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Introduction: Early skin disease diagnosis is essential and one of the challenging 

tasks for a dermatologist. Manual diagnosis by healthcare providers is subjective, 

costly, and may yield inconsistent results. In contrast, automated skin disease 

detection and classification using traditional machine learning and deep 

learning approaches have shown promise in addressing this problem.

Methods: In this study, we propose a hybrid ensemble framework that 

integrates both feature-level fusion (FLF) and decision-level fusion (DLF) to 

leverage complementary strengths for detecting and classifying skin diseases. 

We employ two convolutional neural network (CNN)-based models, i.e., a 

modified DenseNet201 and VGG19, along with an attention-based model 

vision transformer (ViT) to identify and classify skin diseases. In FLF, feature 

representations from these models are point-wise added and passed through 

a shared classification head to make the final prediction. In DLF, decisions 

from each base model are collected, and the majority voting scheme is used 

to make a final decision. Furthermore, we incorporate a generative adversarial 

network (GAN)-based approach for offline-based training data augmentation 

to reduce overfitting and improve performance.

Results: Based on different evaluation metrics (i.e., accuracy, precision, recall, 

and F1-score), our proposed framework demonstrates superior performance 

on four benchmark datasets: the PH2, HAM10000, ISIC 2018, and ISIC 2019 

datasets, with an accuracy of 99.3%/99.2%, 92.7%/96.1%, 86.7%/89.0%, and 

94.5%/95.0%, respectively, for FLF/DLF.

Discussion: These results demonstrate that while both fusion strategies are 

effective, DLF slightly outperforms FLF, emphasizing the value of ensemble 

decision aggregation for robust skin disease classification.

KEYWORDS

skin disease diagnosis, deep learning, feature-level fusion, decision-level fusion, GAN, 

classification

1 Introduction

The human skin is the largest and most powerful organ in the body. It guards the 

body against outer temperature, ultraviolet rays, and harmful chemicals. Furthermore, 

the skin produces essential vitamin D in the human body. However, the human skin 

suffers from different causes, namely pollution, poor immunity, viruses, alcohol, 

unhealthy lifestyles, and ultraviolet light. Therefore, various diseases affect the human 

skin (1). Skin diseases are important public health problems that prevail in almost 

all age groups and are one of the most widespread kinds of illnesses worldwide (2). 
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In the current context, diagnosing diseases still necessitates self- 

monitoring and regular medical examinations. In most cases, 

skin diseases can be tackled without any special treatment, 

whereas some of them lead to cancer and are life-threatening. 

The World Health Organization (WHO) reports that by the age 

of 70, one in five Americans will receive a diagnosis of skin 

cancer, with approximately 95,000 new cases being diagnosed 

daily in the US alone (3).

Early detection and treatment of skin disease are essential for 

reducing patient suffering and improving outcomes (4); 

otherwise, it may advance, possibly spread, and penetrate deeper 

layers of the skin, resulting in more severe stages of the condition 

(5). In extreme circumstances, skin diseases can lead to serious 

outcomes, including hindrance of daily functions, breakdown of 

relationships, and harm to internal organs, even death in cases 

like melanoma (a skin disease primarily characterized by the 

abnormal growth of melanocytes). Furthermore, they present a 

genuine risk of mental health issues such as isolation, depression, 

and potentially even suicide. However, if diagnosed early and 

properly treated, the survival rate can be as high as 97.0% (6).

For early diagnosis of skin disease, self-examination is a crucial 

step (7). The American Center for the Study of Dermatology 

developed an ABCD guideline so that individuals can be vigilant 

in recognizing asymmetry, wavy borders, color changes, and 

diameter on their skin (8). Later, manual diagnoses are employed 

to detect skin diseases by dermatologists or other healthcare 

providers. Dermoscopy is one of the very popular techniques (9) 

to detect skin disease by magnifying and lighting the skin 

surface and underlying structures (10). For further investigations, 

dermatologists may perform a skin biopsy for pathological 

examination if it is required (11). However, these types of 

manual diagnosis heavily rely on visual interpretation and 

subjective judgment. Particularly, clinicians with varying levels of 

experience, knowledge, and diagnostic abilities may obtain 

inconsistent diagnoses of skin diseases. Furthermore, it is costly 

and necessitates the use of specialized medical diagnostic tools 

such as dedicated laser-based devices, micro-spectroscopy, and 

other dermoscopy tools to locate the lesion (12).

To tackle this challenge and alleviate the burden of clinicians, 

automated computer vision and machine learning systems 

have been developed for computer-aided diagnosis (CAD) 

systems for skin disease detection and diagnosis (13, 14). The 

use of CAD is convenient, less expensive, and faster (15), and 

systems can be divided into two categories: traditional machine 

learning (ML) and modern deep learning (DL)-based methods. 

Traditional machine learning (ML) approaches rely on manually 

hand-crafted features, typically involving pre-processing and 

extracting features like texture, color, size, and shape, followed 

by classification using methods such as gradient boosting, 

SVM, or artificial neural networks (ANN). Different ML-based 

approaches were employed for skin disease diagnosis in the 

literature; for example, Ahammed et al. (16) utilized Decision 

Tree (DT), Support Vector Machine (SVM), and K-Nearest 

Neighbor (KNN) models for skin disease detection and 

classification. Similarly, Jagdish et al. (17) employed KNN 

and SVM with wavelet analysis for skin disease detection and 

classification. However, applying these traditional ML methods 

to new, unfamiliar scenarios is often challenging.

In contrast, DL-based methods are convenient as they can 

automatically extract features and reduce errors, leading to 

better performance (18). They have produced promising results 

for the detection and classification of skin disease (19–22). For 

example, Abd et al. (22) developed a robust DL-based model for 

the classification of skin disease that uses MobileNetV3 for 

features extraction purposes. Khan et al. (20) used deep 

convolutional neural network-based models such as VGG and 

AlexNet to classify skin disease. Similarly, Brinker et al. (19) 

used the residual network ResNet50 for skin disease 

classification. Most studies rely on a single end-to-end model, 

and such models are prone to overfitting and hinder the 

adaptability and generalizability to other unfamiliar datasets.

To overcome these limitations, we propose a DL-based 

ensemble framework that classifies skin disease using feature-level 

fusion (FLF) in an end-to-end way and fusion at the decision 

level for a non-end-to-end manner for decision-level fusion 

(DLF). FLF merges feature representations before classification, 

allowing the model to learn richer, more fine-grained 

complementary information of lesions in a shared space, whereas 

DLF aggregates final predictions from multiple base models, 

reducing bias from a single base model. Using both allows the 

system to benefit from joint representation learning for FLF while 

still leveraging the robustness of majority voting for the DLF. 

More specifically, we demonstrated that DLF slightly outperforms 

FLF on most benchmarks, but the combination offers insights 

into which level of fusion is more beneficial for specific datasets. 

The contribution of this study is summarized as follows:

• We introduce a comprehensive end-to-end ensemble framework 

for diagnosing skin diseases, comprising two CNN-based and an 

attention-based vision transformer model. The features extracted 

from these base models are fused at a feature level to generate 

conclusive features in the final layer and employ Softmax for 

diagnosis. In addition, the individual classifiers’ decisions are 

merged using a majority voting technique to make the final 

decision for the skin disease diagnosis.

• We utilize data augmentation with a deep generative 

adversarial network (GAN) to produce additional training 

data. Through empirical investigations on the benchmark 

datasets, we observe a notable improvement in the 

performance using data augmentation.

• We evaluate the proposed framework on four publicly available 

skin disease datasets: PH2, HAM10000, ISIC 2018, and ISIC 

2019. The results demonstrate that the proposed framework 

achieves superior performance compared to various metrics 

such as accuracy, precision, recall, and F1-score.

