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Background: The adoption of machine learning (ML) has been slow within the
healthcare setting. We launched Pediatric Real-world Evaluative Data sciences
for Clinical Transformation (PREDICT) at a pediatric hospital. Its goal was to
develop, deploy, evaluate and maintain clinical ML models to improve pediatric
patient outcomes using electronic health records data.
Objective: To provide examples from the PREDICT experience illustrating how
common challenges with clinical ML deployment were addressed.
Materials and methods: We present common challenges in developing and
deploying models in healthcare related to the following: identify clinical
scenarios, establish data infrastructure and utilization, create machine learning
operations and integrate into clinical workflows.
Results: We show examples of how these challenges were overcome and
provide suggestions for pragmatic solutions while maintaining best practices.
Discussion: These approaches will require refinement over time as the number
of deployments and experience increase.
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Introduction

The application of machine learning (ML) is increasingly prevalent. However, ML

adoption has been slower within the healthcare setting. Stages required to develop and

deploy ML models in healthcare include the following: identify clinical scenarios,

establish data infrastructure and utilization, create machine learning operations

(MLOps) and integrate into clinical workflows. We launched Pediatric Real-world

Evaluative Data sciences for Clinical Transformation (PREDICT) at The Hospital for

Sick Children in 2023. The goal of PREDICT is to develop, deploy, evaluate and

maintain clinical ML models to improve pediatric patient outcomes using electronic

health records (EHR) data. Our objective was to provide examples from the PREDICT

experience illustrating how common challenges with clinical ML deployment

were addressed.
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Materials, methods and results

Identify clinical scenario

One of the key challenges in applying ML in healthcare is

identifying scenarios (or “use cases”) in which these approaches

are useful and worthwhile. Careful identification of scenarios for

deployment is important as healthcare resources are limited. Key

factors to consider when determining if a clinical or operational

problem is suitable for an ML solution include the problem

being substantial, existence of a gap between current and

desirable performance, and likelihood that ML with available

data can result in improved performance (1). In a survey from

two pediatric institutions, the most important attributes for

prioritizing ML scenarios were risk stratification leading to

differential actions and the clinical problem causing substantial

morbidity or mortality (2).

Within PREDICT, we have provided additional considerations

for scenario identification. To maximize the chances of a successful

clinical deployment, we evaluate the healthcare team context and

the clinical context. When evaluating the healthcare team

context, all potential projects must be represented by a clinical

champion who is willing to invest time and energy toward the

project and a clinical steering group must be formed to ensure

that multi-disciplinary stakeholders have awareness and input

into the project. The clinical champion is also responsible for

ensuring that the broader team is receptive to receiving ML

predictions and using those predictions to drive patient care

decisions. For the clinical context, we require that the targeted

outcome (the label) be important, relatively common and

measurable in the EHR. We also require an expectation that

EHR data might be useful to predict the label. Finally, we require

that knowing risk status would change clinical care in a fashion

anticipated to favorably impact on patient outcomes or

healthcare resources, and that the anticipated deployment

environment has the change capacity to implement a new ML-

based clinical workflow.

An example of a clinical scenario that met these criteria was

vomiting prediction in pediatric oncology patients. Vomiting is

considered one of the most dreaded side effects of cancer therapy

and vomiting control rates are poor (3, 4). There are clinical

practice guideline available (5–7) but yet, guideline-consistent

care is uncommon (8). We proceeded with this project where the

intervention for high-risk patients will include optimization of

guideline-consistent antiemetic therapy.

Through our experience in soliciting and reviewing potential

scenarios with clinical stakeholders, we have identified

approaches that promote effective project exploration. Initially,

we asked stakeholders to complete a standardized intake form

that described the healthcare team and clinical contexts.

However, we found clinical champions often did not have

sufficient exposure to ML to complete the intake form in a

fashion that allowed project evaluation. We have since shifted to

a dynamic intake process where a clinical data scientist meets

with potential end users to collaboratively complete the intake

questionnaire together.
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Establish data infrastructure and utilization

Healthcare ML programs require clinical deployment

environments where real-world data are accessible for developing

and testing ML models at scale (9). However, real-world EHR

data are complex, and data models evolve over time. Typically,

ML development with EHR data occurs in trusted research

environments, which often rely on custom, static extracts of data

subsets that incur significant development costs (10), or on

publicly available academic datasets (11). For PREDICT, we

conceptualized and created the SickKids Enterprise-wide Data in

Azure Repository (SEDAR) (12), a modular and robust approach

to deliver foundational data that is re-usable across multiple ML

projects. In addition to ML, SEDAR is currently being used to

address institutional needs including administrative reporting,

populating dashboards and enabling research and quality

improvement projects.

