes to the

field of health informatics but also to the broader discourse

on the governance of emerging technologies in data-

rich societies.

2 Wearable sensors and the
importance of ethics and privacy in the
AI and ML algorithms

Wearable sensors and smart devices have become

increasingly popular and are integral to personal data

collection (3). These devices monitor our health metrics (4),

behavioural patterns (5), and location in real-time (6). As

these devices become more interconnected with AI and ML

systems (7), the implications for privacy and ethics increase

(8). Wearable sensors collect a vast amount of personal data,

which can be helpful for personal health and productivity (9).

However, when fed into AI and ML algorithms, this data can

be used to profile individuals without explicit consent. This

can lead to invasive targeted advertising, increased insurance

premiums based on health data, or even surveillance by

governments or companies.

AI and ML models often rely on large datasets to improve their

accuracy (10). An ethical concern arises when users don’t give

explicit, informed consent for their data to be used in such ways

(11). AI and ML algorithms, when trained on data from wearable

sensors, could inadvertently perpetuate or even exaggerate

societal biases (12). For instance, if a specific demographic

primarily uses wearables, algorithms could be biased towards that

demographic, leading to discrimination against underrepresented

groups (7, 11, 13, 14).

Integrating wearable sensors and AI systems presents an

attractive target for cyber-attacks (15). Personal data, especially

health data, is valuable (16). A breach violates individual privacy

and can lead to identity theft or financial loss (17). As wearable

sensors and AI systems advance, there is also a risk of reducing

human autonomy as individuals may become too reliant on

these systems (3). This over-reliance on algorithms could lead to

a scenario where people are consistently guided by what the AI

thinks is best for them, potentially eroding human agency and

decision-making.

Figure 1 describes how wearable sensors are integral to the

broader conversation on ethics and privacy in AI and ML. The

potential risks involved in data collection and surveillance,

consent and awareness, bias and discrimination, data security

and breaches, and depersonalisation and autonomy must be

carefully considered to protect personal privacy and

independence while securing the benefits of these technologies.

Figure 1 presents a conceptual framework outlining key ethical

and privacy risks associated with AI and ML integration in

wearable sensor technologies. While the figure captures core

challenges, such as data collection risks, consent ambiguity,

algorithmic bias, and data breaches, it is important to foreground

the foundational role of transparency within this ecosystem.

Transparency can be seen as an auxiliary principle, but also as

an essential precondition for enabling accountability, user trust,

and regulatory compliance in AI systems. As articulated in

current literature on AI ethics discussed earlier in this section,

transparency allows stakeholders to understand how decisions are

made by AI models and is integral to mitigating harms

stemming from opaque algorithmic processes. Moreover,

transparency operates at the system design level ensuring

traceability and explainability, and at the user interface level,

where individuals must be able to interpret and challenge

automated decisions. These considerations provide the rationale

for incorporating transparency explicitly in any discussion of

ethical AI in wearables.

In Figure 1 it can be seen that transparency and control are

essential for AI models operating in the background (18), as they

can make decisions that profoundly affect individuals. Users have

a right to understand how these decisions are made and to have

control over their data (19). Therefore, companies developing

wearables interlinked with AI should prioritise transparent

operation and give users more granular control over their data

(20). While wearable sensors offer personalised healthcare,

convenience, and enhanced productivity (21), they also bring

ethical concerns, particularly when integrated with AI and ML

systems. The constant collection of data by these devices requires

transparency, and accountability needs to be regulated in terms

of ethics and privacy (22).

Transparency underpins the framework in Figure 1, and

informs the progression of ethical risk toward the final

mitigation. Transparency acts as a mediating construct that
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intersects with each identified risk, whether through clarifying data

flows, exposing algorithmic logic, or enabling consent to be

informed and revocable. Its omission as a discrete visual

element may inadvertently obscure its structural significance,

particularly in relation to established regulatory standards such

as the GDPR and the EU’s Ethics Guidelines for Trustworthy

AI, both of which cite transparency as a central principle.

Accordingly, the model should be interpreted with the

understanding that transparency is embedded throughout the

flow, guiding the operationalisation of ethical governance at

each stage. By expressing transparency as an embedded

principle and a regulatory imperative, the framework aligns

with international standards and supports business

transformation strategies that prioritise explainability, fairness,

and user empowerment.

3 Wearable sensors and health data
science

Wearable sensors like fitness trackers, smartwatches, and

medical devices are essential for collecting physiological signals

to assess health (3). These signals include heart rate, sleep

patterns, and more. Accelerometers in wearable devices measure

acceleration forces that help monitor physical activity, sleep

patterns, and more (21). In Figure 2, the process of integrating

wearable sensors into health data sciences is defined. This

relationship is then discussed in relation to validating datasets for

privacy, ethics, transparency, and accountability in AI systems for

wearable devices.

Figure 2 illustrates the technical process by which data from

wearable sensors is transformed into structured datasets for AI

and ML model development. This pipeline (comprising stages

of collection, cleaning, and analysis) is foundational for

developing predictive models in health data science. However,

transparency is a critical yet implicit element in this workflow,

one that requires explicit acknowledgment. The literature

emphasises that data provenance, preprocessing steps, and

model interpretability must be made transparent to ensure

reproducibility, trust, and compliance with regulatory

requirements (discussed in the review of literature). While the

US has taken more business and innovation friendly approach

(23) to AI ethics (24, 25), from the EU perspective,

transparency should be viewed not as a best practice but as a

regulatory obligation, mandated by frameworks such as the

EU/UK General Data Protection Regulation (GDPR) (26, 27)

and the AI Act (28, 29), which require that data subjects be

informed of how their data is processed and for what purpose.

FIGURE 1

The key risks involved in data collection and surveillance, consent and awareness, bias and discrimination, data security and breaches.
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In this context, transparency bridges the technical data pipeline

and the ethical imperatives that govern its application.