2 Related work

2.1 CNN-based approaches

Convolutional neural networks (CNNs) have been remarkably 

efficient methods for handling pre-processing, extracting features, 
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and performing classification in various domains of computer 

vision, including biometrics (23, 24), medical imaging, as well as 

diagnosis of skin diseases (25–29). Some studies (25, 26) 

propose dedicated CNN architectures for skin disease 

classification. For example, Shanthi et al. (25) implemented an 

architecture consisting of 11 layers, incorporating convolution, 

pooling, fully connected (FC) layers, and Softmax for 

classification. On the other hand, four convolutional layers, two 

max-pooling layers, one FC layer, and three dense layers are 

found in (26). By contrast, some studies (27, 30, 31) employed 

existing pre-trained models for the classification of skin disease. 

For example, Muhaba et al. (27) utilized a pre-trained 

MobileNet CNN model and demonstrated it on a dataset 

collected from a clinic using different smartphone cameras. In 

contrast, the studies in (32) used four different CNN-based 

models: DenseNet121, ResNet50, VGG16, and ResNet18, and 

demonstrated on the HAM10000 dataset and found out that the 

ResNet50 obtained the best accuracy at 90.0%. Furthermore, 

Kousis et al. (30) conducted a study on the identification of skin 

lesions using 11 different CNN architectures. They demonstrated 

the classification of seven different types of skin lesions, where 

the DenseNet169 model achieved the best performance at 

92.2%, 93.6%, and 93.3%, of accuracy, sensitivity, and F1-score, 

respectively, compared to the other end-to-end CNN 

architecture using the HAM10000 dataset. Similarly, Mondal 

et al. (31) utilized a modified-DenseNet201 by replacing the last 

layers with a single global average pooling layer, five FC layers, 

dropout, and finally, one Softmax layer for classification and 

showed that it outperforms the existing DenseNet169 and 

DenseNet121 models where it gains 13.8% more accuracy than 

the non-modified DenseNet201 on the HAM10000 dataset. 

Similarly, Karthik et al. (33) have proposed a modification to 

the EfficientNet V2 model for the classification of skin disease. 

Specifically, they replaced the standard Squeeze-and-Excite block 

with an Efficient Channel Attention block. Shan et al. (34) 

introduced a convolutional Block Attention Module (CBAM) 

and used it in combination with DenseNet121 to enhance the 

feature representation capabilities. Additionally, they utilized an 

improved focal loss algorithm to deal with data imbalance 

effectively. These modifications have shown promising results in 

improving the performance of the model and achieving an AUC 

of 0.99 on the HAM10000 dataset. Similarly, Raghavendra et al. 

(35) used a model with CNN and a global average pooling layer 

to classify skin diseases. They also implemented the black hat 

filtering approach and the resampling technique to remove 

artifacts and increase data, which aided in outperformance by 

achieving accuracy at 97.2% on the HAM10000 dataset.

In addition, several studies explored the uses of CNN-based 

models for feature extraction. For example, the studies in (22, 

36) implement a lightweight MobileNet for feature extraction. 

Additionally, the authors used Long Short-term Memory 

(LSTM) in (36) and the Artificial Rabbits Optimizer in (22) and 

achieved an accuracy at 87.2%, 96.8%, and 88.7% on the ISIC 

2016, PH2, and HAM10000 datasets, respectively, while an 

accuracy of 85.3% was reached in (36) on the HAM10000 

dataset. Similarly, Yu et al. (37) employed ResNet50 to extract 

features and obtain the global feature descriptor using a fisher 

vector and finally classified skin diseases using SVM with a Chi- 

squared kernel. They validated their model on the ISBI 2016 

challenge dataset, achieving accuracy and AUC at 86.8% and 

85.2%, respectively. Similarly, Hameed et al. (29) utilized 

AlexNet for feature extraction and an SVM for classification. 

They evaluated a privately collected dataset and discovered that 

their approach achieved an accuracy of 86.2%. On the other 

hand, Seeja et al. (38) used U-Net in conjunction with an SVM 

for classification, demonstrating its effectiveness on the ISBI 

2016 dataset. Their approach achieved an accuracy of 85.2%, 

precision of 42.6%, recall of 50.0%, and F1-score of 46.0%. In 

contrast, Bandyopadhyay et al. (39) employed AlexNet, 

GoogLeNet, ResNet50, and VGG16 for feature extraction, and 

used SVM, AdaBoost, and Decision Tree classifiers for 

classification using the ISIC 2016 challenge dataset.

Some studies employed segmentation techniques to segment 

the area of the disease lesion, and subsequently, lesions were 

utilized to enhance the classification accuracy. Son et al. (40) 

proposed a two-stage approach to classify skin diseases. In the 

first stage, they implement a U-net architecture to decompose 

and normalize the input images, generating a segmentation map 

of the skin lesion. In the second stage, they introduce 

EfficientNets to classify the segmented images. This approach 

showed promising results in accurately identifying various skin 

diseases. Similarly, Adla et al. (41) utilized Tsallis entropy-based 

segmentation to detect the lesion area. Later, the classification of 

segmented lesions was done using a convolutional sparse 

Autoencoder. Furthermore, Kalpana et al. (28) segmented the 

malignant lesion using a threshold-based technique and 

classified it through an ensemble model with an SVM classifier 

and a random forest kernel. In addition, Zhu et al. (42) 

employed a CNN-based model for both binary classification 

(i.e., benign vs. malignant) and multiclass classification using 

high-frequency ultrasound images of skin lesions.

All of the single end-to-end or custom CNN-based models 

used a traditional convolutional approach, which may similarly 

extract the features, leading to robustness on a single dataset 

and less generalize on other datasets (43). However, end-to-end 

methods are necessary for real-world applications because they 

can automatically extract relevant features directly from raw 

data, reduce multiple processing stages, and make decisions 

based on the features, which is particularly necessary where 

manual feature extraction is challenging, for example, skin 

disease detection and identification. In this study, we propose an 

ensemble framework and perform experiments end-to-end as a 

feature-level fusion and a decision-level fusion.

2.2 Vision transformer-based approaches

The Vision Transformer (ViT) (44)-based approach represents 

attention-based architectures showcasing the effectiveness of 

attention mechanisms in capturing extensive spatial relationships 

within images. These models partition an image into non- 

overlapping patches of fixed size, subsequently transforming 
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them into a sequence of vectors through linear embedding. Similar 

to CNN-based approaches, ViT models are widely used for 

segmentation (45), detection and classification (46), as well as 

for skin disease diagnosis and classification (12, 47, 48). For 

example, Aladhadh et al. (12) employed a ViT model along with 

data augmentation for skin cancer diagnosis. They demonstrated 

on the HAM10000 dataset and found that the ViT-based model 

obtained better accuracy than CNN-based approaches for the 

classification of skin cancer with accuracy, precision, sensitivity, 

and F1-score at 96.1%, 96.0%, 96.5%, and 97.0%, respectively. 

Similarly, Xin et al. (47) introduced a framework including a 

multi-scale vision transformer and multi-scale patch embedding 

technique to improve the image features and finally apply 

contrastive learning for skin disease classification. Their 

proposed approach obtained accuracy, precision, and AUC at 

94.3%, 94.1%, and 98.0%, respectively, on the HAM10000 

dataset. Further, Nie et al. (49) employed a two-stage model 

including a CNN-based module to extract local and low-level 

features, a ViT model for the high-level semantic information 

from these features, and finally, a multi-layer perceptron (MLP) 

head was used for the classification of skin disease, and achieved 

accuracy, precision, recall, and F1-score at 89.5%, 89.6%, 89.5%, 

and 89.1%, respectively, on the HAM10000 dataset. In addition, 

Dai et al. (48) introduced the HierAttn model, which uses a 

multi-stage and multi-branch attention mechanism to 

simultaneously learn local and global contextual features while 

maintaining a lightweight architecture. This is particularly 

suitable for real-time and mobile-based applications in skin 

disease diagnosis, and classification.

