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Recent statistics from the World Health Organization show that non-

communicable diseases account for 74% of global fatalities, with lifestyle

playing a pivotal role in their development. Promoting healthier behaviors and

targeting modifiable risk factors can significantly improve both life expectancy

and quality of life. The widespread adoption of smartphones and wearable

devices enables continuous, in-the-wild monitoring of daily habits, opening

new opportunities for personalized, data-driven health interventions. This

paper provides an overview of the advancements, challenges, and future

directions in translating principles of lifestyle medicine and behavior change

into AI-powered mobile health (mHealth) applications, with a focus on Just-

In-Time Adaptive Interventions. Considerations for the design of adaptive

interventions that leverage wearable and contextual data to dynamically

personalize behavioral change strategies in real time are discussed. Bayesian

multi-armed bandits from reinforcement learning are exploited as a framework

for tailoring interventions, with causal inference methods used to incorporate

structural assumptions about the user’s behavior. Furthermore, strategies for

evaluation at both individual and population levels are presented, with causal

inference tools to further guide unbiased estimates. A running example of a

simple real-world scenario aimed at increasing physical activity through digital

interventions is used throughout the paper. With input from domain experts,

the proposed approach is generalizable to a wide range of behavior change

use cases.
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1 Introduction

Non-communicable diseases (NCDs) are a challenge to global public health (1). WHO

statistics show that NCDs account for a substantial majority (74%) of worldwide mortality

(1). Among the leading contributors to this burden are cancer, diabetes, and

cardiovascular diseases, each linked to lifestyle factors such as diet, physical activity, and

tobacco use (2). In recent years, there has been a growing recognition of the potential
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for lifestyle interventions to mitigate the prevalence of NCDs and

improve overall health outcomes (3).

With the global wide adoption of mobile and wearable devices

and associated applications, lifestyle management through health

apps is becoming more and more accessible to a broader

population (4). Emerging technologies offer novel opportunities

for real-time monitoring, personalized feedback, and intervention

delivery, thereby empowering individuals to take charge of their

health in modern ways and in clinical practice (5, 6). In parallel,

the fast raising field of artificial intelligence (AI) holds extensive

promise for enhancing the effectiveness and scalability of

behavior change interventions (7–9). By harnessing the power of

machine learning algorithms, AI can analyze vast amounts of

data to derive insights from individual behaviors, preferences,

and contexts, thus enabling the delivery of tailored interventions

that resonate with users on a personal level (10).

The present work reviews the current perspectives and

challenges in both designing and evaluating the mHealth

behavior change solutions. After introducing the concepts of

lifestyle medicine and behavioral change, we address how to

integrate them in behavioral change support systems that

leverage personalization techniques, including just-in-time

adaptive interventions. Further, usage of bayesian multi-armed

bandits to enhance user engagement and adherence to lifestyle

change programs is discussed. In the second part of the paper,

current evaluation techniques for interventional data are

presented, with focus on sequential designs. Finally, recent

challenges and potential developments in the field are described.

Throughout this paper, we will consider as a use case scenario

the design of a digital intervention system aimed at improving

the level of physical activity, which represents one of the

fundamental lifestyle pillars. The discussed framework is however

generalizable, after input from experts in the field, to any of the

other lifestyle pillars or their combination.

1.1 Lifestyle medicine

Incorporating principles of lifestyle medicine into a mobile app

for interventions is essential for promoting holistic health and well-

being. Lifestyle medicine is a branch of evidence-based medicine

focusing on comprehensive behavioral changes through

interventions aiming to prevent, manage, and sometimes even

treat various health conditions (11). The role of lifestyle factors

in influencing health outcomes is emphasized. According to (12)

there are 6 pillars of lifestyle medicine recognizing impact on

overall health. These are namely: mental well-being and stress-

management; healthy relationships; healthy eating; physical

activity; sleep; minimizing harmful substances.

The aim of lifestyle medicine is to address the root causes of

health issues by promoting healthy behaviors and habits (11).

Lifestyle medicine is often integrated into conventional medical

practices and may involve collaboration among healthcare

professionals, including physicians, dietitians, exercise

physiologists, psychologists, and other specialists. It’s a holistic

approach that considers the interconnectedness of various

lifestyle factors and their impact on health.

1.1.1 Behavioral change

Comprehending the basics of psychology related to behavior

change is imperative when creating an app for an intervention

framework (13). According to the transtheoretical model of

health behavior change (14) there are 6 stages of behavioral

change: precontemplation, contemplation, preparation, action,

maintenance and termination. In precontemplation stage a need

of change is formulated, followed by contemplation stage with

motivation and definition of distal (long-term) goals and plans.

During the preparation stage, the individual sets realistic

proximal (short-term) goals and gets ready to take action. In the

action phase interventions are followed aiming to fulfill proximal

goals. After 6 months of actions the maintainance phase is

reached, habit is created and should be maintained until

termination stage, when user has no desire to return to old

behaviors. Interventions related to different stages require

different strategies and design. In this paper we will focus on

discussing the development and design of digital interventions

for action phase, i.e., the formation of a new habit aiming for

getting to maintenance and hopefully termination stage (15).

Interventions could be further supported by educational and

motivational elements to enhance adherence. Further

considerations for development of mHealth interventions can be

found in (16).

1.1.2 Goal setting and habit formation

One promising way to lead individuals towards behavioral

change and habit formation is through goal setting strategies.

Distal goals (long-term) are achieved through a set of proximal

(short-term) goals (17) that can develop into tiny habits (18).

Distal goals are typically used for action planning and are

formulated to enhance intrinsic motivation (19), whereas

proximal goals are formulated more specifically to guide daily

behavior. For proximal goal setting, the SMART (specific,

measurable, achievable, relevant, and time-bound) framework can

be used (20). A plan to achieve the distal goal thus consists of a

hierarchical set of executable proximal goals that, when

performed regularly, foster long-term lifestyle changes (21).

For example, in the context of a digital intervention aimed at

improving physical activity, a distal goal could be stated as “Be

physically more active,” while a corresponding SMART proximal

goal could be: “I will walk 7,000 steps at least 5 days in a week

for 4 months, to increase my physical activity.” This goal is

specific about the action, measurable and time-bound. The

relevance and achievability however, are subjective and must be

tailored to the individual context and capabilities. When applying

mHealth solutions in clinical practice, incremental sub-goals

should be consulted with clinicians and aligned with the patient’s

medical profile. Additional aspects for designing effective

SMART goals are addressed by (22).

Along with structural goal-setting, the psychological

mechanisms behind motivation and habit formation should also

be considered for digital health interventions design (23).
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Formation of new healthy habits, simultaneous to breaking existing

unhealthy ones (24), is facilitated through repeated behavior in

stable contexts (25, 26). This is often described as cue-routine-

reward loops (27). Digital health interventions can reinforce

these loops by providing contextual cues and reinforcing

feedback. Daily actions prompted by digital interventions can be

complemented by reflective processes occurring over longer

behavioral episodes, allowing for temporal alignment with real-

world behaviors and capturing the dynamic interplay between

behavioral and cognitive constructs (28). Moreover, theories of

motivation, particularly the distinction between intrinsic and

extrinsic motivation, play a pivotal role in long-term adherence.