Figure 2 outlines the stages of data preparation with a visual or

textual representation of transparency, and its central role in

mediating each stage of the process. Without transparency, the

progression from raw sensor data to final analysis lacks the

traceability required by modern data governance standards. For

instance, under Article 5 of the GDPR, the principles of

lawfulness, fairness, and transparency require that data handling

processes be documented and communicated in an intelligible

form to end users. Similarly, the EU’s Ethics Guidelines for

Trustworthy AI identify transparency as one of seven key

requirements, insisting on traceable data flows and explainable

AI outputs. Therefore, Figure 2 should be interpreted with the

understanding that transparency is an embedded, cross-cutting

requirement that substantiates each phase of data handling and

model training. Its inclusion is not merely ethical, but

structurally necessary for regulatory compliance and public

accountability in health-focused AI systems. Figure 2 also defines

the process of validating datasets. One example of such a

validation dataset is the MobiFall (30) and MobiAct (31)

datasets, which contains accelerometery data from different real-

world scenarios. Before applying AI and ML algorithms, the data

collected from wearable sensors goes through three stages:

collecting, cleaning, and analysing. In the collection stage, raw

data is captured from the wearable devices. In the cleaning stage,

noise is removed, and missing values are filled. In the analysis

stage, data is structured for model training.

FIGURE 2

The interconnectedness of various wearable sensors and health data science components.
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Deep Learning models (32), especially Convolutional Neural

Networks (CNNs) (33), have efficiently processed sensor time-

series data. Apple’s smartwatch, for instance, uses complex

algorithms, probably deep learning models, for its heart rate

monitoring. Decision Trees and Random Forests are used for

pattern recognition in wearable sensor data. These algorithms

can be trained to detect abnormal patterns or behaviours.

Support Vector Machines (SVM) can classify data into different

categories, making them ideal for recognising different stages of

activities or health conditions (34). One specific dataset used in

this study as secondary data for this specific training and testing,

is the DeepDance dataset (35). Even when using secondary data,

ethical implications should be considered when using AI and ML

algorithms with wearable sensor data. First, it’s crucial to ensure

that AI models are trained on diverse datasets to prevent biases.

Wearable devices might yield skewed results if used in diverse

populations but trained in a homogenous group. For example, a

heart rate monitor might not be as accurate for individuals from

specific ethnic backgrounds if the validation dataset lacks diversity.

Second, end-users need to understand how their data is being

processed after the study is completed and their data is donated to

an open-source repository. Transparency ensures trust, and

accountability ensures there are mechanisms for redress if things

go wrong. Wearable sensors collect intimate health data, making

data encryption, anonymising datasets, and transparent data

usage policies paramount. Fitbit has faced scrutiny regarding user

data privacy concerns, which is an essential lesson for other

wearable tech producers to prioritise data protection. This opens

a new question on why we need ethics in AI systems (36).

4 Why ethics in AI?

Wearable sensors have experienced remarkable growth in

recent years due to the rise in consumer health awareness. These

devices collect vital health-related data, which can be used for

various purposes, such as monitoring health, tracking activities,

and predicting potential health issues. The first challenge with

wearable sensors is correctly collecting data. The data collected

could contain noise for various reasons, such as sensor

misplacement, faulty readings, etc. Data cleaning becomes crucial

to ensure the accuracy of any subsequent analysis.

Once the data is collected and cleaned, analysis is performed to

derive meaningful insights. Depending on the complexity of the

data, this involves using statistical methods, machine learning

algorithms, or even deep learning techniques. For wearable

sensor data, some popularly applied models include time-series

analysis, convolutional neural networks (CNN) (37), recurrent

neural networks (RNN) (38), random forests (39), and gradient-

boosted trees.

Accelerometers are standard in many wearable devices. They

help measure acceleration forces, which can be used to determine

speed, direction, and orientation. Validation datasets like

MobiAct (31) and UniMiB SHAR (40) commonly validate these

accelerometers. These datasets provide standardised data that can

be used to validate and calibrate accelerometer readings (41).

Devices like Fitbit and Apple Watch use AI models to track

heart rates, sleeping patterns, and other vital metrics, offering

insights to the users. Some advanced wearables can predict

potential health issues like cardiac arrests by analysing patterns

in data. The use of AI in wearable sensors has made it possible

to collect valuable data, make predictions, and provide

personalised insights to users, thereby revolutionising the health

and wellness industry.

Ethics in AI is essential as it significantly impacts our society

(42). Ethical considerations ensure that AI technologies are

developed and deployed responsibly, ensuring fairness,

accountability, and transparency (11). AI can have profound

societal implications, from job displacements due to automation

to biases in decision-making systems. Without ethical

considerations, AI can unintentionally reinforce societal

inequalities and prejudices.

There are real-world examples where the lack of ethics in AI

has caused harm (5), such as healthcare algorithms showing

racial bias, facial recognition misidentifications, and privacy

concerns with wearables (13). It is crucial to address ethical

concerns head-on to harness the technology’s full potential

without compromising individual rights or societal values (6),

especially as AI integrates more into healthcare and wearables.

5 Bias and fairness

Wearable sensors are electronic devices humans wear to

monitor physiological and movement data. Some examples of

wearable sensors are smartwatches like the Apple Watch and

Fitbit, specialised wearables such as glucose monitors, and bright

clothing embedded with sensors. In health data science, wearable

sensors provide real-time and continuous data streams that can

be used for various purposes, such as disease prediction and

prevention, fitness and rehabilitation monitoring, sleep pattern

analyses, and stress and mental health assessments.

Accelerometers are an essential component of many wearables,

measuring movement data. However, accelerometer data needs to

be validated to ensure reliability and interpretability. Researchers

often use datasets like MobiAct and UniMiB SHAR to validate

accelerometer data, which consist of annotated activities

performed by participants. This allows researchers to correlate

accelerometer readings with known actions.