2.3 Fusion-based approaches

Feature-level fusion (FLF) and decision-level fusion (DLF) are 

the most commonly used techniques for ensemble learning for 

skin disease diagnosis. In FLF, concatenation or pointwise 

addition of the extracted features from the multiple base models 

takes place. In contrast, in DLF, the decision of the base 

classifiers is averaged or selected by majority voting for the final 

decision. Regarding FLF, Wang et al. (50) introduced a 

multiscale feature fusion model for classifying skin disease using 

DenseNet121 and an improved VGG16. They demonstrated its 

performance on the HAM10000 dataset, achieving an accuracy 

of 91.2%, while Gairola et al. (51) introduced a multi-feature 

fusion approach using different deep networks to improve 

accuracy. Similarly, Elashiri et al. (52) extracted features from 

ResNet50, VGG16, and Deeplabv3 and concatenated them at the 

feature level. These concatenated features were sent to the 

feature transformation stage for weighted feature extraction, and 

finally, LSTM was employed for classification. They evaluated 

the PH2 and HAM10000 datasets and obtained an accuracy of 

93.5% and 93.8%, respectively, for the PH2 and HAM10000 

datasets. Similarly, Afza et al. (53) introduce an approach 

including image acquisition and enhanced contrast, feature 

extraction using deep learning, and selecting the best feature 

using entropy-mutual information and fuse by employing a 

modified canonical correlation. They evaluated the HAM10000 

and ISIC2018 datasets and found that their framework achieved 

an accuracy of 93.4% on both datasets.

In contrast, Dang et al. (54) proposed an ensemble model 

comprised of five CNN-based models: Inception-v3, 

Densenet169, ResNet50, Inception-ResNet-v2, and Xception, 

along with Squeeze-and-Excitation Blocks to emphasize on 

informative features. They employed majority voting for 

decision-level fusion. They obtained accuracy, precision, recall, 

F1-score, and AUC at 90.9%, 85.9%, 80.8%, 82.8%, and 91.1%, 

respectively, on the ISIC 2017 dataset. Similarly, Harangi (55) 

proposed an ensemble model where they considered four 

CNN-based methods: VGG, ResNet, GoogLeNet, and AlexNet. 

They employed the weighted average technique for the final 

prediction of the skin disease. They achieved an AUC of 0.891 

on the official test dataset of the IEEE International Symposium 

on Biomedical Imaging (ISBI) 2017 challenge on Skin Lesion 

Analysis Towards Melanoma Detection. We observed that 

most of the methods employed either FLF or DLF; however, in 

this study, we studied extensively FLF and DLF in our 

ensemble framework.

3 Methodology

3.1 Overview

In this study, we propose a novel ensemble framework that 

leverages the complementary strengths of three modules to 

extract smart features: two of which are CNN-based, and the 

other is an attention-based Vision Transformer (ViT). An 

overview of the proposed framework is presented in Figure 1. 

Our framework is based on a modified DenseNet201 (56), 

and VGG19 (57) as a CNN-based approach, while Vision 

Transformer (ViT) (44) is an attention-based vision transformer 

model. The fused features are subsequently fed into a fully 

connected embedding layer. Finally, a single-layer classification 

network with a Softmax activation function is employed. This 

network calculates the cross-entropy loss for end-to-end 

classification, realizing feature-level fusion (FLF). Additionally, 

the decision of each individual model is employed to fuse for 

the final decision for decision-level fusion (DLF) as a majority 

voting technique.

3.1.1 CNN-based model

Our CNN-based approaches are based on the modified 

DenseNet201 and VGG19 architecture.

DenseNet (56) is a high parametric efficient CNN-based 

model. It reuses the features from different layers, which 

increases the variety of input for subsequent layers. Additionally, 

it prevents vanishing gradients by dense connections between 

layers and also ensures no loss of information (58) and efficient 

memory consumption (59). DenseNet has different versions, 

which are categorized based on the number of layers. In our 

proposed framework, we exploit the DenseNet201, which 

consists of 201 layers. The fundamental component of DenseNet 

Zasim Uddin et al.                                                                                                                                                   10.3389/fdgth.2025.1478688 

Frontiers in Digital Health 04 frontiersin.org



is a defined number of dense blocks along with a transition block. 

At first, an input image X with spatial resolution H � W, where H, 

and W stand for height and width, respectively, are passed 

through a 7 � 7 convolution and 3 � 3 max-pooling layers and 

produces an output feature map Z0
0 with dimension M0

0 � N0
0 , 

and can be expressed as:

Z0
0 ¼ M Pool(Conv(X)), 

where, Conv(�) is convolution, while M Pool(�) stands for max- 

pooling. Then, the feature map passes through several dense 

blocks and transition layers. In a dense block, each layer takes 

input from all preceding layers. Each dense block begins with a 

bottleneck layer, a 1 � 1 convolution layer, which decreases the 

number of channels in the input feature maps, followed by a 

3 � 3 convolution layer that is densely interconnected. For the 

kth block, it can be expressed as follows:

Zl
k ¼ Hk(cat[Z0

k , Z1
k , . . . , Zl�1

k ]), 

where, Hk(�) is a non-linear transformation that comprises batch 

normalization, ReLU, and convolution, and generates a feature 

map Zl
k with dimension Ml

k � Nl
k in the lth layer along with the 

kth dense block, while cat(�) is the concatenation of all 

preceding layers’ feature map Z0, Z1, . . . , Zl�1, respectively, for 

the layers 0, 1, . . . , l � 1.

Furthermore, a transitional block is introduced between dense 

blocks to reduce the size of the feature maps and the number of 

channels. The transition includes a BN layer, a 1 � 1 

convolutional layer, and an average pooling layer with a stride 

of 2 � 2. Later, an FC layer with dimension Ded is added to 

extract features and fuse with other features [in Equation 1] for 

an end-to-end feature-level fusion (FLF). Regarding the 

decision-level fusion (DLF), a global average pooling (GAP) 

layer is exploited to aggregate the spatial information into a 

fixed-length feature vector and Softmax layer classification.

VGG19 (57) is the most widely explored method for image 

classification. A series of stacked convolutional layers are the 

foundation of the VGG19 structure, which is then followed by FC 

layers. The convolutional part is made up of 16 convolutional 

and is divided into five blocks and three FC layers with ReLU 

activation. Each convolution consists of a 3 � 3 kernel with a 

2 � 2 pooling layer. Firstly, the input image, X, is passed through 

Block A consists of two consecutive convolutions and max- 

pooling along with 64 number of channel and generates a feature 

map, Xi1 with dimension K2 � L2 and is outlined as:

Xi1 ¼ M Pool(Conv(Conv(X))), 

where, Conv(�), and M Pool represents convolution and max- 

pooling respectively. Afterward, this feature map is passed through 

Block B in the same way as Block A, generating a feature map Xi2, 

and sent to the Block C consisting of four consecutive 

convolutions followed by max-pooling along with 256 channels, 

generates a feature map Xi3 with a size of K4 � L4. Similarly, the 

feature map Xi3 is sent to Block D with four consecutive 

convolutions followed by max-pooling along with 512 channels, 

and generates a feature map Xi4, then this is sent to Block E and 

generates the final feature map Xi5, using in the same way as 

Block D. For more information, please follow the original paper (57).