While extrinsic motivators such as reminders or rewards may

initiate a behavior, the transition toward intrinsic motivation

(e.g., walking because it feels good or aligns with one’s values) is

crucial for sustainability (29). Self-determination theory further

suggests that behaviors are more likely to be maintained when

they support a sense of autonomy, competence, and relatedness

(30, 31). In mHealth applications, fostering autonomy can be

facilitated through offering personalized goal setting and giving

users choices in how they engage with interventions (e.g.,

selecting preferred types of activity or timing of reminders).

Competence can be enhanced through clear feedback in form of

e.g., progress tracking, with positive reinforcement features like

daily streaks or milestone badges. To support relatedness, social

features such as peer support groups, sharing achievements, or

connecting with coaches and clinicians can help users feel part of

a community. Additionally, adaptive interventions that evolve

with the user’s behavior and needs over time can further

enhance engagement. By aligning design elements with

psychological principles, mHealth tools can move beyond

compliance to enable meaningful, sustained behavior change.

2 Methods

In this section, we outline key methodological concepts: the

causal inference framework for unbiased effect estimation and

multi-armed bandit algorithms for adaptive decision-making.

These concepts provide the foundation for the design of

intervention components and evaluation strategies discussed in

the following sections.

2.1 Causal inference

Many questions in health and behavioral sciences are

inherently causal rather than purely associative (32). The aim of

causal inference is to move beyond mere associations between

variables, towards understanding and quantifying the causal

effect of an exposure on an outcome. It distinguishes correlation

from causation by relying on formal assumptions, conceptual

frameworks, and methods that allow for the estimation of causal

effects even in the presence of confounding, selection bias, and

measurement error (32). Moreover, unlike purely predictive

models, causal methods also seek to answer counterfactual

questions: What would have happened to an individual or a

population if a different action had been taken?

A foundational perspective in causal inference is the potential

outcomes framework, also known as the Neyman-Rubin model

(33). In this approach, each unit (e.g., an individual) is

considered to have multiple potential outcomes, one for each

possible treatment condition. For instance, a patient might have

one outcome if treated with a drug and another if given a

placebo. The causal effect is defined as a contrast between these

potential outcomes, such as their difference or ratio. However,

only one outcome is observed for each unit (the factual

outcome), while the others remain unobserved (counterfactuals)

(34). This constitutes the fundamental problem of causal

inference: the impossibility of observing all potential outcomes

for a single unit.

To make causal statements despite this limitation, researchers

must rely on assumptions and designs that allow identification of

causal effects. Central to this are the notions of treatment (or

exposure), outcome, and confounders (variables that influence

both treatment and outcome). Confounders can create spurious

associations if not properly controlled, making their identification

and adjustment essential for unbiased causal effect estimation (32).

Complementary to the potential outcomes approach is the use

of graphical models representing causal relationships between

variables. These graphs encode assumptions about the underlying

data-generating process and enable formal reasoning about

causation through graphical criteria such as d-separation and

backdoor paths (32). When the structure of the graph is known

or estimated, these tools provide a basis for identifying causal

effects and designing appropriate adjustment strategies.

A framework unifying the two paradigms, called single world

intervention graphs (SWIGs), was presented in (35).

2.1.1 Structural causal model
A central development in causal inference is the formulation of

structural causal models (SCMs). SCMs formalize causal

assumptions through structural equations that describe how each

variable is generated from its causes and an exogenous error

term (36). The relationships among variables can be represented

graphically as a directed acyclic graph (DAG), where nodes

correspond to variables and directed edges represent direct causal

influences. The DAG not only captures causal mechanisms but

also encodes conditional independence relationships implied by

the underlying causal structure. Understanding the graph

structure is fundamental, as it dictates how we can adjust for

confounding, predict the effects of interventions, and identify

causal effects from data.

2.1.1.1 Causal discovery

In many applications, the true causal graph is unknown and must

be inferred from observational or interventional data. Causal

discovery, also known as structure learning, attempts to learn the

structure of the underlying DAG, by estimating its equivalence

class. Constraint-based methods, like the Peter-Clark (37) or Fact

Causal Inference (38), infer graph structures by systematically

testing conditional independencies, while score-based methods
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search for the graph that best fits the data according to a predefined

scoring criterion. Whenever possible, a background knowledge

should be incorporated, to restrict the search space and enhance

causal discovery algorithm. If the variables are collected over

multiple time points, causal discovery can be guided by known

time orderings (39). Optimization-based methods, such as

NOTEARS (40), on the other hand, employ gradient-based

techniques, but currently lack built-in support for incorporating

background knowledge. An overview of causal discovery methods

can be found in (41). The output of causal discovery provides a

foundation for subsequent causal analysis and inference.

2.1.2 Effects and inference
With the potential outcomes and SCM frameworks in hand, we

now focus on the task of estimating causal effects from the data.

First, the DAG is used for identification of valid adjustment set

via the back-door criterion, i.e., the smallest collection of

covariates that blocks all noncausal paths from treatment to

outcome (32). This step ensures that, under the assumptions of

no unmeasured confounding and positivity, the target causal

estimand (such as the average treatment effect) is identifiable (32).

Once the adjustment set is determined, the causal effect can be

estimated through methods such as regression adjustment, where

the outcome is modeled as a function of treatment and controls

(confounders), and the predicted outcomes under different

treatment levels are compared (42). The effect sizes of control

variables, however, are unlikely to have causal interpretation

themselves (43). Alternatively, inverse-probability weighting

(IPW) (44) can be used, where each unit is weighted by the

inverse of its probability of receiving the observed treatment,

creating a pseudo-population in which treatment is independent

of measured confounders. Another approach is the use of doubly

robust methods (45–47), which combine outcome modeling with

IPW to provide protection against misspecification in either of

the models. Also meta-learners (48) utilizing machine learning

techniques to estimate causal effect can be used. To estimate all

effects on the graph, a (causal) Bayesian network (49) approach

can be employed. In settings where the DAG is unavailable or

incomplete, the intervention calculus when DAG is absent (IDA)

method (50) can be used. This approach estimates the lower

bound of total causal effects from observational data in high-

dimensional settings, even without a fully specified causal graph.

Additionally, by employing causal fusion, we can integrate data

from both observational and experimental settings, as well as

from multiple sources, enabling more robust causal inference

across diverse datasets (51).

Finally, to assess the robustness of the derived findings to

violations of unconfoundedness and to partially identify effects

when point identification fails, sensitivity analysis can be

performend and bounds estimated. The aim of sensitivity

analysis is to quantify how strong an unmeasured confounder

would have to be to overturn derived conclusions, using

approaches such as Rosenbaum’s bounds (52) or the E-value

(53). This allows for reporting, for example, the minimum

strength of association that an unobserved variable must have

with both treatment and outcome to explain away the estimated

effect. When unmeasured confounding cannot be ruled out and

point identification is questionable, bounds on the average causal

effect can be estimated, e.g., via framework proposed in (54), and

further advancements discussed in (55). Together, these

sensitivity and bounding analyses complement the point

estimates obtained under unconfoundedness and enhance the

credibility of causal conclusions.

2.1.3 Longitudinal setting
Estimating individual treatment effect from longitudinal data,

i.e., repeated measurements, can be done by utilizing described

concepts. In digital health, an N-of-1 analysis of self-tracked data

(56) can be employed to evaluate causal effects in longitudinal

observational data, by utilizing the counterfactual framework.

