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Manual diagnostic methods for assessing exercise-induced laryngeal

obstruction (EILO) contain human bias and can lead to subjective decisions.

Several studies have proposed machine learning methods for segmenting

laryngeal structures to automate and make diagnostic outcomes more

objective. Four state-of-the-art models for laryngeal image segmentation are

implemented, trained, and compared using our pre-processed dataset

containing laryngeal images derived from continuous laryngoscopy exercise-

test (CLE-test) data. These models include both convolutional-based and

transformer-based methods. We propose a new framework called

LarynxFormer, consisting of a pre-processing pipeline, transformer-based

segmentation, and post-processing of laryngeal images. This study contributes

to the investigation of using machine learning as a diagnostic tool for EILO.

Furthermore, we show that a transformer-based approach for larynx

segmentation outperforms conventional state-of-the-art image segmentation

methods in terms of performance metrics and computational speed,

demonstrating up to 2x faster inference time compared to the other methods.

KEYWORDS

exercise-induced laryngeal obstruction, continuous laryngoscopy exercise test,

machine learning, artificial intelligence, image segmentation

1 Introduction

Exercise–induced laryngeal obstruction (EILO) is a condition where the laryngeal

structures narrow during physical activity, resulting in significant breathing difficulties

(1). The condition is more common among athletes and active youth (2), with a

prevalence ranging from 5% to 8% (3–5). EILO affects exercise performance and quality

of life and is often misdiagnosed as asthma (6).

Diagnosis of EILO is made using the continuous laryngoscopy exercise test (CLE-test),

the gold standard within the field (7, 8). During the test, video recordings of the larynx are

captured with a laryngoscope attached to a headset and inserted through the nose while

the patient exercises on a treadmill or ergometer bike. The CLE score system (9) is

employed to diagnose EILO but also to assess the severity of EILO at both glottic and/

or supraglottic levels. Both levels are assigned a subscore between 0 and 3, where a

higher score indicates more severe EILO. The CLE score is based on the relative degree

of inspiratory adduction of glottic and supraglottic movements during exercise. EILO is
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present with a subscore equal to or above 2, and the sum of the

subscores indicates the patient’s severity of EILO. However, The

CLE score system has limitations, especially in terms of

objectivity (10). The scores, determined by a doctor, contain

a subjective bias, leading to potential inconsistency in

the assessment.

Several studies have proposed machine learning (ML) models

to identify laryngeal movements for more objective and

consistent diagnostic methods. Each approach involves image

segmentation on laryngeal images, aiming to automatically

recognize key structures within the larynx, such as the trachea,

vocal folds, and supraglottis. Referring to our previous work (11),

we investigated relevant studies on laryngeal image segmentation.

Lin et al. (12) used convolutional networks to train a deep

learning model to quantify and analyze the laryngeal closure.

The researchers utilized a convolutional neural network (CNN)

for region of interest detection and a fully convolutional network

(FCN) for image segmentation of the laryngeal structures.

A study by Choi et al. (13) trained a model with the Mask

R-CNN architecture (14) to segment anatomical structures in

laryngoscopy videos. Chen et al. developed the 3D VOSNet

architecture for segmenting the larynx, with a focus on assessing

muscle movement. The method stands out by its input, which

takes a sequence of images, enabling a better understanding of

the progression of the larynx movements. Fehling et al. (15)

implemented a Convolutional Long Short-Term Memory (LSTM)

network for segmenting the larynx’ glottal area in addition to the

vocal folds on high-speed videos (HSV). Kruse et al. (16)

proposed the GlottisNetV2 for “glottal midline detection using

deep convolutional networks.” The network uses a U-Net

architecture with convolutional layers.

Starting with Vaswant et al.’s paper on transformers (17), there

has been significant progress in natural language processing.

Following this, there has been an increasing interest in applying

transformers to computer vision tasks. In 2021, Dosovitskiy et al.

(18) introduced the Vision Transformer (ViT), achieving great

results compared to state-of-the-art convolutional networks.

Subsequently, the SegFormer architecture was proposed by Xie

et al. (19), introducing a more simple and efficient method for

image segmentation with transformers.

Utilizing the advancements in vision transformers, we

introduce a framework called LarynxFormer to process and

segment laryngeal images. The framework employs transformers

for segmentation, utilizing the SegFormer architecture, which

surpasses previous state-of-the-art methods. We compare this

transformer-based approach with several other techniques,

including FCN with a ResNet backbone, Mask R-CNN, and U-Net.