Finally, we added an FC layer after the Block E to have the same 

dimensions as the Vgd, which encodes rich spatial information and 

FIGURE 1 

Overview of our proposed ensemble framework for the feature extraction (left side) and classification (right side) of skin disease. For feature 

extraction, the framework includes three modules: two CNN-based models and an attention-based model. For classification, the framework 

includes feature-level fusion (FLF) and decision-level fusion (DLF). The extracted features from base models are fused as pointwise addition for 

FLF, while majority voting techniques are employed for DLF.
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fuses with the FLF used in Equation 1. By contrast, we employed a 

global average pooling (GAP) layer to aggregate the spatial 

information into a fixed-length feature vector and Softmax layer 

classification for the DLF, as shown in Figure 1.

3.1.2 Attention-based model
Our framework employs a Vision Transformer-based model 

(44), which applies the standard multi-head self-attention 

(MHSA) mechanism originally introduced for natural language 

processing (60). The input image X [ R
H�W�C is reshaped into 

N ¼ HW=P2 non-overlapping patches of size P � P, linearly 

projected to a latent dimension D, and prepended with a 

learnable class label Xcls. A positional embedding E pos is added 

to preserve spatial relationships, it can be represented as:

Z0 ¼ Xcls; X1
pchE; . . . ; XN

pchE
h i

þ Epos:

The resulting sequence is passed through several encoder layers, 

each containing a standard MHSA block followed by a two-layer 

feed-forward multi-layer perceptron (MLP) with GELU 

activation and residual connections. The MHSA computes 

attention as:

A(Q, K, V) ¼ Softmax
QKT

ffiffiffiffi

D
p

� �

V, 

where Q, K, and V are the learned query, key, and value 

projections. The outputs from all heads are concatenated 

and linearly projected to produce the final representation. 

For additional information on the MHSA formulation, see 

(44). Finally, the Vid features from the MLP head are used 

for FLF in Equation 1, while the classification decision is 

used for DLF.

3.2 Feature-level fusion (FLF)

We employ the point-wise addition of the extracted features 

(e.g., Ded, Vgd, and Vid) from the previously mentioned base 

models in our proposed ensemble model for feature-level fusion, 

which can be performed as follows:

Ffused ¼ Padd([Ded, Vgd, Vid]), (1) 

where Padd(�) denotes point-wise addition of the feature vectors. 

Prior to fusion, each feature vector is normalized to ensure 

comparable scale and distribution across the CNN and ViT 

models. After that, we employ a FC layer with 512 dimensions 

to enable the model to learn appropriate weighting and 

alignment of the fused features during training. Finally, a 

Softmax layer produces the output probabilities for skin disease 

classification in an end-to-end manner:

Yclass ¼ Softmax(FC(Ffused)):

3.3 Decision-level fusion (DLF)

Decision-level Fusion (DLF) combines the decisions for each 

of the classifier’s decisions instead of only a single model. In our 

framework, we consider the majority voting strategy to count 

the votes received from each classifier. The class with the most 

votes is chosen as the consensus decision, and the overall 

procedure can be outlined as follows:

PA ¼ DeA(X)

PB ¼ DeB(X)

PC ¼ DeC(X)

Yclass ¼ MV(PA, PB, PC), 

where, X represents the input image, and PA, PB, and PC represent 

the prediction classes using the modules A, B, and C, respectively, 

while MV(�) denotes majority voting. The overview for the DLF 

portion is shown in Figure 1.

4 Datasets and evaluation metrics

To demonstrate the proposed framework for diagnosing skin 

diseases, experiments were conducted on four publicly available 

benchmark datasets.

4.1 Datasets

PH2 dataset (61) is a dataset with three skin disease classes: 

Atypical Nevus (AN), Common Nevus (CN), and Melanoma 

(MEL) captured from the Dermatology Service of the Hospital 

Pedro Hispano, Matosinhos, Portugal. It comprises 200 images 

that were captured under identical conditions and instrumentation 

resolution. We followed the K-fold cross-validation technique to 

ensure a robust and unbiased evaluation of our proposed method. 

Specifically, we used K = 5, dividing the dataset into five equal 

parts. In each iteration, four folds were used for training and the 

remaining one for testing, with the test fold rotating across the five 

runs. Finally, the results were averaged across all five folds. The 

benchmark dataset used in this evaluation is denoted as PH2 in 

the experimental discussions.

HAM10000 (62) is a training subset of the ISIC 2018 challenge 

dataset, including 10,015 training dermatoscopic image samples. 

The dataset includes images of seven types of skin disease: 

Actinic keratosis (AKIEC), Basal cell carcinoma (BCC), Benign 

keratosis (BKL), Dermatofibroma (DF), Melanocytic nevi (NV), 

Melanoma (MEL), and Vascular lesions (VASC). The data were 

captured over 20 years from Australia and Austria from 54.0% 

male and 45.0% female participants. An example sample image 

for each class is shown in Figure 2. Initially, the HAM10000 

dataset was released only as a training set, with no 

corresponding official test labels provided. Consequently, 

numerous state-of-the-art studies adopted a common practice of 

splitting the HAM10000 dataset (i.e., 80:20 ratio) into training 
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and testing subsets for performance evaluation. Following this 

widely used approach, we similarly conducted experiments for a 

fair comparison with prior works. The benchmark dataset is 

denoted by HAM10000 in the experiment discussions.

ISIC 20181 is an official test dataset released by the ISIC 2018 

challenge organizers, consisting of 1,512 dermatoscopic images 

covering the same seven classes: AKIEC, BCC, BKL, DF, NV, MEL, 

and VASC. Unlike HAM10000, which was originally provided 

solely as a training set, the ISIC 2018 dataset includes ground-truth 

labels for the test samples, enabling independent evaluation of 

model performance. Following the official ISIC 2018 challenge 

protocol, the HAM10000 dataset is used for training, and the ISIC 

2018 dataset serves as the independent test set. This setup provides 

a robust assessment of the model’s generalizability to unseen data 

beyond the HAM10000 distribution. The benchmark dataset is 

denoted by ISIC 2018 in the experiment discussions.

ISIC 20192 is a further challenge training dataset that 

comprises two datasets, namely HAM10000 and BCN_20000. It 

includes a total of 25,331 images. The dataset covers eight 

different skin disease categories, which are AKIEC, BCC, BKL, 

DF, MEL, NV, Squamous cell carcinoma (SCC), and VASC. For 

a fair comparison with the existing approaches, we followed the 

same protocol as the dataset was randomly divided into 90% for 

training and the remaining 10% for testing.

4.2 Data augmentation

The deep learning-based approaches require large-scale training 

data to enhance performance and mitigate the risk of overfitting. 

A common strategy to address this challenge involves artificially 

augmenting the training samples to allow the models to gain a 

deeper understanding and insight. Typically, there are two types 

of data augmentation—ofPine and online data augmentation—for 

computer vision (63, 64). Pre-training data augmentation involves 

the a priori application of image transformations to the training 

set. This process generates augmented images, which are then 

stored alongside their original counterparts within the dataset. 

During model training, both the original and augmented data are 

utilized. In contrast, real-time data augmentation entails the 

application of image transformations on a per-batch basis during 

the training process. These transformations effectively generate 

variations of the original training images, which are subsequently 

fed into the model for training. Common real-time augmentation 

techniques encompass rotation, resizing, horizontal and vertical 

Pipping, and cropping.

To augment the training set, we employ a pre-training strategy 

that leverages a generative adversarial network (GAN) (65) for data 

augmentation. Additionally, we incorporate images from the ISIC 

archive3 to increase the training data volume. Furthermore, we 

employ rotation, resizing, and cropping as online data 

augmentation. The class-wise distribution of the sample skin disease 

images before and after augmentation is presented in Figure 3.

To assess the quality of the GAN-generated sample images, we 

computed the Fréchet Inception Distance (FID) (66) scores across 

datasets and classes. The generated images achieved average FID 

scores of 82.9 for PH2, 37.8 for HAM10000, and 36.5 for ISIC 

2019. Lower FID values indicate a higher similarity between the 

generated and real images, suggesting that the generated samples 

are visually realistic and diverse overall. The detailed class-wise 

FID scores are summarized in Table 1, and representative 

examples of the generated images are shown in Figures 4, 5 for 

the PH2 and HAM10000 datasets, respectively.