SEDAR offers validated EHR data in a standardized and

curated schema. This schema streamlines the EHR data into a

unified structure of 18 tables organized by entities such as

patients, visits, diagnoses, medications and laboratory results.

These tables are relationally structured to support querying of

longitudinal patient records and facilitate feature extraction for

ML. Medical record number (MRN) and encounter identifiers

(where applicable) enable linkage of patient- and encounter-

specific data across tables while fields such as date-time, result,

and description in tables such as laboratory results, diagnoses

and medications enable precise temporal alignment of clinical

events. While simple to navigate, the schema remains

comprehensive and extensive, capturing diverse information

about each patient’s medical history in detail. This facilitates the

extraction of thousands of clinical features for all patients across

the institution, thus enabling the development of ML models

capable of describing complex, longitudinal health patterns.

Additionally, having centralized curation as a separate,

intermediate step facilitates the management of changes in the

source data model and their impact on downstream systems.

Daily batch processes update the data model (with ongoing

efforts to integrate live HL7 streams and FHIR APIs), and the

data are loaded into centralized cloud storage, readily available

for consumption.

With this structure, the SEDAR data schema is used to rapidly

identify labels and efficiently create feature sets. Some cohorts or

labels require in-depth clinical expertise and knowledge about the

clinical workflow. For example, one project required identifying

oncology patients with a cancer treatment plan. This effort

required understanding the structure of treatment plans in the

EHR and ensuring that this information is available

prospectively. The cohort and label definitions can also introduce

data leakage or bias into future models if they do not accurately

reflect clinical workflows (13). For example, one project initially

focused on identifying cardiac inpatients who will die or have a

heart transplant. During data exploration, we realized that all

heart transplant recipients were waitlisted prior to transplant,

meaning that predicting heart transplant would not be a

clinically meaningful endpoint since wait list status would already
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be known. Consequently, we modified the label to be death or

waitlisted for transplant. Additional safeguards against data

leakage include examining global explanations such as

permutation feature importance (14) during model development

to identify if a model relies on a feature that should not

be available at the time of prediction; conducting ablation

experiments to remove suspected proxy features that might

indirectly reveal target outcome and examining their impact on

performance; and running silent trials to evaluate the model on

data and infrastructure that mirror deployment (see below).

Another issue to consider is algorithmic bias or fairness

(15–17). SEDAR supports the evaluation of fairness by providing

sex, age group, Epic non-English language flag, neighborhood

income quintile and the four dimensions of the Canadian Index

of Multiple Deprivation for each patient (race and ethnicity are

not available in the SickKids EHR). Within PREDICT, we

leverage this data to stratify model evaluations across all

subpopulations of interest and analyze these results in

collaboration with clinical champions. Fairness concerns may

trigger explorations of use case design alternatives, including but

not limited to the modeling stage (e.g., train different models or

select different alert thresholds for different subpopulations).

Satisfying all algorithmic fairness criteria is often not possible,

making clinical champion inputs crucial to define the fairness

goals for each use case. As part of our ongoing research efforts,

we are exploring new fairness evaluation approaches based on

recently proposed frameworks that may better inform decision

making (18, 19).

Despite the advantages of centralized curation, the primary

disadvantage is the resources and time required toward its initial

creation. Also, SEDAR is currently tailored to a specific

institution and may face challenges when scaled to multi-

institutional settings. However, such challenges are common,

even among sites using the same EHR. Data standards such as

FHIR could enable greater interoperability, which would facilitate

federated learning platforms (20).
Create MLOps

MLOps is a paradigm that integrates best practices across ML,

software engineering and data engineering aimed at

productionizing ML systems (21). Figure 1 depicts the end-to-

end MLOps architecture in PREDICT, developed based on

MLOps principles including automation and orchestration,

modularity, versioning, reproducibility and monitoring.