This explorative study aims to evaluate proposed state-of-the-

art methods for laryngeal segmentation and compare them to

more recent methods like transformers. It lays a foundation for

future studies on utilizing ML to diagnose EILO and its

contributions are:

• A transformer-based segmentation framework (LarynxFormer)

specifically designed for laryngeal images, which has not been

previously explored in the context of EILO. By comparing it

to state-of-the-art architectures like U-Net, FCN, and Mask

R-CNN, we highlight the potential advantages of transformer-

based models in this domain. The framework also includes a

pipeline for the pre-processing, segmentation, and post-

processing of laryngeal images from CLE-tests.

• We implemented and evaluated the LarynxFormer framework

for processing and analyzing EILO data provided by Bergen

ILO Group.

• This work contributes to the exploration of using ML for future

diagnosis methods, providing one of the initial steps for further

investigation in this area.

This paper is structured into multiple sections: firstly, a data

description of the raw data sourced from the Bergen ILO Group.

Secondly, a methodology section explaining the proposed

framework and its core components. The results and discussion

section compares the performance of ML models across different

metrics, inference times, and challenges. Lastly, conclusions and

future research will be discussed.

2 Data description

The project used data from approximately 100 unique CLE-

tests performed at Haukeland University Hospital. Each test

comprises a recorded video lasting between 10 and 15min. The

anonymized videos contain recordings from multiple sources,

including a screen recording from the cardiopulmonary exercise

test (CPET) software tool and the patient’s larynx, recorded

using a flexible fiberoptic laryngoscope (Olympus, Tokyo, Japan).

Each recorded video has a resolution of 1920 � 1080 and a

frame rate of 25 frames per second (FPS). Although the specific

dimensions of the recording captured by the laryngoscope differ,

the aspect ratio remains consistent. The videos selected for our

dataset are the patients’ first attempts at the CLE-test, where the

most intense EILO symptoms are expected to be present.

Figure 1 shows examples of pre-processed laryngeal images with

corresponding CLE-scores. The study and its use of patient data

were approved by the Committee on Medical Research Ethics of

Western Norway (REK numbers 2022-469975 and 2020-134444),

and informed written consent was obtained from the participants.

FIGURE 1

Examples of pre-processed laryngeal images from different patients.

The top row shows an increasing level of narrowing at the glottic

level, from left to right. The bottom row shows an increasing level

of narrowing at the supraglottic level, from left to right.
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3 Methodology

This section presents the LarynxFormer framework (Figure 2),

slitted into a pre-processing, segmentation, and post-

processing block.

3.1 Block 1: pre-processing

Several pre-processing steps were required before training

the models. CLE-test: For each CLE-test video, it was necessary to

divide it into frames and crop the section containing the larynx

(Extract and crop frames). The position of the larynx recording

differed for each video batch, requiring the use of an algorithm to

calculate the crop boundaries. OpenCV (20), a Python package, was

employed for all these tasks involving video processing.

Manual selection and labeling were required to capture clinically

meaningful variation across obstruction levels, as automated

methods could not reliably distinguish or annotate these specific

conditions. Frame selection: Three cropped frames were selected

from each CLE-test video. To ensure a balanced dataset, the

selection process involved manually picking one frame with the

larynx in a “normal” condition without obstruction, another with

mild obstruction, and the final one showcasing the most severe

symptoms. Manual labeling: Label Studio (21) was employed for

labeling the laryngeal structures. To limit subjective bias and to

ensure correct labeling, domain experts within EILO were involved

in this step. The trachea and supraglottis were labeled, given their

proven significant impact on EILO severity (9) and their essential

role in determining the CLE-score. Using only two class labels,

excluding the background, lowers the complexity of both the

labeling and training procedure.

The pre-processing step resulted in a dataset of 340 images.

Data augmentation: To avoid overfitting of the models, and to

enable better generalization, data augmentation techniques were

applied. Utilizing the transformation package from PyTorch (22),

we augmented the images by introducing random resizing crops

and horizontal flips. These augmentation steps effectively

doubled the size of our dataset. Embeddings were obtained from

images to examine the feature-space relationship between original

and augmented samples. Dimensionality reduction methods like

PCA and t-SNE were applied to facilitate a clear comparison,

independent of task-specific model inference. The visualizations

(Figures 3, 4) reveal strong overlap between original and

augmented data distributions, suggesting that augmentations have

minimal impact on feature-level representations.