Collecting, cleaning, and analysing wearable sensor validation

datasets involves several steps. Firstly, data is collected from

participants wearing the sensors during predefined activities.

Then, smoothing, normalisation, and filtering are applied to

ensure data quality. Finally, machine learning algorithms such as

decision trees, random forests, and deep learning models are

used in these datasets to predict and categorise user activities.

Bias in AI refers to systematic and non-random errors in

predictions or decisions made by ML models. Biases can arise

from various sources and inadvertently result in unfair or

discriminatory outcomes (43). There are two types of bias: data

bias and algorithmic bias. Data bias occurs when the training

data does not adequately represent the population, resulting in
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skewed predictions. For instance, a wearable training dataset that

primarily includes data from younger adults might perform less

accurately for older populations. Algorithmic bias occurs when

an algorithm’s design or structure can introduce bias. A health

tracking algorithm optimised for a specific demographic might

perform differently for another.

Real-world examples of bias in wearables include heart rate

monitoring bias and gender differences in caloric estimation.

Wearables may be biased in their predictions due to differences

in skin tone or basal metabolic rate, which can lead to

discriminatory outcomes.

6 Consequences of bias

Wearable sensors are devices worn on the wrist, such as

watches or patches, that continuously collect health metrics such

as heart rate, body temperature, and movement patterns. They

have been instrumental in remote patient monitoring, physical

fitness assessment, and even diagnosing and predicting ailments.

Accelerometers are critical components in wearables that

measure physical activity levels. Validating their readings is

crucial to ensuring the reliability of the data collected. Therefore,

it is imperative to have dependable datasets for

validating accelerometers.

The NHANES datasets (41), developed by the National Health

and Nutrition Examination Survey, is a comprehensive dataset

commonly used for validating wearable sensor readings. This

dataset contains accelerometer data and various health metrics,

which help researchers compare and refine the accuracy of

wearable sensor readings. Collecting, cleaning, and analysing

wearable sensor data involves several steps. Collecting raw data

from wearable sensors, especially from accelerometers, can be

challenging due to the noise in the data. Strategies such as

providing user guidelines for proper wear or redundant sensors

are used to ensure consistent and reliable readings. Data cleaning

is an important step that involves filtering out noise, addressing

missing values, and rectifying inconsistent readings. Techniques

like interpolation, outlier detection, or algorithms like Kalman

filters are employed. The cleaned data is then analysed using

machine learning models like Random Forest, Gradient Boosting

Machines, or Neural Networks. These models help segment data,

understand patterns, or predict health outcomes based on

wearable sensor data, which are the consequences of bias in

wearable AI (9).

Addressing biases in wearable AI systems to ensure accuracy,

inclusivity, and fairness in health data science is important.

Biases in datasets can cause wearables to be less accurate for

certain groups, such as those outside of the age or ethnicity

predominantly used in training datasets. For instance, facial

recognition wearables have been known to misidentify

individuals from certain ethnic backgrounds due to biases in

training datasets. Biases can also lead to misrepresentation, such

as an AI system trained predominantly on data from athletic

individuals misrepresenting the health metrics of non-athletes.

To address these biases, diverse data collection is crucial to

ensure that datasets include a variety of individuals in terms of

age, gender, ethnicity, and health status. Additionally, machine

learning techniques like adversarial training or re-sampling

methods can help detect and counteract biases in training data.

Manufacturers and researchers should also be transparent about

potential limitations or biases in wearable devices to ensure

transparent reporting.

7 Case study on bias

Wearable sensors are widely accepted as tools for continuous

monitoring, providing valuable insights into an individual’s

health. These devices come in various forms, such as watches,

bracelets, or patches, and can track several physiological

parameters, such as heart rate, temperature, and motion.

One core component of many wearable devices is the

accelerometer. It measures movement patterns, which can be

interpreted for various health-related metrics. These metrics can

validate datasets and provide additional insights into an

individual’s health. Analysing these datasets with AI and

ML’s help can lead to transformative possibilities in health

data science.

Specific Datasets:

• MobiAct (31): A dataset that contains various activities

performed by different age groups, making it diverse and

suitable for a wide range of wearable application tests.

• UCI Human Activity Recognition Using Smartphones Dataset

(44, 45): Features recordings of 30 subjects performing

activities of daily living (ADL) while carrying a waist-mounted

smartphone with embedded inertial sensors.

• WISDM (Wireless Sensor Data Mining) (46): Contains data

from smartphone sensors, detailing activities like walking,

jogging, standing, sitting, and more.

• HHAR (Heterogeneity Human Activity Recognition) (47, 48):

This dataset includes smartphone and smartwatches data, with

nine different activities being recognised.

• PAMAP2 Physical Activity Monitoring (49, 50): A dataset

containing data from wearable sensors placed on different

body parts. It records activities like walking, running,

cycling, etc.

• Daphnet Freezing of Gait (51): Specifically designed for patients

with Parkinson’s Disease, this dataset collects data to recognise

the “freezing” event in their gait.

• Actitracker (52–54): Collected from smartphone sensors, this

dataset recognises six primary actions: jogging, walking,

ascending stairs, descending stairs, sitting, and standing.

• Daily and Sports Activities (55, 56): This dataset captures 19

daily and sports activities using nine embedded sensors in a

wireless body area network.

• Smartphone Dataset for Human Activity Recognition (HAR) in

Ambient Assisted Living (AAL) (57): Focuses on indoor and

outdoor activities using smartphone sensors.
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• Opportunity Activity Recognition (58, 59): This dataset

recognises human activities and their contextual aspects

captured from various sensors placed around the body.

• CASAS (60): A multi-modal dataset for human activity

recognition using smart home technologies.

• MSR Daily Activity 3D (61): This dataset uses depth maps

captured from a depth camera, focusing on the daily activities

of individuals.

• REALDISP Activity Recognition Dataset (62): It emphasises

activity recognition using several sensors and realistic

scenarios, emphasising the diversity of human actions.