4.3 Evaluation metrics

We evaluate the effectiveness of our proposed framework 

using different evaluation criteria: Accuracy, Precision, Recall, 

F1-score, Balanced accuracy, ROC (Receiver Operating 

Characteristic), and AUC (Area Under the Curve) (67). These 

evaluation metrics are calculated from the confusion matrices’ 

key four parameters, i.e., True Positives (TP), True Negatives 

FIGURE 2 

Example images for each skin disease from the HAM10000 dataset, where AKIEC, actinic keratosis; BCC, basal cell carcinoma; BKL, benign keratosis; 

DF, dermatofibroma; NV, melanocytic nevi; MEL, melanoma; VASC, vascular lesions. (a) AKIEC. (b) BCC. (c) BKL. (d) DF. (e) NV. (f) MEL. (g) VASC.

1https://challenge.isic-archive.com/data/#2018

2https://challenge.isic-archive.com/data/#2019 3https://www.isic-archive.com/
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(TN), False Negatives (FN), and False Positives (FP). TP refers to 

the number of instances correctly predicted as a positive class, and 

TN refers to the number of instances correctly predicted by the 

model as belonging to the negative class. On the other hand, FP 

is the number of instances where the model incorrectly predicts 

the positive class, and FN is the number of instances where the 

model incorrectly predicts the negative class.

In addition, we consider ROC, which visualizes the trade-off 

between True Positive Rate (TPR) and False Positive Rate (FPR) 

across classification thresholds, while AUC quantifies the model’s 

overall performance, with higher values indicating better 

discrimination between classes, where 1.0 represents perfect 

classification and 0.5 indicates random guessing. Accuracy is 

the ratio of correct predictions made by the model out of the 

total number of predictions, and can be calculated as follows:

Accuracy ¼ jTP þ TNj
jTP þ TN þ FP þ FNj

Precision measures the proportion of true positive predictions out of 

all positive predictions made by the model and is calculated as:

Precision ¼ jTPj
jTP þ FPj

Recall also known as True Positive Rate, TPR measures the 

proportion of true positive predictions out of all actual positive 

instances in the experiment, which can be calculated as:

Recall ¼ TPR ¼ jTPj
jTP þ FNj

False Positive Rate (FPR) measures the proportion of false positive 

predictions out of all actual negative instances, calculated as:

FPR ¼ jFPj
jFP þ TNj

FIGURE 3 

The distribution of the training samples for each class in the different datasets before and after data augmentation, using a generative adversarial 

network (GAN) and with ISIC archives. (a) PH2. (b) HAM10000. (c) ISIC 2018. (d) ISIC 2019.

TABLE 1 Fréchet Inception Distance (FID) scores for sample images 
generated by the generative adversarial network (GAN) across datasets 
and disease classes.

Disease name PH2 HAM10000 ISIC 2018 ISIC 2019

AKIEC – 40.5 40.5 38.8

BCC – 38.3 38.3 36.9

BKL – 29.0 29.0 27.8

DF – 40.7 40.7 39.1

NV – 29.4 29.4 27.2

VASC – 50.5 50.5 44.1

SCC – – – 42.4

AN 80.6 – – –

CN 83.2 – – –

MEL 84.8 35.0 35.0 35.4

Average 82.9 37.8 37.8 36.5

A lower FID score indicates higher similarity to real images. A “–” denotes the absence of a 

particular disease class in the respective dataset.

Zasim Uddin et al.                                                                                                                                                   10.3389/fdgth.2025.1478688 

Frontiers in Digital Health 08 frontiersin.org



F1-score is the harmonic mean of precision and recall; it strikes a 

balance between precision and recall, making it an effective 

metric for assessing both false positives and false negatives. The 

F1-score is calculated as follows:

F1 � score ¼ 2(Precision)(Recall)

Precision þ Recall 

Balanced accuracy (BACC) is an evaluation metric used to evaluate 

the accuracy of a classification model when dealing with imbalanced 

datasets. It is defined as the average recall for each class.

BACC ¼ 1

Nclasses

X

Nclasses

i

Recalli 

5 Experiments and results

In this section, we will introduce the system implementation 

and performance of the proposed framework.

5.1 Implementation details

The proposed framework was implemented by leveraging the 

TensorFlow library on an NVIDIA GeForce RTX 3090 GPU. The 

AdamW optimizer with a learning rate of 1 � e�4, a weight decay 

of 4 � e�3 and an epsilon of 1 � e�7 were used to optimize our 

proposed framework. Additionally, categorical cross-entropy loss 

is used as a loss function. We employed 150 epochs with 8 

mini-batch sizes to train our end-to-end FLF and DLF 

framework. The learning rate (LR) was reset to 1e-5 after 50 

epochs and again reset to 1e-6 after 100 epochs. Moreover, the 

the dimension d was set to 768 for the Ded, Vgd, and Vid 

in Equation 1.

5.2 Comparison with SOTA methods

5.2.1 Evaluation of PH2 dataset
The accuracy, precision, recall, and F1-score on the PH2 

dataset are presented in Table 2 and Supplementary Figure S1. 

Compared with the CNN-based method for feature extraction 

and then feeding these features into the ML-based classifier 

FIGURE 4 

Example of images generated by the generative adversarial network (GAN) for the PH2 dataset. (a) Atypical Nevus (AN). (b) Common Nevus (CN). 

(c) Melanoma (MEL).

FIGURE 5 

Example of images generated by the generative adversarial network (GAN) for the HAM10000 dataset, where AKIEC, actinic keratosis; BCC, basal cell 

carcinoma; BKL, benign keratosis; DF, Dermatofibroma; NV, Melanocytic nevi; MEL, Melanoma; VASC, Vascular lesions. (a) AKIEC. (b) BCC. (c) BKL. (d) 

DF. (e) NV. (f) MEL. (g) VASC.
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(68, 70, 72), the custom CNN-based model (71), and CNN-based 

End-to-End models (68, 69), our proposed feature-level fusion 

(FLF) and decision-level fusion (DLF) ensemble framework 

achieved an accuracy of 99.3%, and 99.2% respectively for the 

FLF and DLF. Moreover, we observe that the proposed FLF 

approach achieves performance comparable to the best existing 

method reported by Maniraj et al. (69), while also providing 

consistently high precision, recall, and F1-scores.

5.2.2 Evaluation of the HAM10000 dataset

The accuracy, precision, recall, and F1-score on the 

HAM10000 dataset are presented in Table 3 and Supplementary 

Figure S1, along with the ROC curves and corresponding AUC 

values in Figure 7. The confusion matrices of our proposed 

approaches are shown in Figure 6. Compared with existing well- 

established models including the pre-trained CNN-based models 

ResNet50 (75), EfficientNetB4 (77), EfficinetNetB1 (80) and 

Xception (97), custom CNN (78, 79, 82), and studies with 

attention-based or combined with a CNN-based approach (49, 

76, 81), our proposed end-to-end FLF achieves 92.7%, 93.5%, 

92.6%, and 92.8% accuracy, precision, recall, and F1-score. On 

the other hand, Our DLF achieves 96.1%, 96.2%, 96.1%, 96.1% 

accuracy, precision, recall, and F1-score. Notably, we also 

compared our approach with the recent CNN along with 

ViT-based hybrid method proposed in (83), which achieved 95.0% 

accuracy, 94.7% precision, 92.1% recall, and 93.3% F1-score.