Split dataset: The dataset was split into training, validation,

and test set, with a 0.7/0.2/0.1 split.

3.2 Block 2: transformer-based image
segmentation

We adopted and implemented the transformer-based

segmentation architecture, called SegFormer (19), for our

LarynxFormer framework. The architecture is based on the vision

transformer (23). In the next subsection, we explain how the

FIGURE 2

The blocks of the LarynxFormer framework. Block 1 shows the pre-processing steps. Block 2 is the segmentation part of the framework. Block 3

describes the post-processing steps. (Block 1, CLE-test image is reproduced with permission of the © ERS 2024: Eur Respir J 50(3) 1602221; DOI:

10.1183/13993003.02221-2016 Published 9 September 2017).
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transformer-based segmentation of the LarynxFormer works,

the training process of ourmethods, andhow themodels are evaluated.

3.2.1 Model architecture

The segmentation block of the LarynxFormer is a simple

and efficient architecture. The architecture (see Figure 5) includes

two main components, an encoder and a decoder (19). The

encoder generates both high-resolution coarse features and low-

resolution fine features. These CNN-like features often boost

segmentation performance. These features are combined in the

decoder using a lightweight MLP decoder to produce the

final segmentation.

The model takes an input image of size H �W � 3. Using a

convolution operation, the overlap patch embedding module

splits the image into overlapping patches. The overlapping

strategy ensures the sharing of spatial details between patches.

Each patch consists of 4� 4 pixels. Opting for the smaller

patches is beneficial for the dense prediction task. These patches

then serve as inputs to the transformer encoder. The encoder

consists of 4 transformer blocks, each generating multi-level

features with sizes 1/4, 1/8, 1/16, and 1/32 of the original

image resolution.

Following this, self-attention is performed, a mechanism for

capturing spatial relationships and contextual information from

image patches. The sequence K , originally with shape N � C, is

first reshaped to a lower-resolution form using a reduction ratio

R. Specifically, it is transformed into a tensor K̂ of shape
N
R
� (C � R) (Equation 1):

K̂ ¼ Reshape
N

R
, C � R

� �

(K) (1)

A linear transformation is then applied (Equation 2):

K ¼ Linear (C � R, C)(K̂) (2)

LarynxFormer uses a Mix feed-forward-network (Mix-FFN)

module with a 3� 3 Conv layer, adequate for offering positional

information similar to what positional encoding does. The Mix-

FFN module combines a convolutional layer with a feed-forward

network. It processes the input feature xin, which comes from

the self-attention module, as follows (Equation 3):

xout ¼ MLP (GELU (Conv3�3 (MLP(xin))))þ xin (3)

Here, a 3� 3 convolution is used between two MLP layers, and a

GELU activation is applied in between. The final output is obtained

through a residual connection that adds the input xin back to the

transformed features.

After being downsampled, each output from the transformer

blocks is sent to the decoder part of the architecture. Here, the

Multilayer perceptron (MLP) layer manages the upsampling and

concatenation of features. It uses these fused features to predict a

segmentation mask for the input image.

Overall, this architecture’s blend of transformer and CNN

features, strategic use of patch size, and a simplified decoder

design culminate in a highly effective and adaptive model for

dense prediction tasks.

3.2.2 Model training

We opted to train four models for image segmentation. FCN with

a ResNet backbone was selected, drawing inspiration from Lin et al.’s

success in utilizing an FCN model for larynx segmentation. ResNet

(24) is a well-known architecture used for computer vision tasks

with the ability to train deep neural networks effectively. Moreover,

Mask R-CNN was chosen as the second model. Mask R-CNN is a

relatively complex instance segmentation model. For our setup, the

two detected objects, for each class, with the highest confidence were

selected (trachea and supraglottis) and used as the final

segmentation for calculating loss and other metrics, such as

dice, IoU, and F1. The SegFormer (19), implemented in the

FIGURE 3

The result of the Principal Component Analysis on the original and

augemented data used for training.

FIGURE 4

The result of the t-Distributed Stochastic Neighbor Embedding on

the original and augemented data used for training.
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LarynxFormer, was also added, as vision transformers are yet to be

tested on laryngeal image segmentation. Transformers have

previously been shown to achieve great results within the field of

medical image segmentation (25). Finally, an implementation of the

U-Net architecture (26), similar to the approach employed by Kruse

et al. in GlottisNetV2, was added to the model list.