Multidimensional process must be followed to prepare data from

wearable sensors for AI models, which involves collecting,

cleaning, and analysing the data (12). Each stage is critical in

ensuring the quality and reliability of the model’s predictions.

Firstly, collecting data from wearable devices involves using APIs

and SDKs or transmitting data wirelessly via Bluetooth, NFC, or

Wi-Fi to a connected device or cloud storage. This process

requires establishing a connection with the wearable device and

requesting the desired data type before streaming or batch

downloading it. Secondly, cleaning the collected data is essential

because it can be messy due to device limitations, human errors,

or external interference. This process involves filtering out noise

and removing data points that don’t meet certain quality criteria,

such as outliers or missing data points. After cleaning the data,

the next step is to analyse it using statistical methods or

visualisations to identify patterns and trends. This analysis helps

to uncover insights that can be used to train AI models for

various wearable sensor applications and research angles.

Preparing wearable sensor data for AI models to achieve

accurate and reliable predictions is important. A clear and

concise flow of ideas is essential for effective communication.

This involves organising the ideas logically, transitioning

smoothly between sentences and paragraphs, and presenting the

main ideas in a logical order. Transitional words and phrases can

also help establish a smooth flow of ideas. To achieve this, it is

important to plan and organise the content beforehand and

revise and edit the text to ensure clarity and concision. If the

data is transformed into image-like structures, we can use CNN

models, for validation of the model on the test set, fine-tuning

hyperparameters. Once we have verified the model’s accuracy, we

can deploy it for real-time analysis or batch processing of new

data. By following these steps, researchers and developers can

ensure the highest quality data interpretation, maximising the

potential benefits of wearable sensors when combined with

AI techniques.

7.1 Artificial intelligence and machine
learning in wearable data processing

Machine learning models, particularly deep learning models

such as CNNs and Recurrent Neural Networks (RNNs), are

highly effective in processing time-series data typical in

wearables. For instance, a study (63) used CNNs to categorise six

different activities (walking, walking upstairs, walking downstairs,

sitting, standing, and lying down) based on accelerometer and

gyroscope data from smartphones, obtained from the UCI

datasets (44, 49, 51, 55, 57, 58, 62).

However, biased data, particularly in health, can have serious

consequences. For instance, suppose a hypothetical wearable was

designed to monitor heart rates and predict heart diseases. If

most initial training data was collected from a single ethnic

group, the device might not accurately predict diseases for

individuals outside that group. Such biases can arise from

disparities in data collection, which can result in potential

misdiagnoses or even missed diagnoses.

For example, if a wearable activity tracker shows varying

accuracy levels between males and females, this could mean that

the device is better calibrated for male users, meaning female

users received less accurate health insights. This disparity could

have arisen from an unrepresentative dataset during the device’s

calibration phase. Integrating wearable sensors and AI has

significant potential for health data science. However, it is crucial

to ensure that the datasets used are comprehensive,

representative, and unbiased. Proper validation, continuous

feedback, and inclusive design principles are essential to realising

the full potential of this synergy.

8 How to address bias

Wearable sensors are devices such as fitness trackers,

smartwatches, and smart clothing equipped with sensors that

measure vital signs, physical activity, and other health-related

metrics. Health data science is the intersection of data science

and healthcare, focused on analysing health data to improve

patient outcomes, optimise treatments, and reduce healthcare

costs. For example, the Apple Watch uses green LED lights

paired with light-sensitive photodiodes to detect the amount of

blood flowing through the wrist at any given moment. This data

is then processed to determine the heart rate.

Accelerometers are common components in wearable sensors

used to measure movement and activity. Validating the accuracy

of these sensors is crucial. Several publicly available datasets are

used for accelerometer validation, including the MobiAct Dataset

(31), which contains accelerometer data from smartphone

sensors focused on human activity recognition, and the UCI

HAR Datasets (40, 44–47, 57), collected from subjects

performing activities of daily living (ADL) with a smartphone on

their waist. Fitbit devices use accelerometers to track steps and

activity levels, which feed into the device’s algorithms to provide

feedback and insights about the user’s physical activity.

Biases can affect the data collection process, and the AI models

generated, resulting in unfair or skewed outcomes. Therefore, it is

crucial to identify and address any biases in both the data and

algorithms. By doing so, wearable sensors and AI can offer

unparalleled opportunities to predict, monitor, and improve

people’s health and well-being.

Several methods can be employed to ensure fairness in AI

(64, 65). Firstly, it is essential to ensure that diverse participants
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are avoided, and that age, gender, ethnicity, and other biases are

avoided during data collection. Secondly, the AI models should

not propagate or amplify existing biases. Techniques like re-

weighting training data, adversarial training, and fairness

constraints can help to ensure algorithmic fairness. Lastly, regular

audits of AI models can help detect, measure, and correct biases.

Tools like Fairness Indicators can assist in evaluating the model’s

fairness metrics. For instance, in 2019, a study found gender and

skin-type bias in commercial AI systems for analysing human

emotions, indicating the need for improved fairness in

these models.

The integration of wearable sensors and AI methods holds

tremendous potential for healthcare. However, this potential can

only be realised if the technology is accurate, reliable, and

unbiased. By consistently collecting and validating data and

conducting regular audits, we can harness the full power of this

combination for the benefit of all.

To achieve this goal, manufacturers of wearable sensors must

collaborate with AI researchers to ensure better integration and

analysis. Establishing universal data collection and validation

standards is crucial to ensure consistency. Continuous research

and development are necessary to address biases in AI models

effectively. We can only realise the full potential of wearable

sensors and AI in healthcare.

9 Transparency and accountability

Wearable sensors are electronic devices embedded in watches,

bands, and clothing. They can monitor physiological signals such

as heart rate, temperature, and movement. With technological

advancements, wearable sensors have become more accurate and

efficient. Health data science is an interdisciplinary field that has

emerged with the growth of wearable sensors. It focuses on

extracting insights from complex and unstructured health data.