Experimentation
For a given project, we implement a pipeline on a static set of

identified cohort, label(s) and SEDAR data to enable

reproducibility. This pipeline orchestrates modular, automated

steps, including feature extraction, feature selection, model

training, evaluation and model selection, with each step following

a standard approach (see Supplementary Material for details).

This orchestrated pipeline allows rapid experimentation with

different features, model architectures, and model configurations
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to find the optimal set. Experiments are also tracked (22), storing

metadata about the models and features.

An important consideration is that the pipeline must align with

the model’s anticipated use in production and the data generation

process (23). For instance, vital signs often have multiple

timestamps such as when the measurement was taken and a

system-generated timestamp for when the data were entered into

the EHR. Although the former more accurately reflects patient-

specific events, the data are not available for inference until they

have been entered, thus suggesting that data entry timestamp

should be used.

Classification thresholds and approval
For classification tasks, a threshold is chosen to classify

outcomes as positive or negative based on predicted probabilities.

This process balances intervention downsides (such as personnel

effort, resources, risks and alert burden) and the consequences of

a missed outcome. Higher intervention downsides necessitate

lower tolerance for false positives and thus, the need to maximize

specificity and positive predictive value (PPV). Higher

consequences of a missed outcome require lower tolerance for

false negatives and thus, the need to maximize sensitivity and

negative predictive value (NPV). Empirical data have

demonstrated the potential for bias depending on the approach

to threshold determination (24), highlighting the need for further

evaluation in the context of ML.

For PREDICT use cases, operational performance data at

multiple thresholds are presented to the clinical team, who can

choose a threshold value based on both predictive performance

and operational feasibility. Table 1 shows an example of data we

present to the clinical team to facilitate threshold determination.

Data include number of alerts, PPV and sensitivity for several

thresholds derived from the retrospective model. Threshold

selection approaches include maximizing true predictions

(Youden’s index) and different number needed to alert (NNA)

values such as 2 and 3. This helps clinicians understand the

potential impact of different thresholds. The threshold choice will

be influenced by the intended intervention it triggers. For

example, an alert from a model predicting mortality risk might

recommend a palliative care consult. If specialist access is

limited, a lower false positive rate is preferred. In this case, the

team may select a low NNA such as NNA = 2, which would

result in about 7 alerts/month in this example, but many false

negatives. Alternatively, the primary team might apply additional

clinical criteria such as assessing the patient’s supportive care

needs before deciding on a palliative care consult. This step wise

approach permits a higher false positive rate since not all positive

predictions lead to a consult, but it shifts the alert burden to the

primary team while reducing specialist effort. In this case, the

team may choose to maximize true predictions, which would

result in about 49 alerts/month in this example, with a lower rate

of false negatives. The number of alerts per month needs to be

considered in the context of available resources. If the team does

not have the ability to respond to 49 alerts/month, then the

realized potential of the algorithm will not be met and an

alternative threshold might be better suited (23). Involving
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FIGURE 1

Machine learning operations architecture.
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diverse stakeholders in threshold discussions ensures balanced

impacts on end users.
Model deployment
Upon approval, we commit the configurations, code and

artifacts to Git repositories and secured cloud storage, which

include components for feature extraction, patient selection, ML

models, containers and services for serving, orchestrating and

monitoring the pipeline. Software code for shared core

components such as the featurizer and model training are

separately versioned, packaged and released. We employ

deployment services including continuous integration and

continuous delivery pipelines to make each component available

in the production environment. Where applicable, we run a suite
Frontiers in Digital Health 04
of tests, including unit, integration and validation tests before

deploying to production.

We leverage Azure ML’s tools including compute resources,

workflow orchestration, serving and registries. We register each

component of the inference pipeline into the Azure ML Model

Registry and Data Registry to automatically manage

versioning, track data and model lineage, and facilitate

integration with different Azure ML Pipelines and endpoints.

Azure Container Registry is used to build, store and manage

runtime container images. We set up scalable, on-demand

computing resources using Azure ML managed compute

clusters and configure Azure ML Pipelines for workflow

orchestration. This includes defining the inference pipeline,

setting up trigger schedules, and integrating monitoring and

alerting systems.
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TABLE 1 Example of a hypothetical machine learning project with 3
different approaches to threshold determinationa.