All models were trained on a Nvidia RTX A1000 6GB graphics

card using Python 3.10.13 and PyTorch 2.1.1. AdamW was chosen

as the optimizer function due to its fast convergence and weight

decay regularization capabilities (27). The learning rate was set to

10�4 and weight decay to 10�2. Cross Entropy, widely adopted

for image segmentation tasks, was used as the loss function for

the training loop. Cross Entropy (CE) (Equation 4) is defined

as follows:

CE ¼ �
X

C

i

ti log (f (s)i) (4)

where C is the number of classes, ti is the probability of the target

class and f (s)i is the probability of the predicted output.

The training batch shape was set to Batches� Channels�

Height�Width, with a batch size of B ¼ 4, C ¼ 3 channels

(background, trachea and supraglottis), height of H ¼ 400 px and

width W ¼ 500 px.

3.2.3 Evaluation setup

The evaluation of models involves using metrics for direct

comparison, which is our primary method for assessing

performance. The dice similarity coefficient (Equation 5), a

measurement for pixel similarity, is our main metric for

evaluating performance. The equation is

DSC ¼
2� jT > Pj

jTj þ jPj
(5)

where T is the target pixels and P is the predicted pixels. Also,

Intersection over Union (IoU), F1, precision, and recall were all

considered supplementary metrics to enhance the comprehension of

model performance and strengthen the rationale behind the evaluation.

In a clinical setting, efficiency may be a crucial factor. For instance,

Lin et al. focus on real-time segmentation and analysis during theCLE-

test (12), which can be a realistic use case for a future segmentation tool.

Regardless, a faster model is always advantageous. Thus, we also

consider efficiency in terms of model inference time and FPS.

In addition to metrics, visualization of the segmentation masks

is essential to gain insight into their actual performance. This visual

evaluation includes assessing factors such as the smoothness of

mask boundaries, the presence of random noise, and the

occurrence of pixel gaps.

The evaluation of the optimal model will prioritize, in order,

performance metrics, efficiency, and visualization.

3.3 Block 3: post-processing

As a last step, the visual appearance of the generated masks is

refined through a sequence of post-processing steps, implemented

using OpenCV. Three steps have been assembled, starting with

FIGURE 5

LarynxFormer transformer-based segmentation architecture. Describes the structure of the encoder and decoder. The encoder is responsible for

feature extraction, while the decoder performs the segmentation mask prediction (19). H, height; W, width; C, channels; MLP, multi-layer

perceptron; Mix-FFN, mix feed-forward network.
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removing outliers. Outliers, whichmay be present in particular images,

are addressed by removing structures that deviate from the largest

structure, as they primarily contribute to unwanted noise.

Subsequently, evident gaps within the segmentation masks are

eliminated, and the boundaries of the masks are smoothed. Figure 6

shows an example of the post-processing of a segmentation mask.

4 Results and discussion

This section presents, compares, and discusses the results,

including our framework, each model’s metrics, efficiency, and

overall performance.

4.1 LarynxFormer framework

As an important foundation for the model training, we present a

framework for preprocessing CLE-test data for ML purposes. Our

dataset and pipeline are designed for use with data from the Bergen

ILO Group, but can also be adapted for other clinics. The

framework pipeline is an end-to-end solution for data preparation,

including both fully automatic and manual steps. The

implementation details of the framework can be found on GitHub.1

The most time-consuming step is the manual labeling of laryngeal

images. We’ve already labeled a good amount of images for this

project, but future additions are welcome. The framework lays a

base for the group’s future research within the field of ML and EILO.

4.2 Model performance

Four models were trained on the same pre-processed dataset. The

performance metrics for both trachea and supraglottis and inference

times for each model are shown in Table 1. The dice similarity

coefficient is our chosen metric for evaluating performance

numerically. Inference time is also included in the comparison of

the models. In clinical settings, where efficiency may be crucial,

inference time is vital in potential future EILO diagnostic tools.