Various ML and AI techniques are extensively used to predict,

analyse, and understand health patterns derived from wearables.

During the COVID-19 pandemic, wearable sensors have been

instrumental in detecting early symptoms. Devices like the Oura

Ring have been utilised to monitor temperature fluctuations and

heart rate variability.

Accelerometers are integral components of many wearables

and are used to track movement and activity. Validating the data

produced by these sensors is essential for ensuring their

reliability. Several datasets have been created specifically for this

purpose, including the MobiAct Dataset, which recognises

human activities such as walking, jogging, sitting, etc. The UCI

HAR Dataset involves activities captured with a waist-mounted

smartphone containing accelerometer and gyroscope sensors. The

process of utilising wearable sensors and AI to gain insights into

human health involves collecting raw data from wearables,

cleaning it to remove noise and outliers, and then training AI

and ML models on these datasets.

For instance, Stanford University launched the Wearable

Health Lab in 2020, which uses algorithms to clean and pre-

process data from wearables to ensure accurate health insights.

Transparency is a critical aspect of AI (18) in which clarity and

openness of an AI system’s operations are essential. Transparency

helps to build trust (22, 66), and accountability and allows for

refinement of AI systems (17–20, 67–69).

Google’s DeepMind’s AI for diabetic retinopathy detection is

an excellent example of transparent operations. By making their

algorithms transparent, doctors could trust and understand the

diagnostic decisions made by the AI.

10 What is accountability?

Accountability in healthcare is regulated by national agencies,

e.g., in the US, is HIPPA (70). However, since some of these

regulations were created (e.g., the Health Insurance Portability

and Accountability Act of 1996) healthcare services started

integrating wearable sensors are devices designed to monitor and

collect data about a user’s physiological or environmental

conditions. These sensors have become more popular, especially

in the health and fitness sectors. Wearable sensors for health

data science involve using technology to collect, process, and

interpret health-related data. This data may include vital signs,

activity levels, or environmental factors that could affect health.

Accelerometers are essential components in many wearables as

they register physical activity, and ensuring data accuracy is crucial.

Most wearable devices use accelerometers to capture motion-based

data. These sensors detect changes in acceleration and can help

deduce patterns of activity. Raw data from accelerometers often

contains noise or irrelevant data points. Cleaning involves

removing anomalies, while analysis transforms raw data into

actionable insights, such as differentiating between walking,

running, or sleeping. AI is also used for analysing large and

complex datasets from wearable sensors. Specific models and

techniques aid in data interpretation and decision-making.

Neural Networks, especially recurrent networks (such as LSTM),

are adept at processing time series data, which is abundant in

wearable sensors. Decision trees are often used for classification

tasks, such as discerning between different types of activities

based on sensor data. Clustering Algorithms can be employed to

identify patterns or groupings in large datasets, potentially

uncovering health trends or anomalies.

Therefore, accountability in the context of AI refers to the

responsibility to justify and explain AI systems’ decisions (19). It

is focused on ensuring transparency, fairness, and ethical use of

AI in health wearables (65).

The following parties are accountable for ensuring ethical and

responsible use of AI in health wearables:

1. Developers: AI model developers must ensure their models are

designed fairly and ethically.

2. Manufacturers: Wearable manufacturers should ensure that

their sensor data collection is accurate, and their AI

processing is transparent.

3. Users: The onus is also on the users to use wearables

responsibly and understand the implications of their data use

and sharing.
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4. Regulatory Bodies: Governments and organisations may set

standards and regulations for AI’s ethical and responsible use

in wearable technology.

The confluence of wearable sensors and artificial intelligence has

opened a promising frontier, particularly in health data science.

Two examples of this being implemented in the real world

include Fitbit and Apple’s HealthKit.

Fitbit, a leading brand in wearable fitness trackers, processes

vast amounts of data it collects through neural network

architectures. This AI-driven analysis helps provide accurate

health metrics and insights to its users. Similarly, Apple’s

HealthKit emphasises user privacy, ensuring that data collected

by its wearable, Apple Watch, is stored securely. The onus is also

on app developers integrating with HealthKit to ensure they

follow Apple’s stringent privacy guidelines.

11 Case study on transparency and
accountability

Wearable sensors are devices people can wear to collect and

transmit data related to their health, motion, or environment.

These sensors can measure heart rate, body temperature, sleep

patterns, and steps taken. With the rise of health-conscious

consumers, there is a greater demand for devices that can

provide real-time health monitoring. An accelerometer is a

device used in wearable sensors to detect motion activities like

walking, running, or climbing. Validation datasets help ensure

that the data captured by the accelerometer is accurate and

reliable. By comparing the results from wearable sensors with

these datasets, manufacturers and health professionals can

ascertain the devices’ efficiency and reliability.

To collect data, raw data is acquired from wearable sensors,

often stored in a local or cloud database. Data collection

frequency and volume vary based on the device’s purpose. Data

cleaning is crucial to remove any anomalies or errors in the

collected data. Data cleaning tools and techniques can help

identify missing values, outliers, or incorrect data points that

may skew analysis results. Once the data is cleaned, it is analysed

using various algorithms and models. Artificial intelligence and

machine learning play a pivotal role at this stage, helping to

decipher patterns, anomalies, and insights from the data.

11.1 Artificial intelligence (AI) and machine
learning (ML) models

AI and ML models are designed to recognise patterns, make

decisions, and predict outcomes by learning from historical data.

As a result, wearable devices can perform advanced tasks such as

gait analysis, sleep pattern recognition, fall detection, and heart

rate variability prediction.

Neural Networks, for instance, are algorithms that function

similarly to the human brain. They can recognise patterns in

data and identify subtle changes that may indicate a potential

health problem. For example, a wearable device equipped with a

neural network algorithm can detect changes in gait and alert the

wearer of potential balance issues.