N= 930
(10 months)

Maximize
True Predictions

NNA = 2 NNA= 3

Threshold 0.192 0.586 0.182

Total Alerts 494 72 520

True Positives 154 39 162

False Negatives 51 166 43

PPV 0.312 0.542 0.306

True Positives/Alerts 1/3 1/2 1/3

Sensitivity 0.75 0.19 0.79

NNA, number needed to alert; PPV, positive predictive value.
aThresholds were determined in the validation set and applied to the test set.

Yan et al. 10.3389/fdgth.2025.1462751
Each project may require predictions to be delivered at

different times and frequencies. In one project, predictions are

required every morning before clinical rounds. Here, a time-

based trigger initiates the inference pipeline once each morning.

In another project, predictions are needed at a specific time

before scheduled start of surgery. This requires an event-driven

trigger that responds to real-time scheduling data to determine

when the inference pipeline needs to run and creates a secondary

time-based trigger to initiate the inference pipeline at the

determined time.

An early technical consideration was whether to adopt a feature

store system to centralize the storage of commonly used features

and serve features at different latencies for experimentation vs.

production. Although using a feature store aligns with best

MLOps practices, we reasoned that applying custom

configurations to a shared featurizer software for each project,

instead of a centralized feature store, would allow us to quickly

tailor feature extraction to the needs of each model. This

flexibility is important because cohort definitions, best-

performing features, and index times often differ across projects.

We plan to re-evaluate our feature requirements in the future

and reconsider the architecture. Additionally, we will consider

other featurization approaches, such as using foundation models

(25, 26), given their recent promise in performance (27),

robustness (28–30) and efficiency (31).

Silent trial
The deployed model undergoes a silent trial where predictions

are being generated in the production environment without being

delivered to the end user. The duration of the silent trial is

influenced by the outcome rate and the prediction window

length. Once the clinical team decides that the model satisfies

performance and utility criteria from data generated during the

silent trial, the model is ready for clinical integration.

Continuous monitoring
Changes in patient population, healthcare practices or

administration over time can lead to changes in the features or

model predictions, ultimately causing model deterioration.

Proactively preventing model deterioration is challenging (32),

although some approaches are more robust than others (30, 33,

34). Knowledge of upcoming technical or clinical changes can
Frontiers in Digital Health 05
aid in planning necessary adjustments to avoid disruptive shifts

(35). However, it is anticipated that some models will have a

limited life cycle due to irreparable model deterioration,

availability of better models or approaches, operational or

business requirement alterations and changes in clinical practice

that make that model obsolete. Therefore, there is a need to

monitor the ML system and adjust when needed.

Monitoring model performance should involve clinically

meaningful metrics such as sensitivity and PPV. When labels are

expensive (e.g., requires manual labeling) or there is a long

prediction window (e.g., 6-month mortality risk), monitoring

input data and model predictions against reference data (e.g.,

training data) using standard metrics can help detect potentially

disruptive shifts. Criteria for model adjustments should focus on

clinical impact (35). For example, the clinical team might decide

that sensitivity or PPV lower than a certain threshold warrants

model adjustments.

Within the PREDICT program, we monitor shift in features,

model predictions and performance. Feature and prediction shift

are measured using Jensen Shannon divergence, with

development features and model predictions serving as the

reference. Additionally, we monitor feature quality using percent

missingness, percent out of range, and standard deviation. Model

performance is assessed using both threshold-free (such as the

area under the receiver operating characteristic curve) and

threshold-based (such as PPV and sensitivity) metrics. Feature

and prediction shift metrics are computed on a nightly basis over

the previous month. Results are reported via Power BI dashboards.

Significant shifts in data, model predictions or performance

may necessitate model re-calibration or re-training (36).

However, it is important to consider whether the predictions lead

to actions that may influence features or labels, as re-evaluation

does not necessarily reflect performance in the absence of the

intervention (37). For example, a model might lead to automatic

ordering of a test. If the ordering of a test is the label, then re-

evaluating the model does not reflect the underlying construct,

which is whether a clinician would have ordered the test in the

absence of a model. Similarly, if a model prediction leads to an

intervention that reduces an undesirable outcome (e.g., clinical

deterioration), the absence of the outcome might result from the

successful intervention, not the initial “misprediction”.