Findings from individual N-of-1 analyses can then be combined

to provide population-level treatment effect estimates (57). The

main assumptions for these methods include the consistency of

exposure assignments over time, no interference between

individuals, and a proper specification of the counterfactual

model. Another approach for evaluation of causal effects in time

series data is Granger causality (58), which can be extended to

non-linear effect evaluation with copulas (59). Furthermore, if

the structure is unknown, several data-driven approaches,

utilizing variants of constraint and score-based causal discovery

methods, were proposed (60–62).

2.2 Multi-armed bandit

The multi-armed bandit (MAB) problem is a framework from

reinforcement learning (RL), designed for sequential decision-

making under uncertainty (63). In each time step t � 0, an agent

with K arms (options) selects one arm k [ {1, . . . , K} according

to a policy, and performs an action at ¼ k. A policy is the agent’s

strategy for selecting actions based on the information available

up to time t. It can be a deterministic or stochastic rule that

maps the agent’s current knowledge, typically the history of past

actions and received rewards, into a choice of the next action. In

the next time step t þ 1, as a consequence of its action, the agent

receives a numerical reward rtþ1, and updates the estimate of an

expected reward for that action, which is assumed to be

stationary. The agent’s goal in MAB setting is to maximize

expected total reward (63). Moreover, regret, defined as the

difference between the reward that would have been obtained by

always selecting the best arm and the reward actually

accumulated, quantifies the cost of learning under uncertainty (64).

The true reward distributions associated with each arm are

initially unknown and must be estimated through interaction

with the environment (65). This introduces the exploration-

exploitation trade-off: the agent must decide between exploring

less certain arms to gather more information about their rewards

and exploiting the arm that currently appears most promising.

Several algorithms have been proposed to address the

exploration-exploitation dilemma. Greedy algorithms prioritize

the action with the highest estimated reward, favoring

exploitation, whereas non-greedy strategies allow for occasional
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exploration to prevent premature convergence to suboptimal arms

(63). Different MAB algorithms balance exploration and

exploitation in various ways, with each approach yielding distinct

theoretical and empirical properties (66). The process is

memoryless, meaning the agent’s decisions at each time step

depend only on the current policy, simplifying the analysis and

implementation of learning algorithms.

2.2.1 Contextual and causal MAB
To improve the performance of MAB algorithms, contextual

information can be incorporated both in the action selection

process and within the learning phase, such as informing the

reward design (67). In this scenario, the policy is influenced not

only by the agent’s previous actions but also by the state st of

the environment, which is assumed to be stationary in

MAB setting.

In RL, action selection is based on the current state and policy

(63). By introducing structural assumptions about the environment

through SCM and an associated causal diagram representing

actions of agent, this task evolves into causal RL (68). This can

be reduced to causal MAB (69), which can exploit assumed SCM

for better action selection if all variables are manipulatable.

Moreover, an extension to handle also cases when not all

variables are manipulatable was introduced in (70). This

approach enables evaluation of how a decision-maker should

intervene to optimize non manipulatable outcome which is

causally connected to manipulatable variables.

2.2.2 Dynamic environments

RL algorithms, including MABs, assume stationarity, i.e., the

environment and reward distributions remain stable over time.

This assumption however typically does not hold in dynamic

environments, such as behavioral change programs. To tackle

this, most recent observations can be treated as more important,

by (possibly non linearly) weighting them more than past

observations. For instance, this can be done with a sliding

window approach, by setting the weight of past observations too

far in the future to 0, effectively ignoring them, while only

considering most recent ones.

A key challenge that remains open is the selection of an

appropriate window size for adaptation, effectively a critical

hyperparameter of the employed algorithm. The window size

directly affects the trade-off between responsiveness to recent

changes and robustness to noise. A small window can enable fast

adaptation to sudden behavioral changes (e.g., illness or routine

disruptions), but may result in instability due to overfitting to

short-term fluctuations. Moreover, shorter window would lead to

higher uncertainty (higher variance) in posterior distributions

due to lower sample size, prioritizing exploration over

exploitation in sampling. Conversely, a large window offers more

stable estimates but may obscure important shifts in behavior. In

practice, choosing the optimal window size depends on the

expected rate of behavioral change and the variability of user

engagement. A possible strategy to handle this could be fixing it

to one plausible size according to previous studies or expertise.

Another option would be selection of the window size in a data-

driven way by discounted history weighting, or by exploiting

models that can utilize past observations to modify the window

size in response to shift in reward distribution (71, 72). An

empirical comparison of possible strategies should be done to

better tailor digital health solutions to the target population.

Strategy of the window size adaptation is an important aspect to

consider, as it directly impacts the algorithm’s ability to

personalize interventions effectively over time. In the clinical and

behavioral setting, window size choice could also take into

consideration the need to reflect domain-specific rhythms, such

as circadian cycles or weekly routines, to better capture

meaningful patterns in individual’s behavior.

2.2.3 Thompson sampling

Thompson sampling (TS) (73), a type of MAB, is a Bayesian

approach to sequential decision-making under uncertainty,

addressing the exploration—exploitation trade-off (72, 74). This

algorithm operates by recomputing the posterior distribution

after each received reward and thus building an implicit profile

reflecting user’s preferences. Thanks to these two properties it is

a reasonable choice for applications in designing of digital

health interventions.

In TS, reward likelihood for each arm is represented by an

unknown probability distribution. After performing an action by

the selected arm and observing the associated reward, the

posterior distribution over this arm is updated. To facilitate

easier posterior updates, it’s advantageous to choose a conjugate

prior distribution (75). If no information is available at the

beginning, an uninformative prior should be chosen to start

with, otherwise available data can be used to better initialize it.

In case the reward of the k-th arm is binary, it can be described

by a Bernoulli distribution with probability of success pk, which

can be modeled by Beta distribution Be(ak, bk) (76). In this case,

for posterior update a Beta-Bernoulli is a convenient choice, as

Beta distribution is a conjugate prior (75). For an uninformative

prior, a Beta distribution with both ak, bk equal to 1, i.e., a

uniform distribution on support , 0, 1 ., can be used. For the

outcome of count data (e.g., Poisson) and with possibly high

frequency of zeroes, count and zero-inflated models can be

incorporated (77).

The action selection process in TS involves sampling from the

posterior distributions over arms and selecting the arm with the

highest sampled probability of success. If the environment is not

stationary, a sliding-window TS (78) algorithm can be used.

Posterior distributions are then computed only from the M most

recent actions and the associated rewards observed, assuming

stationarity in this window. The window size can be dynamically

selected, as discussed in Section 2.2.2. Moreover, updating

posterior estimates in TS in batches (79) instead of daily could

help maintain more consistent estimates of reward distributions

across arms, albeit at the expense of higher variance.

If distributions over arms for TS in each step depend also on

the contextual variables, the contextual TS (80) can be used.

Furthermore, relevant variables used for modeling user’s state

can be transformed to latent variables before applying it to TS

(81), using statistical or machine learning models. If unobserved
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confounders are present, an adaptation of TS proposed in (82) can

be employed. Another variant of TS capable of handling online

environments was proposed in (83). Ultimately, the choice of the

specific TS variant, or other MAB, is task-dependent and should

be guided by both technical feasibility and specific requirements

of the application.