Decision Trees are another type of model used in wearable

technology. They are particularly useful in classifying physical

activities like running, walking, or cycling. By analysing data

from sensors such as accelerometers and gyroscopes, the decision

tree algorithm can accurately identify the type of activity the

wearer is engaged in.

Support Vector Machines (SVMs) are also widely used in

wearable technology to predict heart rate variability based on

historical data. SVMs can be employed for regression and

classification problems, making them a versatile model for

wearable devices.

AI and ML models have improved wearable technology’s

ability to provide personalised and accurate data. This, in turn,

has led to improved health and fitness outcomes for users. As

technology advances, we can expect AI and ML models to play

an increasingly important role in the development of

wearable technology.

11.2 Case study on transparency and
accountability: Fitbit’s data usage

Fitbit, a leading wearable device company, was scrutinised for

handling and using user data. With millions of users worldwide,

Fitbit collects enormous amounts of personal health data daily.

Concerns arose when it was revealed that user data might be

sold to third parties, posing privacy risks. To address these

concerns, Fitbit made efforts to be more transparent about its

data usage policies. They ensured users that their data would not

be sold for advertising purposes and implemented stricter data

protection measures, giving users more control over their data.

This case highlights the importance of transparency and

accountability when handling sensitive personal data. It

emphasises the need for wearable device companies to prioritise

user trust and data protection. Integrating wearable sensors and

artificial intelligence holds great promise for health data science.

However, as technology advances, ethical data usage and privacy

challenges arise. Ensuring transparency and accountability

becomes paramount to maintaining user trust and ensuring the

sustainable growth of this sector.

11.3 How to achieve transparency and
accountability

Wearable sensors are electronic devices worn on the body as

clothing or accessories. They are designed to measure specific

physiological or environmental parameters such as heart rate,

body temperature, or air quality. Health data science involves

dealing with the large volumes of health data generated by

wearable sensors. This data can provide invaluable insights into

individual and population health when processed and analysed

correctly. Accelerometers are among the most common wearable
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sensors. They measure acceleration forces and can infer movement

patterns. Validating accelerometer datasets against known

standards or ground truths is crucial to ensuring accuracy. Data

collected from wearables often contain noise due to sensor

misalignment, environmental factors, or system glitches. As a

result, it becomes crucial to clean the data before processing.

Once the data is cleaned, it can be processed using advanced

analytics techniques, especially AI, to derive meaningful insights.

For instance, Fitbit and Apple Watch use accelerometers to

track users’ physical activity levels. Combined with AI, these

devices can provide insights into a user’s health and fitness

journey. The integration of wearable sensors and AI has the

potential to revolutionise healthcare, fitness, and many other

sectors. However, as these technologies become more advanced,

there is a need to ensure transparency, accountability, and ethical

considerations. This is particularly important given the sensitive

nature of the data collected by wearables. Explainable AI (XAI) is

crucial to achieving transparency and accountability in AI (11).

XAI aims to make the decision-making processes of AI systems

understandable and interpretable by humans. This ensures that

the logic behind AI decisions is clear and transparent.

Additionally, regulatory oversight and transparent governance

must address ethical considerations and potential biases in AI

models, particularly in healthcare. This ensures that AI models

are trained on diverse datasets representative of the larger

population and that the decisions are ethically sound.

Specific AI and ML models are suitable for wearable sensor data.

CNN are perfect for accelerometer data because they suit time-series

and spatial hierarchies. RNN and Long Short-Term Memory

(LSTM) are designed to handle sequences, such as time-series data

from wearables. Decision Trees and Random Forests are useful in

making explicit decision paths, thus increasing transparency.

For example, using AI to predict cardiac events from wearable

sensor data should be accurate and explainable. If a prediction is

made, doctors, patients, and other stakeholders should

understand the basis of that prediction, ensuring trust in the

system. AI-driven solutions using wearable sensor data can be

powerful and trustworthy if they implement explainable AI

techniques and robust regulatory frameworks.

12 Privacy and data protection

Wearable and devices continuously monitor physiological and

environmental parameters. They are portable and easy to use,

making them popular among the public and the medical

community. Health data science integrates techniques from

statistics, computer science, and information theory to extract

meaningful patterns from large datasets. These patterns can be

used for early disease detection, fitness monitoring, or

personalised medical treatments.

Privacy is essential in the context of wearable sensors. It refers

to the right of individuals to keep their personal data and

information secret and free from unauthorised access. Protecting

privacy and confidentiality is critical as wearable devices capture

sensitive information about an individual’s health. It is essential

to obtain user consent and make them aware of what their data

will be used for. Organisations mishandling personal data can

face severe penalties under laws like the General Data Protection

Regulation (GDPR) (26, 27, 71–73).

Anonymising data doesn’t always guarantee privacy (74), as AI

techniques can sometimes reverse-engineer and identify

individuals. Additionally, AI models, especially deep neural

networks, are often seen as “black boxes.” This means that if

these models are making healthcare decisions based on wearable

sensor data, users must understand how these decisions are made.

Real-world examples of wearable sensor technology include the

Apple Watch, which uses its built-in sensors to monitor heart

rhythms and has an ECG app. While it has alerted users to

potential health issues, it has also raised privacy concerns, given

the intimate nature of the data collected. Fitbit is another

example that collects data on steps, sleep, and other health

metrics. The company’s privacy policy indicates that it uses this

data for targeted advertising, raising user concerns.

13 Data protection laws

AI and ML models are particularly effective in handling time-

series data generally produced by wearable devices. Before applying

AI, wearable data often needs noise reduction, normalisation, and

imputation of missing values. Tools like pandas in Python provide

capabilities for these tasks.

Specific datasets are commonly used for wearable sensor data

analysis, e.g., MobiAct for activity recognition, UCI Human

Activity Recognition Using Smartphones dataset for performing

activities like walking and sitting while wearing a smartphone.