Addressing these challenges remains an open research question.
Integrate into clinical workflows

Implementation considerations
ML implementation and supporting end users have been

considered by multiple paradigms including change management,

implementation sciences and quality improvement although

some unique considerations will be required for ML. Within the

PREDICT program, we engage with Clinical Informaticians who

consider the end-to-end workflows and how potential electronic

tools and solutions can be incorporated into clinical practice.

This includes defining the clinical problem, designing the
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TABLE 2 Overview of the presented framework and key learnings.

Area Key Learning
Identify clinical scenarios Rather than asking stakeholders to complete a

standardized intake form, we have since shifted to a
dynamic intake process where a clinical data
scientist meets with potential end users to
collaboratively complete the intake questionnaire
together.

Establish data infrastructure
and utilization

We found that centralized curation and validation
of electronic health records was an efficient
approach that is re-usable across multiple machine
learning projects.

Create MLOps We found that standardization of model training
and evaluation approach is efficient and re-usable
across multiple machine learning projects. We also
found that threshold selection based upon number
needed to alert is effective to make decision making
easier for clinicians.

Integrate into clinical
workflows

Evaluation of facilitators and barriers is an
important consideration to optimize
implementation success. Broad stakeholder
involvement and approval is required.

Yan et al. 10.3389/fdgth.2025.1462751
solution, validating and refining the solution, and evaluating the

impact of the intervention.

Some model outputs may directly result in actions, such as

re-ordering radiology queues. However, it is anticipated that

many models will provide information to end users, who will

then determine whether to act upon that prediction using

their clinical judgement. If the intention of the model is for

clinicians to act upon the prediction, implementation science

considerations become critical to encourage behavioral change.

Implementation interventions may include education, audit and

feedback, and incentives, with additional in-person supports at

initial deployment (38). Quantitative and qualitative evaluation

will typically examine process measures (measuring steps that

should be taken) and balancing measures (unintended negative

consequences), and will identify facilitators and barriers to

model uptake.

Other key considerations include the need for ongoing training

and support for clinical staff following deployment, challenges

maintaining end user engagement and the potential for resistance

to change. Effective change management strategy is key toward

sustained successful deployment (39–42).

Workflow and care pathways
As a component of implementation, the workflow of alerting

recipients and articulating the intended interventions arising

from the alert need to be determined. We have leveraged

existing clinical decision support (CDS) frameworks such as the

five rights of CDS (43) to guide the development of our

approach for returning prediction results to clinicians. Model

results may be provided to end users within the EHR via

passive or interruptive alerts, or may be emailed to end users

external to the EHR. For models that do not need immediate

interventions, we have favored the return of predictions via

email to a central person responsible for coordinating the

dissemination of interventions that are required. For example,

one project notifies pharmacists of which inpatients are at high

risk of vomiting.

To specify the intended actions that should be taken based upon

a positive prediction, we work with the end users to leverage their

expertise, values and preferences. We then create a structured care

pathway document to standardize how these actions are presented

to users. The PREDICT process for care pathway creation and

refinement generally follows a process we created to facilitate

clinical practice guideline-consistent care (44, 45).
Discussion

We have provided examples from the PREDICT experience

illustrating how common challenges with clinical ML deployment

were addressed. We have summarized our learnings as Table 2.

While this paper has reviewed approaches and challenges

encountered within a pediatric setting, similar issues have been

observed in adult settings. Such challenges include identifying

appropriate clinical scenarios for ML (1), creation of clinical

deployment environments (9), interoperability of EHR data (46),
Frontiers in Digital Health 06
and implementation into clinical workflows (47). Consequently,

most of these learning should be widely generalizable across

different healthcare types.

A limitation of this paper is that we did not address the social

and ethical implications of ML in healthcare. These are important

issues that warrant fulsome debate and discussion among

stakeholders, patients and families. Another limitation is that we

do not report on the results of PREDICT clinical implementations.

This type of reporting is an important future goal.

In conclusion, this paper provides practical recommendations

for developing and deploying ML solutions in healthcare based

upon the experiences at a single institution. These approaches

will require refinement over time as the number of deployments

and experience increase.
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