3 Personalized adaptive interventions

In mHealth applications, a personalized nudge is a brief

persuasive intervention, that encourages and motivates users

towards a specific behavior (84). Intervention aiming for

behavioral change can be delivered in a text form through push

notifications, in-app messages or through conversational

interfaces. Also haptic feedback (85) can be used, by signalizing

e.g., milestones or providing real-time feedback as done in (86).

Moreover, providing interim study results to participants (87)

could enhance engagement. Other approaches not involving text

itself that can serve as an intervention can be within a serious

game, either via self-monitoring (88), rewards or other designs

(89), or in other ways depending mainly on technical

availabilities. The aim of intervention has to be clear, and

motivational and persuasive techniques can be employed to

enhance its efficacy. In this section, the opportunities and

challenges in the design of digital interventions, based on the

various data sources in mHealth applications, are discussed. To

enhance the efficacy of digital interventions and user

engagement, multi-armed bandits, introduced in Section 2.2, can

be involved. MAB is preferred over RL thanks to it’s ability to

adapt faster in the settings with little user interaction data in the

early stages, prioritizing user retention through fast optimization.

By focusing only on immediate feedback and avoiding the

complexity of modeling long-term behavior, MAB allows for

quicker adaptation and leads to lower regret compared to full RL.

3.1 Data sources

Collected data can be divided into three categories based on

their source and characteristics: objective, subjective and

contextual. Objective data are those that can be automatically

collected through wearable devices such as smartwatches and

smart rings (90). Examples of objective data collected from

wearable devices are, just to name a few: steps, resting heart rate,

heart rate variability, bedtime and wake up time, and physical

activities. Objective data can also be collected through

smartphones and mHealth app usage metrics (total time spent

using an mHealth app, the way in which the app is used,. . .).

Subjective data are, on the other hand, collected directly from the

user, either through questionnaires, conversational interfaces, or

digital diaries. Subjective data can then be used to derive explicit

contextual information and to better understand objective

measures. Furthermore, implicit contextual information, such as

weather and date-related features (day of the week, season, . . .),

are derived from smartphone background data (91). For our

example, data about physical activity can be obtained either as

number of steps per day, or as activity logs (type, distance, other

metrics related to the activity) or as intensity minutes (time

spent in heart rate intervals). Daily steps will be used for

evaluation of proximal goal, and other metrics will be relevant

for evaluation of improvement in distal goal. Most wearables can

provide this type of information, but it can be collected also by

subjective measures, although with higher uncertainty.

3.1.1 Missing data
In the mHealth applications, missing and noisy data are a

common problem. Non-availability of some data sources can be

present, either due to users’ lack of technology adoption, missing

resources (wearable device not used or data collected only

passively with wearables but not using other mHealth app

components) or because of regulatory or technical restrictions

(92, 93). The behavioral change system must be then designed to

be scalable and usable for everyone even with a minimal data

flow, while ensuring availability of relevant data sources. This

structure entails a range of components within the system, from

establishing minimal data for the basic version to leveraging all

available data sources for more advanced features. Such design

ensures scalability, accommodating varying degrees of user

system adoption (94).

Even if the adoption of all features was successful, gaps and

noise in longitudinal data will persist. These gaps can arise from

factors such as non-compliance, where patients fail to adhere to

wearable device usage or mobile app protocols, technical issues

with the devices themselves or simply during charging the

device. To deal with non-compliance, various approaches can be

used, involving design considerations to increase adherence, e.g.,

with gamification or reward system (95, 96), or financial

incentives (97). Further, to encourage adherence in digital diaries,

notifications sent at random or scheduled times (98) or based on

the contextual information about user’s current state (99), if

available, can be incorporated.

Handling missing data presents a critical challenge for the

functioning of online behavioral change algorithms, particularly

in digital health interventions. These “data holes” can disrupt

real-time decision-making and compromise personalization and

efficacy of interventions. Authors of (100) proposed a framework

utilizing auxiliary variables to overcome this issue for handling

missing accelerometer data in the outcome variables in trials,

which could be adapted to other variables as needed. Further, in

(101), expectation-maximization approach is compared to

multiple imputation technique for missing step count data. To

manage noisy data from wearables, signal processing approaches,

such as filtering or denoising can be also utilized. If historical

data about the user is available, imputation by utilizing similar

context from previous days could be an option, however

missingness mechanism might not be at random and this could

lead to incorrect conclusions. Importantly, any behavioral

decision based on incomplete data may be biased, and prolonged

missingness can render the system non-functional. Therefore,

ensuring data continuity, by the combination of technical means
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and fostering user adherence, remains a key operational priority in

the design of robust digital interventions.

For the post-analysis, i.e., evaluation of distal goals, and when

deriving clinical trial endpoints, statistical approaches for missing

data including within-patient imputations across common time

periods, functional data analysis, and deep learning methods can

be used, as presented in (102). For longitudinal studies with

dropouts or truncation, the approach utilizing inverse-probability

weighting and generalized estimating equations proposed by

(103) can be considered. Other considerations for prevention and

treatment of missing data in clinical trials are summarized in (104).

3.2 Just-in-time adaptive interventions

The most important aspect of digital health interventions is

when they are delivered, to aim for the optimal outcome, i.e.,

behavioral response. Multiple decision points can be thus defined,

either during the day, week or other relevant cycle, that is

targeted through the definition of proximal goals. These do not

have to be fixed, subject to technical availabilities they can be

also event-based, if online data are available. That is however

unrealistic in most of the mHealth applications, and this work

will focus on the selection from the set of decision points. The

simplest timing modality is at a reasonable fixed time, or a

random selection from multiple options. This is especially useful

for new users, when no relevant information is available for the

decision. If available, contextual information should be used to

better decide if to deliver the intervention at each decision point.

To increase efficacy of the intervention, minimize disruption to

daily life and avoid frustration or disengagement, user’s internal

state should be determined prior to sending it (105). Nahum-

Shani et al. (105) defines states of vulnerability/opportunity that

aims to find a period of susceptibility to negative/positive health

behavior changes, and receptivity targeting individual’s

willingness to receive the support delivered with the intervention.

These concepts are explained in more detail also in (99). For

instance, a reminder to walk more, as in our example, while

driving should be avoided, as attempted in (106). Such

intervention would be not only disengaging, but could also have

a negative impact on the trustworthiness of the system’s decisions.

The Just-In-Time Adaptive Interventions (JITAIs) framework,

introduced by (99), addresses this challenge by tailoring

intervention timing to a user’s current internal and contextual

state. The decision rules are driven by defined thresholds for

these tailoring variables and determine not only whether to

intervene, but also the type of intervention to be delivered (105).

Once the intervention is delivered, a proximal outcome (e.g.,

behavioral response) is observed. It is crucial that the timing of

this outcome measurement aligns with the distal goal of the

intervention, such as sustained behavior change (107). A meta-

analytical review (108) of studies where JITAIs were used

concluded efficacy of this solution.

To further enhance efficacy of interventions, a (contextual/

causal) MAB can be used to inform decisions in JITAIs, as

discussed in (109, 110), while keeping one arm as “no

intervention.” By utilizing TS, which addresses exploration—

exploitation trade-off, user engagement can be enhanced by

targeting habits with exploitation, while also new behaviors

would be hopefully promoted via exploration. Moreover, a

possible approach to mitigate user burden while sending

interventions at various time points involves taking into account

the cost of each intervention. This can be achieved by integrating

a surrogate reward function into a MAB framework, as suggested

by (111). The design of the reward function, which guides the

selection of delivered interventions over time, must be tailored to

the application, where this algorithm should be used.