These datasets provides both raw and pre-processed

accelerometer data. Real-world examples of wearable sensor data

analysis include the Apple Watch’s fall detection feature, which

uses accelerometer and gyroscope data to detect a hard fall and

automatically alert emergency services if the wearer is

unresponsive. Fitbit uses accelerometer data, along with other

sensors, to detect sleep patterns, durations, and disturbances.

This provides users with insights into their sleep health.

AI and ML have shown great potential in wearable sensor data

analysis, and various models and techniques are available for

handling different types of data. With the help of specific

datasets and real-world examples, wearable devices can provide

valuable insights into personal health and well-being.

Data Protection and Regulations are crucial in the field of

wearable technology. The GDPR (26, 27) and the CCPA (75) are

important regulations that emphasise users’ rights over personal

data. The GDPR (26, 27) is a regulation in the EU that requires

wearable manufacturers and health data processors in the EU or

serving EU residents to ensure strict adherence to users’ rights

over their personal data. The CCPA, on the other hand, is like

GDPR but is specifically for California residents. It gives

California consumers rights over their personal data, including

knowing how it is used and the ability to opt out of data sales.

In Figure 3, the fundamental principles of all standards and

regulations discussed in this article are aligned with a universal and
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standardised approach for ethical AI development. This discussion is

expanded into a new regulatory framework model with specific steps

to ensure compliance with national and international regulatory

frameworks, that guide responsible AI development.

Figure 3 presents a new model for the compliant development

of private, responsible, and ethical AI in the context of wearable

health technologies. This model outlines a stepwise progression

through key development phases aimed at embedding regulatory

FIGURE 3

New model for compliant development of private, responsible and ethical AI.
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alignment and ethical safeguards. The figure captures the procedural

logic of regulatory compliance, to identify transparency as a discrete

component of critical importance to each stage of ethical AI

development. Transparency is a cornerstone of regulatory

frameworks such as the GDPR (26, 71–74), the UK Data

Protection Act (27), and the EU AI Act (28, 29), which all

mandate clear documentation of data usage, explainability of

algorithmic outputs, and auditability of automated decision

systems. Without this, the claims of ethical compliance remain

procedurally incomplete. Therefore, transparency must be

recognised as both a transversal principle and a procedural

requirement that legitimises each phase of the model.

Figure 3, presents a new model for ethical AI development.

Given the sensitive nature of health data collected by wearables,

adherence to GDPR, CCPA, and other regional regulations is

paramount. The model and the process described in the Figure 3

are discussed in the context of protecting privacy.

Transparency undergirds the entire framework in Figure 3, and

is indispensable to achieving the outcomes described in the model’s

final step: responsible and ethical AI. In particular, the steps toward

compliance assume the existence of traceable data pathways,

explainable algorithmic behaviour, and the ability to demonstrate

adherence to user rights and accountability mechanisms. These

assumptions mirror the obligations set out in Articles 13–15 of the

GDPR (26, 27), which compel data controllers to provide

individuals with meaningful information about automated

decisions and their underlying logic. Moreover, the Ethics

Guidelines for Trustworthy AI (42) explicitly identify transparency

(including traceability, explainability, and communication) as a

prerequisite for trust. Accordingly, any operationalisation of the

model must embed transparency at each phase, not as a passive

backdrop but as an active design principle. Without it, claims of

ethical conformity lack verifiability and risk non-compliance with

legal and normative standards governing AI systems in healthcare.

14 How to protect privacy

Popular datasets such as the Human Activity Recognition

Using Smartphones Data Set (40, 44, 45), WISDM (Wireless

Sensor Data Mining) (46, 54), and the Actitracker Dataset (52,

54), use a standard data privacy process. The data pipeline

typically follows these stages: data collection, data cleaning, and

analysis. Sensors continuously collect data about users, which is

then cleaned using noise reduction techniques such as the

Kalman or Low-pass filters. Outliers and irrelevant data points

are removed, and ML models are used to categorise activities

or detect anomalies. The question is, how is this process

protecting privacy?

Anonymisation is a technique that modifies personal data so

individuals cannot be easily identified. Some of the methods used

in anonymisation are data masking, which replaces the original

data with modified content (for example, “XXXX-1234” for a

credit card number), generalisation, which reports age ranges

instead of exact ages, and noise addition, which introduces

random data to sensitive data points.

Secure data storage and transmission are also essential to ensure

privacy and security. Data encryption is a technique used to

transform data into an unreadable format unless decrypted with a

key. AES (76) and RSA (77) are common encryption standards.

Secure Socket Layer (SSL)/ Transport Layer Security (TLS) is

another technique that ensures secure data transfer over networks.

Also, blockchain technology is used for tamper-proof and

decentralised data storage. Privacy in the data pipeline is also

dependent on the methodology used to process and analyse the data.

15 Discussion on data-driven
methodologies

Data-driven methodologies have become increasingly popular

for extracting meaningful insights from large datasets. Wearable

sensors have emerged as one of the most useful data sources,

particularly in healthcare, fitness, and lifestyle areas. These

sensors offer unique applications and data that can be used to

gain valuable insights into various aspects of an individual’s life.

Figure 4 presents a data-driven methodology pipeline for

developing AI systems in wearable health technologies. The figure

maps the end-to-end technical workflow (beginning with sensor

data acquisition and ending with system deployment) while

integrating ethical governance mechanisms across each phase. One

key theme underpinning this pipeline is transparency, which,

although embedded within the structure of the diagram, merits

explicit discussion due to its foundational role in ensuring

explainability, user trust, and regulatory compliance. As the review

of recent literature on AI ethics (in earlier sections) has shown,

transparency is a critical mechanism that enables traceability,

enables informed consent, and reduces the opacity of algorithmic

decision-making. Its inclusion as a horizontal, cross-cutting

governance layer in the pipeline reflects its pervasive influence

across data processing, modelling, and regulatory auditing activities.