Furthermore, our proposed DLF framework surpasses the 

best-performing existing benchmarks by 0.3%, 0.2%, 0.1%, and 

0.1% in terms of accuracy, precision, recall, and F1-score, 

respectively. To further validate the robustness of our method, 

we performed a bootstrap analysis with 1,000 iterations to 

compute 95% confidence intervals (CIs) for the key performance 

metrics. The results are summarized in Table 4. Our DLF 

achieved an accuracy of 96.1% [95% CI: 95.2%, 96.9%], while 

the second-best method achieved an accuracy of 95.8%. Notably, 

the lower bound of our method’s CI (95.2%) is close to the 

mean accuracy of the second-best method, indicating a 

consistent—though modest—improvement. Similarly, the 

precision, recall, and F1-score exhibit tight confidence intervals, 

rePecting stable and reliable performance across multiple 

resamples. These findings statistically reinforce that our method 

offers a robust and consistent improvement over the existing 

benchmarks, with reduced variability in performance.

5.2.3 Evaluation on the ISIC 2018 dataset

The balanced accuracy, precision, recall, and F1-score on the ISIC 

2018 dataset are presented in Table 5 and Supplementary Figure S1, 

along with the confusion matrix of our approaches, which is shown 

in Figure 8. Compared with CNN-based models (84, 87–90), our 

TABLE 2 Comparison of the proposed framework with existing methods applied to the PH2 dataset.

Reference Method Accuracy Precision Recall F1-score

Benyahia et al. (68) DenseNet+SVM 99.0 – – –

Maniraj et al. (69) VGG 99.3 99.2 99.4 –

Elashiri et al. (52) ResNet50+VGG16+DeepLabv3 93.5 90.4 – –

Afza et al. (70) ResNet50+NB 95.4 95.3 – 95.2

Reddy et al. (71) CNN 94.2 96.2 91.8 93.9

Maqsood et al. (72) Xception+ResNet50 ResNet101+VGG16+SVM 98.9 – – –

Mustafa et al. (73) ResUNet+AlexNet 94.2 – – –

Our FLF (DenseNet201+VGG19+ViT) 99.3 99.3 99.3 99.3

Our DLF (DenseNet201+VGG19+ViT) 99.2 99.2 99.2 99.2

Bold values indicate the best benchmark.

TABLE 3 Comparison of the proposed framework with existing methods applied to the HAM10000 dataset.

Reference Method Accuracy Precision Recall F1-score

Liu et al. (74) CNN 92.5 – 71.5 60.7

Al et al. (75) ResNet50 89.3 – 81.0 81.3

Nie et al. (49) CNN+Attention 89.5 89.6 89.5 89.1

Cai et al. (76) Attention 93.9 – 90.1 90.1

Ali et al. (77) EfficientNetB4 87.9 88.0 88.0 87.0

Shetty et al. (78) CNN 95.2 88.0 85.0 86.0

Wu et al. (79) ResNet50 95.8 96.0 96.0 96.0

Tajerian et al. (80) EfficientNetB1 84.3 73.4 67.4 70.0

You et al. (81) Attention+CNN 80.4 – – –

Wei et al. (82) DenseNet+ConvNeXt 90.9 83.8 83.8 83.5

Mustafa et al. (73) ResUNet+AlexNet 92.0 – – –

Pacal et al. (83) CNN + ViT 95.0 94.7 92.1 93.3

Our FLF (DenseNet201+VGG19+ViT) 92.7 93.5 92.6 92.8

Our DLF (DenseNet201+VGG19+ViT) 96.1 96.2 96.1 96.1

Bold and italic values indicate the best and second-best benchmarks, respectively.
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proposed FLF approach has achieved 86.7%, 97.0%, 84.6%, and 85.2%, 

respectively, for balanced accuracy, specificity, recall, and F1-score 

while 89.0%, 97.3%, 86.1%, and 86.4% for DLF, respectively. This 

implies the supremacy of our proposed approaches, where the DLF 

approach achieves 0.5% higher balanced accuracy than the best- 

performing existing benchmarks. Our observations demonstrate 

that decision-level fusion (DLF) achieves superior benchmark 

performance among the evaluated methods.

FIGURE 7 

ROC curves for the FLF and DLF approaches on the HAM10000 dataset, with corresponding AUC values included in the legend. (a) Feature-level 

fusion. (b) Decision-level fusion.

FIGURE 6 

Normalized confusion matrices of FLF and DLF approaches on the HAM10000 dataset. AKIEC, actinic keratosis; BCC, basal cell carcinoma; BKL, 

benign keratosis; DF, dermatofibroma; NV, melanocytic nevi; MEL, melanoma; VASC, vascular lesions. (a) Feature-level fusion. (b) Decision- 

level fusion.

TABLE 4 Bootstrap results with 95% confidence intervals (CI) for the 
decision-level fusion (DLF) method on the HAM10000 dataset for 
1,000 iterations.

Metric Mean CI lower CI upper

Accuracy [%] 96.1 95.2 96.9

Precision [%] 96.2 95.4 97.0

Recall [%] 96.1 95.2 96.9

F1-score [%] 96.1 95.2 96.9
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5.2.4 Evaluation on the ISIC 2019 dataset
The accuracy, precision, recall, and F1-score on the ISIC 2019 

dataset are presented in Table 6 and Supplementary Figure S1, along 

with the confusion matrix of our approaches, which is shown in 

Figure 9. Comparing the CNN-based model with an SVM (91), 

GoogleNet, and DarkNet (96), EfficientNets, SENet, and ResNeXt 

(92), and the single end-to-end CNN-based model MobileNetV2 

(95), our proposed FLF framework achieves 94.5%, 94.7%, 94.4%, and 

94.4% accuracy, precision, recall, and F1-score, respectively, while 

95.0%, 94.9%, 94.8%, and 94.8% for DLF, respectively. This implies 

that our proposed end-to-end FLF ensemble framework achieves 

comparable performance while DLF slightly improves over the 

existing best-performing benchmark. For example, DLF surpasses by 

2.9% and 1.8%, respectively, for the precision and recall from the 

existing best-performing benchmark [i.e., the approach in (94)] while 

by 2.7%, and 1.4% for FLF.

6 Discussion

Our proposed framework leverages an ensemble approach that 

integrates two convolutional neural networks (CNN)-based 

architectures: a modified DenseNet201 and a VGG19. Additionally, 

it incorporates an attention-based vision transformer model, ViT. 

To address data scarcity, we employed a pre-training strategy 

utilizing a generative adversarial network (GAN) (65) for generating 

image samples artificially. We also added samples from other ISIC 

archives. Moreover, we added other online data augmentation 

techniques during training. Here, we conduct a comparative analysis 

of the performance achieved by our proposed framework against 

various baselines (i.e., base models w/o Data Augmentation (DA), 

DA with GAN (DA_GAN), and ISIC archives (DA_Archive)). 

Additionally, we also compared each of the base models. Similarly, 

we further delve into an in-depth performance analysis of the FLF 

and DLF for the final classification. In this section, for ablation 

studies of our proposed framework, we selected the small-scale and 

large-scale datasets PH2 and ISIC 2019 and adhered to the identical 

protocol outlined in Section 4.1 for these analyses.

6.1 Impact of data augmentation

We illustrate the impact of data augmentation for each of the 

base models, modified VGG19, DenseNet201 and ViT along with 

TABLE 5 Comparison of the proposed framework with existing methods applied to the ISIC 2018 dataset.

Reference Method B. Acc. Specificity Recall F1-score

Nozdryn et al. (84) CNN 88.5 98.6 83.3 –

Gessert et al. (85) DenseNet+ResNeXt+SENets 85.6 98.4 80.9 –

Zhuang et al. (86) SENet+PNASNet 84.5 98.0 80.4 –

Mahbod et al. (87) EfficientNetB0+EfficientNetB1+SeReNeXt50 86.2 – – –

Shen et al. (88) EfficientNetB0 85.3 97.3 – –

Barata et al. (89) CNN 79.1 – – –

Tsai et al. (90) CNN 82.1 – – –

Our FLF(DenseNet201+VGG19+ViT) 86.7 97.0 84.6 85.2

Our DLF(DenseNet201+VGG19+ViT) 89.0 97.3 86.1 86.4

Bold and italic values indicate the best and second-best benchmarks, respectively. Here, B.Acc. indicates the balance accuracy.