3.3 Behavioral profiling and lifestyle
quantification

To further enhance the behavioral change through personalized

interventions, behavioral profiles created from available data can be

incorporated (112) and used as a context and to describe user’s

internal state. Behavioral profiles are collections of user

preferences, objective and subjective information, contextual

features, and the statistical and causal relationships between

them, both at the individual and population level. These can be

further summarized into behavioral patterns describing

individual’s current habits. Formed behavioral profiles can then

be used not only to inform content of personalized intervention,

but also to improve timing, frequency and triggering conditions

for interventions, i.e., to inform JITAIs (107). The selection of

variables and relationships relevant for behavioral profiling is

based on the application’s purpose, available data, and technical,

regulatory and ethical restrictions.

Simplest behavioral profiles are explicit profiles, computed

directly from the data as a vector of proportions of selected

behavior, as proposed in (84). If a relevant information is

available in the user’s behavioral profile, timing can be even

better personalized towards usual habits. For instance, a

suggestion to use the bicycle instead of driving car for

commuting to work, sent right after the usual wake up in the

morning, could be particularly effective. Conversely,

recommending that someone go for a walk at their most likely

time, when they would already do so, doesn’t foster the

formation of a new habit. Additional value can then be provided,

such as suggesting a new, longer, or more challenging route on

the way back home to boost physical activity levels.

In order to better understand complex patterns and

interactions in the collected data, statistical and causal modeling

tools for repeated measurements, as introduced in Section 2.1.3,

can be employed. As the data are collected longitudinally, N-of-1

design can be used to understand effects in longitudinal self-

tracked data (56) but also to understand individual effect of

previously sent interventions. Other machine learning techniques,

such as generalized mixed effect regression, tree-based methods,

neural networks or XGBoost can also be used for pattern

recognition (113). Furthermore, a graphical representation of

lifestyle, revealing structure among variables, can be estimated.

To learn the structure of a causal graphical representation, causal
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discovery methods, introduced in Section 2.1.1.1, can be used, as

done in a data-driven way e.g., in (114). The effects and bounds

are then estimated based on the derived structure. Learning effect

from causal graphical structure is particularly useful in cases

where intervening directly on the variable associated with the

desired behavior is not feasible. Intervening on other variable

which has direct causal effect on it, should consequently lead to

a change in the desired direction for the target variable (115) as

well. Moreover, by utilizing counterfactual framework on learned

causal graph can be used for simulating of interventions and

their consequences (116).

3.3.1 Health trajectories
Health trajectories can be identified using multi-modal

information (117). These can be used not only for tracking

disease progression, but also for assessing behavioral changes and

informing the size of sliding window in MAB, and evaluating of

effects of observed variables in a long-run. The identified

personal patterns can then be used for improving personalisation

in the interventions and sub-goal hierarchy design. Further, by

identifying similar users based on their trajectories, predictions

can be utilized to adapt the behavioral change program design to

increase chance of effectiveness with growth mixture models

(118). In future research, such estimated dynamic patterns could

be incorporated to the post-analysis inference by including time-

varying effects.

3.4 Goals, progress and feedback

The distal goal is divided into an ordered sequence of smaller

executable proximal goals, as addressed in Section 1.1.2.

A hierarchical set of proximal goals directs the trajectory of

incremental daily lifestyle improvements, leading to the

establishment of a new habit. In our example to improve

physical activity, the proximal goal in SMART formulation can

be “I will walk 7,000 steps at least 5 days in a week for 4 months,

to increase my physical activity.” Based on the currently available

data in the system, a progress towards this proximal goal is

evaluated by fulfillment at each decision point. The computed

progress can be then used as a feedback component in the

intervention. Feedback contains an objective information

encoding either progress towards the goal in form of an absolute

or relative value, or an information about fulfilling the goal,

strike of achieving goals, or any other option that can enhance

motivation. Also comparison to similar people or one’s history

could be incorporated (119). The feedback is thus one of the

motivational components and should be selected in a

personalized way to enhance efficacy of the intervention.

Furthermore, a proximal goal can be regularly re-evaluated,

and adapted to be either more challenging or easier. This

depends on whether it was fulfilled for a defined number of days

in the last period, but also on the target population for

behavioral change system, and in clinical settings should always

be guided mainly by medical professionals. In any case, proximal

goals should be updated and aim to lead to distal goal. When the

distal goal is reached, a maintenance behavioral change

stage begins.

3.5 Motivational and persuasive component

Timing, factual content and type of intervention delivery were

already discussed. In case of visual intervention, another design

considerations can be made. Especially if the intervention is

delivered in a form of text, i.e., via notification or through

chatbot, motivational and persuasive components can be

incorporated to enhance user’s engagement (120).

Firstly, the way how the message is presented can be used as a

motivational component. In (84) this is facilitated through so-

called triggering conditions, which is a set of rules that depend

on the evaluated progress towards measurable proximal goal.

This can be for example a praise, if user already fulfilled the

proximal goal, or some type of suggestion if the proximal goal

was not fulfilled yet. The rules for triggers must be compatible

with the aim of the system and should be designed by

professionals in the field. Triggering conditions serve not only as

motivational component, but also give a base for evaluating

whether the user’s behavior is aligned with the aim of the

intervention, as described in the example depicted in Figure 1,

and can thus help formulate the reward for multi-armed bandit.

An example of triggering logic, including triggering conditions

and the timing for assessing intervention effectiveness related to

our example, is presented in Table 1. Conditions should be

always designed based on the available data and target

population, and should take into account also contextual state of

the user. In special cases with too little available data, this could

reduce to a simple scenario with only 1 row.

The motivational component of the intervention can include

real-time and historical observations, whereas a persuasive

strategy does not need to rely on the collected data, as it can be

solely a persuasive statement. A set of persuasive strategies needs

to be defined a-priori. For example Cialdini’s 6 persuasive

strategies (121) can be used, as done in (122). A selection of

persuasive strategies to enhance adherence to the lifestyle change

program can be chosen according to the application purpose and

target population. The strategy for the persuasive component,

guiding the formulation of the intervention to be sent, can be

selected in different ways. A straightforward approach could

involve random selection or predetermined fixed probabilities. To

allow personalization, a MAB algorithm can be employed. The

application of TS for personalized selection of persuasive

strategies has been shown to enhance adherence (122), and was

also successfully applied to select one of the 6 Cialdini’s

principles (123) as a way of implicit personalization. This

technique is chosen because of its proven efficiency for

exploration-exploitation trade-off, and because the posterior

distributions recomputed in each step can be viewed as implicit

persuasive profiles. Despite the persuasive profiles being only

approximate and not correct estimates, they are sufficient for the

purpose of the automatic decision-making for interventions

(123). For a new user, prior distributions can be either
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uninformative, or can be jump-started by using prior knowledge.

This can be achieved either with relevant questionnaire filled in

by the user upon logging in to the system for the first time, as

done in (122), or by comparing to similar participants previously

enrolled to the study based on the relevant metrics.