In Figure 4, time-series analysis is one of the most popular data-

driven methodologies (78, 79), for wearable sensors (80). This

involves analysing continuous signals from wearables (81), like

heart rate or step count over time. Time-series analysis can monitor

a person’s overall health, sleep patterns, or physical activity levels.

Additionally, anomaly detection can detect abnormal patterns in

heart rate, skin temperature, or other vital signs that may alert

users or healthcare professionals to potential health issues. Pattern

recognition and machine learning are other data-driven

methodologies used with wearables. This approach recognises

specific activities or movements, such as differentiating between

walking, running, or cycling, using data from an accelerometer.

Deep learning, especially CNN (37), processes and analyses

multivariate time-series data, such as ECG signals (82), for detailed

insights and predictions. Feature engineering and extraction (83) is

a methodology (84, 85), used to transform raw data from sensors

like accelerometers or gyroscopes into meaningful metrics like

“steps taken” or “calories burned.” Predictive modelling is another

methodology used to predict health events or outcomes, such as the

risk of falling for elderly individuals, based on gait data.
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Building upon these elements, in Figure 4, signal processing is

another useful methodology that involves cleaning and enhancing

sensor signals. This is used extensively in ECG, EMG, and EEG

wearables to remove noise. Cluster analysis is a methodology

used to group individuals based on their behaviour or health

metrics, such as categorising sleep patterns. Finally, data fusion

and multi-sensor integration combine data from multiple

wearables or sensors to get a comprehensive view. For instance,

using heart rate and GPS data to monitor an athlete’s

performance over varied terrains. Adding to this, applications of

wearable sensors and data-driven methodologies constantly

expand, leading to interdisciplinary collaborations between

medicine, sports science, psychology, and engineering. This

collaboration promises to bring more personalised and precise

interventions in the future. Some useful wearable technology

applications include biofeedback mechanisms, geospatial analysis,

FIGURE 4

A structured framework for developing AI models in wearable health systems using data-driven methodologies.
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quantified self-movement, continuous monitoring and alerts, and

behavioural analytics. Biofeedback mechanisms provide real-time

feedback to users based on their physiological data and can guide

meditation or relaxation exercises based on real-time heart rate

variability. Geospatial analysis uses location data from wearables

with GPS capabilities to study movement patterns, monitor

outdoor activities, or even track disease spread in epidemiological

studies. The quantified self-movement empowers individuals to

monitor and analyse their personal data, from sleep cycles to

mood fluctuations, for self-improvement and wellness.

Another element in Figure 4 is continuous monitoring alerts,

which involve continuously tracking vital signs in at-risk patients.

The wearable device can alert the user or a medical professional

if certain predefined thresholds are breached. Behavioural

analytics aim to understand user behaviour patterns and can be

useful for personalised interventions or fitness recommendations.

Finally, data privacy and security mechanisms ensure that data

from wearables is securely stored and transmitted, given the

data’s personal and often sensitive nature.

While transparency is not isolated as a single terminal node in the

Figure 4, it acts as a connective tissue binding each layer of the

pipeline, from raw data handling to final deployment. The flow to

the bottom step “Deployment & Monitoring”, assumes that

upstream processes are explainable, documentable, and compliant

with legal mandates such as Articles 13–15 of the GDPR (26, 27),

which require data controllers to provide users with intelligible

information about automated processing. Furthermore, the Ethics

Guidelines for Trustworthy AI (42), and the UK’s Data Protection

Act (27) both frame transparency as a precondition for lawful, fair,

and accountable AI use. In this diagram, transparency is visualised

within the Ethical Governance Layer, highlighting its role in

aligning technical development with institutional accountability and

societal expectations. By explicitly situating transparency within this

framework, the model ensures that data-driven innovation is not

only methodologically robust but also normatively grounded.

16 Conclusion and future directions

This study has provided a detailed examination of the ethical,

privacy, and regulatory challenges arising from the integration of

AI and ML in wearable sensor technologies. The findings affirm

that while these technologies offer transformative benefits (such

as real-time health monitoring, predictive diagnostics, and

personalised care) they also introduce a new class of risks related

to algorithmic bias, data misuse, opaque decision-making, and

the erosion of user autonomy.

Throughout the investigation, I identified systemic gaps in

regulatory enforcement, inconsistencies in consent mechanisms,

and the disproportionate impact of biased datasets on

underrepresented populations. These issues are exacerbated by

the black-box nature of many deep learning models, which

hinders explainability and undermines user trust. Furthermore,

the pervasive collection of sensitive biometric and behavioural

data raises significant concerns around privacy, data sovereignty,

and long-term data stewardship.

In response to these challenges, this study has proposed a data-

driven methodological framework (outlined in Figure 4) that

explicitly embeds transparency, accountability, and regulatory

alignment across each phase of the AI development lifecycle.

Unlike previous conceptual models, this framework is built with

transparency as a technical and procedural necessity. It integrates

transparency into system design, from raw data collection to real-

world deployment, thereby operationalising legal obligations set

forth by instruments such as the GDPR, the UK Data Protection

Act, and the EU AI Act.

The model advances a layered approach that connects data

provenance, explainability, and compliance auditing through a

horizontal ethical governance layer. This structural integration

ensures that AI models trained on wearable sensor data are not

only performant but also defensible in contexts of public

scrutiny, legal accountability, and institutional ethics review. It

reflects a shift toward normative design practices that embed

compliance, fairness, and inclusivity as core development goals,

rather than post hoc considerations.

Looking ahead, future research and regulatory development

must focus on four key challenges: (1) enhancing privacy

safeguards across distributed AI systems; (2) improving informed

consent through intelligible, user-centric interfaces; (3) detecting

and mitigating algorithmic bias in real-time deployments; and (4)

enforcing transparency requirements in complex AI architectures,

especially in deep learning contexts. Addressing these challenges is

essential to ensure legal compliance and to cultivate societal trust

and unlock the full potential of AI-enabled wearables in healthcare.
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