Looking at the numbers in the table, LarynxFormer gives the most

promising results. Its dice score shows great results for both the trachea

and supraglottis structure (0.935 and 0.834), reaching the highest dice

score for supraglottis, 5.6% better than U-Net. LarynxFormer also has

the quickest inference time of 52.7ms or 19 FPS. Mask R-CNN’s

results also look promising, outscoring LarynxFormer in several

performance metrics, such as IoU, F1, and precision. However, the

average inference time for Mask R-CNN is more than doubled

compared to LarynxFormer, with LarynxFormer demonstrating over

a 100% increase in FPS. Given these two models’ comparable

scoring performance metrics, the inference time is the deciding

factor in determining the LarynxFormer as the optimal model.

The FCNmodel with ResNet backbone consistently performs well

on most metrics, being close to LarynxFormer. Also, the model’s

inference time of 17 FPS is almost as good as LarynxFormer’s 19

FPS. The visualization of the FCN masks showed that it has the most

smooth edges, even before the post-processing (Figure 7). U-Net’s

trachea segmentation results are great, achieving the best dice score

of 0.936. However, its supraglottis segmentation performance is less

impressive, scoring lowest on several metrics with 0.790. Given the

overall performance across classes, we find that Mask R-CNN and

LarynxFormer provide more reliable results than U-Net.

Mask R-CNN is by far the best model in terms of the

precision metric, scoring 0.865 for the trachea and 0.791 for the

supraglottis. Upon reviewing the segmentation masks from the test

results, the correlation between the higher precision scores and

Mask R-CNN’s performance becomes apparent, as it rarely

misclassifies pixels outside the target area. This might occur due to

its region of interest layer, which crops the designated area for each

class as one of the initial model steps. The segmentation masks

produced by Mask R-CNN are also the most visually appealing due

to the model’s high precision. In situations where inference time is

not critical, Mask R-CNN would be a preferred pick.

All models trained in this study, including the best-performing

LarynxFormer, are not ready for use in a clinical setting. Many

prediction mistakes are still made, and a bigger dataset and more

computational power are needed to train more robust models.

Moreover, the segmentation masks can be further analyzed to

provide more useful insights in addition to the position of the vocal

folds and supraglottis. This research primarily focuses on comparing

the models to identify the most suitable solution for using ML to

segment the laryngeal structures.

4.3 Training process

Figure 8 shows the training and validation cross-entropy loss for

the LarynxFormer training procedure. The training lasted for 2 h

across 63 epochs. Early stopping was implemented to prevent

overfitting, allowing a maximum of 10 epochs without increasing

validation loss. After testing, 10 epochs for early stopping turned out

to be appropriate. Using less than 10 epochs resulted in the model

stopping too early, with a small relative decrease in loss. Values

higher than 10 led to overfitting of the model. Consequently, the

final model version was selected after 53 epochs of training. The

hyperparameters for each of the models can be found in Table 2.

FIGURE 6

(A) Original segmentation mask output. (B) Segmentation mask after

post-processing.

1https://github.com/Ci2Lab/Rune_LarynxFormer_Framework
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It’s important to note that comparing the training durations of

the models is challenging since some models surpassed GPU

memory capacity, necessitating the use of slower CPU memory,

which substantially extended the training time.

4.4 Practical challenges

Accurate segmentation of the CLE test images poses several

challenges that must be addressed to make a functional diagnostics

tool for EILO. Our models encounter difficulties in certain areas,

suggesting they are imperfect. Differences in lighting, especially in

darker conditions, pose challenges, as do unfamiliar angles.

Random rotation is integrated into the data augmentation

pipeline to enhance the handling of various angles. Improving

our ability to tackle these challenges depends on having a larger

dataset. Unfortunately, the 6 GB GPU memory limit prevented

us from expanding our data further. It’s advisable to invest in

higher memory capacity for future studies.

The segmentation mask boundaries, especially for the larger

supraglottis structure, frequently lack smoothness and display rough

edges. While the FCN model handles this challenge well, the

problem is more significant for the remaining models. Boundary

smoothing is applied to the segmentation masks as a post-

processing step to compensate for the jagged edges. Moreover, a tool

for filling segmentation gaps and removing small outliers is also

applied to the masks, improving their visual look.

Another notable challenge is the manual process of selecting

frames and labeling masks. Like all manual tasks that require

human involvement, these steps are prone to bias. Domain experts

may assign different labels to the masks depending on their

expertise and interpretations. This aspect should always be

TABLE 1 Evaluation metrics and inference time for each model.