Returning to our example related to physical activity, having

fixed a daily goal of 7,000 steps at least five times a week, the

nudging message could be triggered if the user has taken less

than 7,000 steps today and/or has not yet met the step goal in at

least five times this week. Furthermore, assuming we know, from

contextual/demographic information gathered, that the weather is

currently sunny and that the user has a dog, the message may be

formulated as follows: Today you already fulfilled 5,000 steps out

of your daily step goal of 7,000 steps. The weather is nice, how

about taking your dog for a walk? There are only a few hours left

today to fulfill your goal! This message, depicted in purple in

Figure 1, is composed of several components: feedback (5000 out

of 7,000 steps), contextual information collected automatically

from location data (weather is nice), contextual information

explicitly asked to the user in previous interaction (take your dog

for a walk) and a persuasive component (Only a few hours left

today) selected by MAB.

3.6 MAB and reward function in mHealth

In the context of mHealth interventions, the integration of

MAB algorithms requires careful specification of the reward

FIGURE 1

Example of intervention framework using MAB for selection of persuasive strategy in text message. Information from the system are in red, decisions

made for intervention creation in time (t) are in blue. Design for update of the implicit profile in time (t+1) is in green. Created using https://miro.com/.

TABLE 1 Table of example triggers. Based on the condition, given by progress towards proximal goal, the type of the trigger is selected. The proximal
outcome is then evaluated at corresponding time.

ID Type Condition Evaluated when Example

1 Praise Progress � 100% End of the next day Congratulations!

2 Nudge, encouragement Progress [, 80%, 100%) End of the day Almost there!

3 Suggestion Progress < 80% End of the day Take a walk.
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function. The reward reflects the observed outcome of an

intervention and is essential for guiding the posterior update. In

adaptive interventions, rewards are typically based on proximal

outcomes, which inform the algorithm’s learning and adaptation

during the study. However, distal outcomes should also be

considered when defining the reward structure, as they ultimately

determine the intervention’s effectiveness. Proximal outcomes are

evaluated in an online manner based on the triggering condition,

i.e., the logic or rule that determines when and why an

intervention is delivered. This is illustrated in green in Figure 1.

Distal outcomes are assessed during the post-study analysis but

should influence the initial reward design to ensure alignment

between short-term optimization and long-term goals.

In MAB for mHealth, the reward assigned to an action is

determined using data collected after the action is taken. For

instance, if a suggestion message is sent, the intervention is

considered successful if the user performed the desired behavior

by the end of the day or up to few hours from the delivery of

the intervention. Alternatively, for a praise message, success

might be defined as the user exhibiting the desired behavior the

next day without further prompts. An example of such triggering

conditions and their corresponding success criteria are

summarized in Table 1. Reward definitions should be tailored to

the intervention type, desired behavior change, and data

availability. If the reward is binary (e.g., success/failure), a Beta-

Bernoulli model is used for the posterior update, otherwise

different suitable model must be selected. For further guidance

on the design of reward functions in mHealth bandit settings,

see (124).

Some considerations for designing of reward function for TS

are discussed in (111). Further, examples utilizing MAB in

mobile health in various domains involve (77, 109, 125–130).

These can also serve as examples for reward design and related

considerations. Other examples of RL methods for the

application to digital health involve e.g., (131) where authors

used Bayesian Mixed Linear Model to approximate the reward,

and (132) for multi-agent RL in digital health domain.

3.7 Multiple lifestyle pillars

Designing interventions for lifestyle improvements is a

complex process, especially if more than one lifestyle pillar

should be addressed in a single application. Addressing multiple

pillars at the same time could lead to an excessive number of

interventions within a short period, potentially burdening the

user. Several strategies could be employed to strike a balance

between minimizing potential burden and intervening sufficiently

to achieve the desired effect. Pillars can be addressed either

individually, one-by-one, or simultaneously, with the primary

focus on one at a time. As before, automatic selection with

MABs could be incorporated to enhance personalization. The

design of reward for such decision-making system would be

however probably the biggest challenge.

Furthermore, it is worth to consider, that what could lead to

the highest reward in short term, might not be the best decision

in long-term, as the aim of the system is to change behavior and

maintain healthy habits. The reward must be thus designed to

reflect both proximal and distal goal at the same time. Moreover,

even if interventions would not work as intended at the

beginning, they might be effective for behavioral change in the

long run. For this, incorporation of full RL with delayed rewards

(63) in the later stages of the behavioral change program could

enhance overall efficacy.

4 Evaluation and inference

To understand the efficacy of the behavioral change system, a

comprehensive statistical evaluation is essential. Interventions

delivered over longer period of time can be evaluated either via

randomized controlled trial (RCT) by assigning participants into

control vs. intervention group, or on an individual level, allowing

also for evaluation of individual components. In this section,

various possible approaches and associated challenges will be

discussed, starting from defining the research question.

For proper communication, an estimand must be formulated,

providing precise definition of outcomes of the study and other

relevant factors (133). For this, a PICO (Population/Problem,

Intervention, Comparison, and Outcome) framework, which

plays a crucial role in evidence-based medicine (134), can be

employed. PICO aims to guide study evaluation, serving to

clearly define research questions and inform model specification.

In the population component, inclusion and exclusion criteria are

defined. These have to be inclusive, fair and ethical, but at the

same time aiming to answer the research question of interest,

while avoiding selection bias. The aim is to enroll a

representative sample of the target population. Intervention

specifies type of intervention delivered, such as tailored digital

nudges delivered via a smartphone application, or more

generally, usage of the behavioral change system. The choice of

comparator then defines competing intervention or a standard

care. For evaluation of digital interventions this can be no

intervention, or not using the system at all, as also only self-

monitoring can be an intervention (88). Finally, outcome

quantifies the research question and guides model selection and

analysis. In the example of physical activity this could be daily

step count and its change throughout the study. On top of the

primary outcome of interest, secondary outcomes can be

included, targeting e.g., subgroup-specific effects or time-varying

effects reflecting treatment effect heterogeneity over time. To

enhance reporting quality of randomized trials, dedicated

guidelines should be followed (135).

The study is typically framed as a superiority design aiming to

show benefit of intervention against comparator. Digital

interventions may however not always outperform existing

treatments in absolute effect size, but can still provide

meaningful value if they achieve similar outcomes with improved

usability or accessibility. For this, a non-inferiority design can be

more suitable (136). In the non-inferiority trial, an alternative

hypothesis is formulated through a non-inferiority margin. The

confidence interval of the treatment effect must then lie outside
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of the inferiority region defined by the non-inferiority margin (137).

The non-inferiority margin, determined in advance, is typically

selected based on the results form a previous study, or by an

expert, and should depend on the severity of the endpoint (138).

4.1 Study design

Study objectives defined by PICO are then defining the

quantity of interest. Typically this would be an average treatment

effect (ATE), i.e., the causal effect of treatment on the outcome.

To evaluate ATE on a population level, an RCT is typically used.

RCT is a gold standard for estimating unbiased causal effects, as

random assignment facilitates identification of the ATE under

minimal assumptions (32, 136).

If the sample size required for a reasonable power of the test

can’t be met or ethical considerations do not allow for running

an RCT, an observational study designed as one-arm feasibility

study (139) can be performed to test preliminary hypotheses of

associations and collect feedback. If longitudinal data were

collected, an effect of interventions on an individual level can be

evaluated, and changes in trends should be visible. Furthermore,

potential research designs to evaluate efficacy and effectiveness of

mHealth interventions are summarized in (140). The effect of a

new treatment on the selected study endpoints collected through

one-arm experiment can be then either compared to outcomes in

the synthetic control arm (141) or to the accepted conventional

value of outcome by a non-inferiority study design (138).