FIGURE 8 

Normalized confusion matrices of FLF and DLF on the ISIC 2018 challenge test dataset. AKIEC, actinic keratosis; BCC, basal cell carcinoma; BKL, 

benign keratosis; DF, dermatofibroma; NV, melanocytic nevi; MEL, melanoma; VASC, vascular lesions. (a) Feature-level fusion. (b) Decision- 

level fusion.
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the proposed frameworks in Table 7. We can observe that the 

accuracy is improved by a large margin for a small-scale dataset 

(i.e., PH2 dataset) when employing the augmentation using 

GAN as well as ISIC archives. As shown in Table 7, the 

accuracy is improved from 11.6% to 22.8% when we increase 

the training sample size using the deep generative approach. 

Moreover, improvement continues when the training data 

volume is again increased by adding samples from ISIC 

archives. Overall, we can see that the accuracy is improved from 

15.2% to 25.4% when we augment the training dataset using a 

generative approach and add samples from ISIC archives. We 

think that this large margin accuracy improvement for the 

small-scale dataset PH2 when augmenting the training dataset 

because large-scale training datasets are essential for the DL- 

based approach for effective training and generalization.

In contrast, for the large-scale dataset ISIC 2019, we observed 

marginally improved accuracy when employing data 

augmentation techniques. For instance, the accuracy is improved 

from 0.7% to 0.8% when the training sample is augmented by a 

generative approach GAN. A similar tendency we observed when 

we added samples from ISIC archives. In general, the accuracy is 

improved by around 3.0% when the training data is augmented 

using GAN and ISIC archives. This modest improvement can be 

attributed to the inherent characteristics of the ISIC 2019 dataset. 

As a large-scale dataset encompassing 22,797 samples, it already 

possesses a high degree of diversity and quantity, providing a 

sufficient foundation for robust model training.

6.2 Impact of individuals module

We evaluated each of the base models considered in our 

framework separately: The modified VGG19, DenseNet201 and 

ViT. We can observe that the vision transformer-based ViT 

model works better than the CNN-based model. For example, 

the accuracy of the ViT model with data augmentation is 98.8% 

on the small-scale dataset PH2 while 97.9%/93.4% for the 

DenseNet201/VGG19. Regarding the large-scale dataset ISIC 

2019, we observe a similar tendency that the ViT model works 

better than the CNN-based approach DenseNet201 and VGG19. 

TABLE 6 Comparison of the proposed framework with existing methods applied to the ISIC 2019 dataset.

Reference Method Accuracy Precision Recall F1-score

Kassem et al. (91) GoogleNet+SVM 94.9 80.4 79.8 –

Gessert et al. (92) EfficientNets+SENet+ResNeXt 63.0 – 73.0 –

Bhardwa et al. (93) CNN+SVM 86.0 80.0 60.0 –

Jain et al. (94) DNN 95.0 92.0 93.0 –

Wang et al. (95) MobileNetV2 84.6 – – –

Abdelhafeez et al. (96) GoogleNet+DarkNet+SVM 85.7 84.0 76.1 –

Mustafa et al. (73) ResUNet+AlexNet 93.4 – – –

Pacal et al. (83) CNN + ViT 92.5 90.4 87.7 88.9

Our FLF(DenseNet201+VGG19+ViT) 94.5 94.7 94.4 94.4

Our DLF(DenseNet201+VGG19+ViT) 95.0 94.9 94.8 94.8

Bold and italic values indicate the best and second-best benchmarks, respectively.

FIGURE 9 

Normalized confusion matrices of FLF and DLF on the ISIC 2019 dataset. AKIEC, actinic keratosis; BCC, basal cell carcinoma; BKL, benign keratosis; 

DF, dermatofibroma; NV, melanocytic nevi; MEL, melanoma; SCC, squamous cell carcinoma; VASC, vascular lesions. (a) Feature-level fusion. (b) 

Decision-level fusion.
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We think that ViT-based models work better because they capture 

global and local contexts more effectively and learn complex 

relationships without relying on fixed receptive fields. 

Furthermore, unlike the CNN-based approach, ViT leverages 

self-attention mechanisms to consider interactions between 

image patches, enabling them to better understand long-range 

dependencies crucial for tasks like detection and classification.

Regarding the CNN-based approaches of the modified 

DenseNet201 and VGG19, we can observe that DenseNet201 

works better than VGG19. For example, DenseNet201 obtained 

accuracy at 97.9% on the small-scale dataset PH2 while 93.4% 

on the large-scale dataset ISIC 2019. This indicates that it 

surpassed 4.5% and 6.5% from the VGG19, respectively, for the 

PH2 and ISIC 2019 datasets. We think that it may be the cause 

of reason, such as VGG19 is a relatively straightforward network 

where each layer feeds into the next. At the same time, 

DenseNet201 incorporates dense connections, where each layer 

receives additional inputs from all preceding layers and passes 

its feature maps to all subsequent layers. This characteristic 

allows for feature reuse throughout the network, consequently 

enhancing model performance and mitigating the risks of 

overfitting and vanishing gradients.

To further assess the interpretability and clinical relevance of the 

models, we generated Grad-CAM (98) visualizations using the 

DenseNet201 architecture. These heatmaps highlight the image 

regions that most strongly contributed to each prediction, showing 

that the model predominantly focuses on lesion areas rather than 

irrelevant background. An example Grad-CAM activation map is 

presented in Figure 10, demonstrating the alignment between the 

model’s attention and dermatological diagnostic regions.

6.3 Impact of the attention mechanism

Our framework employs the MHSA mechanism of ViT (44). To 

assess the impact of using an attention-based model, we compare the 

performance of ViT against CNN-based models (i.e., DenseNet201 

and VGG19). ViT consistently outperforms CNN models, 

achieving an accuracy of 98.8% on PH2 compared to 97.9% and 

93.4% for DenseNet201 and VGG19, respectively. A similar trend 

is observed on ISIC 2019. These results confirm that the inclusion 

of MHSA into the ViT improves accuracy and the ViT’s ability to 

capture long-range dependencies and global contextual features.

6.4 Comparison with feature and decision- 
level fusion

For the final classification stage of our proposed ensemble 

model, we employed a fusion strategy that leverages both 

TABLE 7 Result of each base model before and after data augmentation.