Model Trachea Supraglottis Inference time

Dice IoUa F1 Prec.b Recall Dice IoUa F1 Prec.b Recall Duration FPSc

FCN w/ResNet 0.929 0.850 0.732 0.620 0.908 0.831 0.699 0.666 0.567 0.833 59.0 ms 17

Mask R-CNN 0.934 0.877 0.846 0.865 0.839 0.805 0.673 0.751 0.791 0.727 107.6 ms 9

U-Net 0.936 0.858 0.714 0.619 0.855 0.790 0.637 0.616 0.598 0.643 60.9 ms 16

LarynxFormer 0.935 0.864 0.753 0.647 0.912 0.834 0.702 0.675 0.594 0.807 52.7ms 19

The table presents the performance and efficiency for each model. For dice, IoU, F1, Prec., recall, and FPS, higher scores are better. For duration, lower is better. The best scores are in bold font.
aIntersection over Union.
bPrecision.
cFrames per second.

FIGURE 7

Segmentation masks. Dice scores trachea and supraglottis—FCN: 0.95/0.84, Mask R-CNN: 0.97/0.78, LarynxFormer: 0.97/0.83, U-Net: 0.95/0.83.

FIGURE 8

LarynxFormer training and validation loss. The graph shows the

training and validation cross-entropy loss during training for each

training epoch.

TABLE 2 Hyperparameters for each model.

Model Batch
size

Optimizer Learning
rate

Loss
function

SegFormer 4 AdamW 1� 10�4 CrossEntropy

Mask

R-CNN

2 AdamW 1� 10�4 CrossEntropy

U-Net 4 AdamW 1� 10�4 CrossEntropy

FCN

ResNet50

4 AdamW 1� 10�4 CrossEntropy
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considered when developing such models, especially in medicine.

Labeling the supraglottis correctly, in particular, can pose challenges

due to the difficulty in distinguishing its exact boundaries.

4.5 Ablation study

An ablation study was performed to evaluate the contribution

of the data augmentation steps in the pre-processing block.

Table 3 shows the evaluationmetrics for LarynxFormer trained on

a dataset with and without data augmentation. For all metrics in the

table, higher values are better. The results clearly show that the pre-

processing steps make a difference in the model performance. All

metrics show a significant improvement when trained with the data

augmentation step, with a maximum improvement of 19.4% (from

0.676 to 0.807) for supraglottis recall. The model trained without

augmentation has a larger relative ratio between the training and

validation loss compared to the model trained with augmentation,

indicating a more generalized model when training with data

augmentation. This makes sense, considering that data

augmentation is often applied with the aim of improving model

generalization. The ablation study further indicates that our

post-processing steps do not affect the model’s performance,

primarily serving visual enhancement purposes.

5 Conclusions

This study has developed the LarynxFormer, a proposed

new framework including pre-processing, transformer-based

segmentation and post-processing pipeline. Our findings indicate

that the framework’s transformer-based segmentation outperforms

the prior state-of-the-art techniques, fully convolutional network

(FCN), Mask R-CNN, and U-Net for laryngeal segmentation, in

terms of performance and efficiency. Considering these results, we

conclude that this study contributes to the advancement of objective

ML-based diagnostic tools for EILO. Future work could enhance the

model performance using a larger dataset, add more computational

resources to build a more robust model, experiment more with the

architectural details of the transformer model, and potentially use

pre-trained model weights. Further, with a more robust

segmentation model, classification and CLE-scoring using ML are

interesting topics for investigation. Moreover, collaboratively training

models on distributed datasets from various medical institutions

could facilitate the development of more robust and generalizable

segmentation models.
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TABLE 3 Evaluation metrics for LarynxFormer trained on a dataset with and without data augmentation.

Model performance Trachea Supraglottis

Dice IoUa F1 Prec.b Recall Dice IoUa F1 Prec.b Recall

Without data augmentation 0.896 0.792 0.694 0.615 0.801 0.781 0.629 0.605 0.562 0.676

With data augmentation 0.935 0.864 0.753 0.647 0.912 0.834 0.702 0.675 0.594 0.807

Improvement 4.4% 9.1% 8.5% 5.2% 13.9% 6.8% 11.6% 11.6% 5.7% 19.4%

The table compares the performance of LarynxFormer trained on the dataset with and without data augmentation. The improvement row presents the improvement of training with data

augmentation vs. without. Higher values are better.
aIntersection over Union.
bPrecision.
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