4.1.1 Micro-randomized trials
Post-hoc analysis in RCT provides an evaluation of efficacy of

the overall behavioral change program and hypothesis testing, but

the information about contribution of intervention components

and information for future improvements is limited (142, 143).

To understand effectiveness of interventions, a multilevel

(fractional) factorial experiment should be employed (143).

To further evaluate the effectiveness of digital interventions at

the individual level and in real-time, micro-randomized trial (MRT)

offers a powerful experimental design that complements traditional

RCT. While RCT assesses the ATE on distal outcomes across a

population, MRT focuses on proximal outcomes, i.e., short-term

responses to interventions delivered at specific decision points

(144). MRT can decrease the sample size compared to a full

factorial deign, while still allowing for causal inference of

intervention effects (144). In the MRT, participants are

repeatedly randomized, often several times per day, to either

receive or not receive an intervention at predefined decision

points, using fixed probabilities. This repeated randomization

allows for the estimation of time-varying and context-dependent

causal effects at the individual level (144). An example of MRT

design with persuasive component selected by MAB is illustrated

in Figure 2.

MRT is particularly well-suited for informing JITAIs, where

decisions about intervention delivery incorporate contextual

features such as location, mood, or previous engagement

(105). MRT supports various outcome types, including binary

(145), continuous, and zero-inflated count outcomes (146),

and facilitate analysis of time-varying moderator effects (147).

MRTs have been successfully applied in domains such as

physical activity promotion (125), alcohol reduction through

timely notifications (148), and digital cardiac rehabilitation

(149, 150). Considerations for sample size for MRTs are

discussed in (151).

Although MRTs are designed for short term decision-making

and personalization, they do not replace RCTs. Instead, both

designs can be used in a complementary manner, for instance

assessing proximal effects via MRTs and distal outcomes via

RCTs in the same study (150). While MRTs are designed to

assess the short-term effects of interventions, understanding their

cumulative impact on long-term behavioral or health outcomes

requires integrating longitudinal modeling with causal inference

frameworks, including those that estimate individual treatment

effects over time (99).

FIGURE 2

Example of intervention framework using MAB for selection of persuasive strategy withmicro-randomized trial. Icons created using https://www.flaticon.com/.
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4.1.2 Adaptive designs

Traditional RCTs typically use fixed randomization ratios to

assign participants to treatment or control groups. However,

response-adaptive randomization (RAR) improves upon this by

modifying allocation probabilities during the trial based on

accumulated outcome data. The core idea is to assign more

participants to treatment arms showing superior performance,

thereby potentially enhancing patient benefit without sacrificing

statistical validity (152, 153). RAR is particularly relevant in

clinical trials where ethical considerations favor minimizing

exposure to inferior treatments. To dynamically select allocations

to arms, MAB approach can be used (154), aiming to maximize

expected rewards (e.g., engagement, behavioral change). To

enhance balance of exploration and exploitation in settings with

satisfactory sample size, TS introduced in Section 2.2.3 can be

used. For inference from data collected under MAB,

incorporating an off-policy learning paradigm (155) could be

beneficial. However, further research is needed to fully explore

and refine this framework.

The concept of adaptive designs can be applied also to high-

frequency interventions such as MRTs, where treatment options

are randomized at multiple decision points over time. Instead of

using fixed randomization probabilities, data from prior

interventions can inform future allocations, optimizing

intervention delivery based on individual participant responses.

Further adaptation can be achieved through Sequential Multiple

Assignment Randomized Trials (SMART), where participants are

re-randomized based on earlier responses (156). SMART design

combines optimization by JITAIs, and utilizes MRT to also allow

inference. Moreover, the behavior change program could be then

formed by multiple components, focusing on different lifestyle

pillars in parallel. The selection of the experimental design must

be tied to design of interventions’ components and desired

inference; a more detailed overview can be found in (157).

In digital health, these adaptive designs can be embedded within

aMultiphase Optimization Strategy (MOST), where interventions are

first optimized for individual needs (e.g., through MRT or SMART)

and then rigorously tested via RCT to ensure both individual

tailoring and robust population-level evidence (142).

4.2 Statistical analysis and inference

A clear specification of estimand to evaluate intervention effect

is critical for valid statistical analysis, especially in adaptive designs

where both exposure and adherence can vary over time. Intention-

to-Treat (ITT) assesses the effect of the assigned intervention,

regardless of whether it was received, preserving the benefits of

randomization and minimizing bias (158). On the other hand,

Per-Protocol (PP) evaluates the effect among participants who

fully adhered to the protocol (159). While potentially more

relevant for assessing efficacy, this approach risks introducing

selection bias due to non-random adherence.

To mitigate this bias, instrumental variable (IV) methods can

be employed (160, 161). In randomized trials, the random

assignment itself serves as a valid instrument to estimate the

causal effect of treatment receipt, also known as the complier

average causal effect (CACE) (162). In digital interventions, this

approach is particularly relevant when user interactions

(e.g., notification clicks or app usage logs) can be used as proxies

for actual treatment exposure (163).

Given that digital health studies typically involve repeated

measurements over time, appropriate longitudinal models are

essential. Mixed-effect models account for within-subject

correlations and allow for estimation of both fixed effects (e.g.,

treatment) and random effects (e.g., individual-level variation)

(164, 165). Depending on the outcome distribution, linear or

generalized models should be used. These models can be

estimated using methods such as restricted maximum likelihood

(REML), the EM algorithm (166), or Bayesian inference (167). It

is important to note that fixed effects can only be interpreted

marginally if treatment assignment is independent of random

effects (168). In addition, survival analysis methods such as Cox

proportional hazards models can be used to evaluate time-to-

event outcomes, such as time to dropout (169). Moreover, several

statistical frameworks have been proposed to analyze MRT data,

including weighted and centered least-squares estimators (170)

and robust inference methods for longitudinal binary outcomes

(145). To evaluate individualized treatment effects, facilitating

personalized decision-making within the system, machine

learning models and concepts from causal inference can be

employed (171). Furthermore, multilevel models can estimate

time-varying treatment effects of proximal interventions delivered

repeatedly throughout the study under MRT design (144).

Moreover, in the studies with MRTs, although not desired, a

carry-over effect might occur and should be controlled for in the

analysis. These can involve not only positive effects of

interventions from previous days, but also experience of burden.

To ensure the validity of results, especially in the presence of

multiple testing and repeated measures, all components of the

statistical analysis, including model specifications and hypotheses,

should be pre-specified before data collection. This guards

against inflated Type I error (172). Furthermore, when evaluating

relationships for which randomization was not applied, causal

inference tools, introduced in Section 2.1.2, can be used to

estimate effects from observational data. Approaches such as

propensity score adjustment, IPW, or g-methods help reduce

confounding. Moreover, findings from both randomized and

observational components can be combined using a causal fusion

framework (51), enabling the integration of multiple evidence

sources to strengthen causal conclusions.