Dataset Method DA_GAN DA_Archive Accuracy Precision Recall F1-score

PH2 VGG19 ✗ ✗ 70.0 71.6 70.0 68.9

✓ ✗ 88.9 89.0 88.9 88.9

✓ ✓ 93.4 93.5 93.4 93.4

DenseNet201 ✗ ✗ 72.5 74.0 72.5 72.6

✓ ✗ 95.3 95.3 95.3 95.3

✓ ✓ 97.9 97.9 97.9 97.9

ViT ✗ ✗ 80.0 83.6 80.0 79.8

✓ ✗ 95.2 95.4 95.2 95.2

✓ ✓ 98.8 98.8 98.8 98.8

Our FLF ✗ ✗ 82.5 84.1 82.5 82.6

✓ ✗ 96.9 95.7 95.5 95.5

✓ ✓ 99.3 99.3 99.3 99.3

Our DLF ✗ ✗ 75.0 75.2 75.0 74.9

✓ ✗ 95.4 95.4 95.4 95.4

✓ ✓ 98.2 98.2 98.2 98.2

ISIC 2019 VGG19 ✗ ✗ 82.0 82.0 82.0 82.0

✓ ✗ 85.1 85.0 85.1 85.0

✓ ✓ 86.5 87.4 86.5 86.7

DenseNet201 ✗ ✗ 90.0 90.0 90.0 90.0

✓ ✗ 90.8 90.7 90.8 90.7

✓ ✓ 93.0 93.3 93.0 93.1

ViT ✗ ✗ 91.6 91.5 91.6 91.5

✓ ✗ 92.4 92.3 92.4 92.3

✓ ✓ 94.2 94.3 94.2 94.1

Our FLF ✗ ✗ 91.7 91.6 91.6 91.5

✓ ✗ 92.4 92.3 92.4 92.3

✓ ✓ 94.5 94.7 94.4 94.4

Our DLF ✗ ✗ 91.9 91.8 91.8 91.7

✓ ✗ 92.6 92.5 92.6 92.5

✓ ✓ 95.0 94.9 94.8 94.8
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feature-level fusion (FLF) and decision-level fusion (DLF). The 

performance acheived by this framework is presented in 

Tables 2, 3, 5, 6. Supplementary Figure S2 includes the 

classification report figures for FLF and DLF models, based on 

the HAM10000, ISIC 2018, and ISIC 2019 datasets. We can 

observe that, DLF exhibits marginally superior performance 

compared to the end-to-end FLF model. For example, the DLF 

surpasses the accuracy by 2.3% from FLF for the ISIC 2018 

dataset and 0.5% for the ISIC 2019 dataset. This may cause 

robust training for individual models and merge the individual 

decision from the respective classifier. However, the decision- 

level fusion (DLF) necessitates a longer processing time to arrive 

at the final classification result, and it is not an end-to-end process.

6.5 Comparison of different decision-level 
fusion techniques

We performed various fusion strategies for decision-level 

fusion, specifically employing averaging voting, weighted 

averaging voting, and majority voting (99). Averaging voting 

(AVG) refers to taking the mean of the prediction scores from 

base classifiers to make the final decision, while weighted 

averaging voting (WAVG) applies different weights to these 

scores. For the weighted average case, we empirically assigned 

weights of 0.4, 0.3, and 0.3 to the prediction scores of ViT, 

DenseNet201, and VGG19, respectively. These weightings were 

determined through a sensitivity analysis, which revealed that 

the selected values provide the best balance between model 

performance across the HAM10000, ISIC 2018, and ISIC 2019 

datasets. The majority voting (MJ) technique, as described in 

Section 3.3, involves selecting the class that appears most 

frequently among the predictions of the base classifiers. The 

results are presented in Table 8. Our observations show that the 

MJ technique achieves superior accuracy, while AVG and 

WAVG perform almost equally. This superiority of MJ can be 

attributed to its core principle of aggregating predictions and 

selecting the most frequent class, which reduces the impact of 

outliers or misclassifications from individual base models.

6.6 Cross-dataset evaluation

To assess the generalizability and robustness of the proposed 

approach, we conducted a cross-dataset evaluation by training 

the models on the PH2 dataset and testing them on the 

Derm7pt test dataset (100). This setup simulates a real-world 

scenario in which a model is trained on a small-scale dataset 

and applied to an independent large-scale dataset with 

potentially different data distributions. The Derm7pt dataset 

includes five general disease classes: melanoma, nevus, 

seborrheic keratosis, basal cell carcinoma, and miscellaneous. 

In our experimental setting, we focused on the two disease 

classes common to the PH2 dataset (i.e., nevus and 

melanoma). For this purpose, we merged common nevus (CN) 

and atypical nevus (AN) into a single nevus class. The 

experimental results are shown in Table 9 for each of the base 

models: ViT, DenseNet201, and VGG19, as well as our 

proposed FLF and DLF approaches. We can observe that 

DenseNet201 achieved the highest accuracy (80.6%) and 

F1-score (79.6%) among the individual models. Compared to 

all base models, the FLF ensemble yielded the best overall 

FIGURE 10 

Grad-CAM visualizations of different skin lesion classes from the HAM10000 dataset, where AKIEC, actinic keratosis; BCC, basal cell carcinoma; BKL, 

benign keratosis; DF, dermatofibroma; NV, melanocytic nevi; MEL, Melanoma; VASC, vascular lesions. (a) AKIEC. (b) BCC. (c) BKL. (d) DF. (e) NV. (f) 

MEL. (g) VASC.

TABLE 8 Performance evaluation of our proposed ensemble framework for decision-level fusion using different fusion techniques [average (AVG), 
weighted average (WAVG), and majority voting (MJ)].

Dataset Method Accuracy Precision Recall F1-score

PH2 AVG 97.9 98.0 97.9 97.9

WAVG 98.1 98.1 98.1 98.1

MJ 98.2 98.2 98.2 98.1

ISIC 2019 AVG 93.8 93.9 93.8 93.8

WAVG 93.9 94.0 93.9 93.8

MJ 95.0 94.9 94.8 94.8
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performance, with an accuracy of 82.1%, precision of 82.4%, 

recall of 82.1%, and F1-score of 80.8%. The DLF approach also 

outperformed the individual models, achieving 81.3% accuracy 

and an F1-score of 79.4%. These results demonstrate that the 

proposed fusion frameworks improve generalization and 

robustness for cross-dataset evaluation.

7 Conclusion

Skin disease is one of the most prevalent and potentially life- 

threatening diseases that has affected people all over the world. 

Early detection and treatment are crucial for improving patient 

outcomes. However, the subjective nature of the healthcare 

providers’ approach to early diagnosis can be both costly and 

unpredictable, potentially leading to variable results in patient 

care. In this paper, we proposed a deep learning-based ensemble 

model, including CNN-based base models and an attention- 

based vision transformer network for diagnosing skin diseases. 

The proposed framework considers the feature-level fusion 

(FLF) that is extracted from each of the base models and merges 

them through pointwise addition in a separated layer along with 

a final classification layer with Softmax. We employed the 

decision-level fusion (DLF) by employing the majority voting 

for each classification result.

To evaluate the proposed framework, we employed four 

publicly available datasets encompassing ten distinct skin 

diseases: Actinic keratosis, Basal cell carcinoma, Benign 

keratosis, Dermatofibroma, Melanocytic nevi, Melanoma, 

Squamous cell carcinoma, Common nevi, Atypical nevi, and 

Vascular lesions. We assessed performance using standard 

metrics: accuracy, precision, recall, and F1-score. Our results 

demonstrate that the proposed FLF and DLF outperform 

existing methods. The experimental evaluation shows the 

majority voting techniques’ effectiveness over other ensemble 

techniques like Averaging and Weighted Averaging. 

Furthermore, we conducted a comprehensive analysis of each 

base model within the proposed framework, revealing a 

significant accuracy improvement attributable to the framework 

itself. Additionally, we employed a variety of online and ofPine 

data augmentation methods to expand the training dataset, 

mitigate overfitting, and enhance model generalizability. It is 

evident from our findings that data augmentation significantly 

enhances accuracy. Despite these promising results, the 

proposed approach has certain limitations. Particularly, the 

architecture of the proposed ensemble model requires the 

concurrent training and inference of two CNN-based models 

and an attention-based Vision Transformer (ViT) model, 

leading to increased training time and demanding significant 

computational resources. Therefore, this may affect practical 

challenges in resource-constrained real-time clinical settings. 

Future work could explore a more lightweight ensemble model 

to mitigate these constraints. Additionally, future architectures 

could best investigate a potential closed loop between data 

generation and data analysis to avoid the explicit generation and 

training of data.

Since our model uses the canonical MHSA without 

modification, an additional ablation comparing alternative 

attention mechanisms is outside the scope of this study but is 

suggested as future work.
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