5 Discussion

This paper reviewed personalized adaptive interventions

through the lens of MAB algorithms, focusing on their

application in behavioral change contexts. MABs were selected

due to their lower initial regret compared to full RL approaches,

making them suitable for early-stage interventions where user

engagement is fragile. Moreover, experimental designs allowing
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for proper statistical inference were discussed, ranging from RCT

and MRT for individual treatment effect estimation, up to

adaptive designs. These methods provide a toolkit for balancing

personalization and scientific rigor in digital health. The

discussed framework and similar adaptive approaches pave a way

for opportunities in personalization of mHealth applications not

only for behavioral change, but also for chronic disease

prevention and management.

Designing effective and scalable adaptive systems presents

several challenges. Interventions must be engaging, ethically

sound, and technically feasible. A key difficulty lies in delivering

the right support at the right moment. Accurate user profiling

can enhance the timing and personalization of interventions, yet

further research is needed to fully leverage MABs in this area to

maximize adherence and impact without compromising

inference. Personalization, while essential for effectiveness,

inherently limits generalizability to broader populations.

Additionally, behavioral systems must be dynamic, continuously

adapting to evolving user profiles and behaviors. This motivates

techniques such as sliding windows and non-stationary models

to ensure continued relevance and effectiveness. User retention is

another critical factor. MABs can help reduce dropout in early

stages, where it tends to be highest, by adapting quickly to user

responses even with little data.

Despite the promise of goal-setting and motivational strategies,

long-term engagement remains a significant challenge. Users may

disengage due to a lack of perceived progress, goal misalignment,

interface complexity, or poor fit with changing personal

circumstances and life contexts (173–176). To address this,

interventions should incorporate adaptive feedback loops and re-

engagement mechanisms such as timely nudges and dynamic

goal adjustments (177). Periodic reassessment of preferences and

behavioral stages can help ensure the intervention remains

relevant and supportive. While psychological perspectives are

increasingly integrated into digital intervention frameworks

(23, 28), further empirical research and evaluation across diverse

domains of lifestyle change would strengthen the validity of these

approaches. Gamification, socialization, education, and engaging

feedback mechanisms may also foster deeper involvement.

Additionally, fostering intrinsic motivation and self-

determination in behaviors might be more effective than relying

on extrinsic rewards and external regulation to drive behavior.

Moreover, from a psychological standpoint, sustainable behavior

change is better facilitated through the pursuit and attainment of

learning and process goals, rather than focusing solely on the

outcome goals (29). These aspects have to be however carefully

translated into the design of AI-enhanced behavioral

change systems.

Ethical and regulatory considerations are essential throughout

the system’s lifecycle. Interventions must ensure user safety,

transparency, and autonomy. Users should retain control over

their data, as in EU under the law of General Data Protection

Regulation (GDPR, Regulation (EU) 2016/679), and be informed

about how decisions are made. Systems must avoid unintended

harms, such as delivering inappropriate recommendations or

reinforcing harmful behaviors (178). Equity, inclusiveness, and

fairness are critical to building trust and ensuring broad societal

benefit. Further ethical considerations for usage of automatic

decision-making systems in healthcare are summarized in (179).

For health-related applications, also regulatory compliance is

paramount. Interventions should be developed in consultation

with domain experts and follow relevant legal guidelines. In the

U.S., the FDA provides regulatory guidance for digital health

technologies (180), while the European Union’s Artificial

Intelligence Act (EU AI Act, Regulation (EU) 2024/1689)

introduces specific requirements for AI-based systems. Notably,

behavior change systems, though generally prohibited, are

allowed in the medical domain under strict conditions.

Certification under the EU Medical Device Regulation (MDR,

Regulation (EU) 2017/745) may be required, depending on the

intervention’s intended use and decision-making autonomy. For

example, automated goal setting in cardiac rehabilitation

programs may require oversight from medical professionals to

ensure safety. The use of generative AI, such as large language

models (LLMs), also raises regulatory challenges. Automatically

generated motivational messages may face restrictions, and

should ideally rely on professionally vetted content. As discussed

in recent literature, the growing role of LLMs in healthcare

applications demands further research into appropriate

safeguards and governance mechanisms (181). Evaluation of

mHealth solutions also requires clear objectives, validated

outcome metrics, and longitudinal monitoring. In digital

interventions, as in other healthcare applications domains, RCTs

are gold standard for evaluation of the system. When dealing

with repeated exposures, MRTs offer advantages over traditional

RCTs, such as smaller sample size requirements and the ability

to assess individual intervention components. This allows for

iterative refinement based on real-world data and user feedback,

while adhering to the framework of RCT. However, further

research is needed to understand generalizability of the results

from MRTs. Additionally, the so-called Hawthorne effect (182),

where participants alter behavior simply because they are being

studied, can inflate perceived intervention efficacy. Therefore,

future studies should include post-deployment evaluations in

naturalistic settings to gauge real-world effectiveness.

This review highlights a rich and evolving landscape of

methods for designing and evaluating adaptive digital health

interventions. The main opportunity lies in the real-time

personalization offered by MABs and related adaptive methods,

which can improve engagement and efficacy while preserving

analytical tractability. These approaches enable rapid learning

from user behavior and offer fine-grained control over

intervention delivery. However, this flexibility also introduces

trade-offs. Personalization can reduce generalizability; adaptivity

can complicate causal inference; and automated decisions raise

ethical and regulatory concerns. While MABs reduce regret in

the short term, they may not fully capture long-term outcomes

or delayed effects, for which more complex RL methods might

be required. Furthermore, deriving causal effects especially from

observational data for constructing of behavioral models is a

challenge, as it is not possible to derive causal effects purely from

observational data without posing (sometimes untestable)
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assumptions. Current tools for causal discovery offer promising

results when the background knowledge is incorporated.

However, incorrect direction of edge in the output can introduce

incorrect assumptions for the subsequent identification and

inference (183). While proper selection of confounders reduces

bias in the causal estimates, selection of inappropriate controls,

such as colliders or mediators, can result in estimates that are

biased even more than uncontrolled estimates (184).

A promising direction for future research is the creation of

personalized digital twins—virtual representations of individuals

built from continuous wearable data and contextual information

to capture behavioral trajectories (185, 186). Building of digital

twins unifies the key ideas discussed in this review, including

MABs, adaptive learning, causal inference, and interventions

simulation, within a single, coherent framework. By simulating

different intervention scenarios, digital twins can help optimize

the timing and content of support while avoiding real-world

risks. Integrating causal inference and adaptive algorithms into

these models would allow researchers to test and refine

intervention strategies virtually before deploying them in practice.

This approach could enable highly personalized treatment plans,

enhance safety, and accelerate development cycles. However,

important challenges remain, such as ensuring model accuracy,

managing computational complexity, protecting user privacy, and

validating predictions against real-world behaviors. Future work

should focus on scalable methods to build and update digital

twins in real time, evaluate their advantages over conventional

adaptive designs, and develop metrics to measure their precision

and impact in digital health interventions.

In conclusion, adaptive mHealth interventions leveraging MAB

algorithms, causal inference frameworks, and emerging digital twin

technologies represent a promising frontier for personalized

behavior change. Their success, however, depends on ongoing

adaptation, rigorous evaluation, psychological insight,

interdisciplinary collaboration, and compliance with regulatory

and ethical standards. Future work should validate long-term

efficacy, investigate generalizability across populations, and

explore broader applications across behavioral, clinical, and

public health domains.
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