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Introduction: Early skin disease diagnosis is essential and one of the challenging
tasks for a dermatologist. Manual diagnosis by healthcare providers is subjective,
costly, and may yield inconsistent results. In contrast, automated skin disease
detection and classification using traditional machine learning and deep
learning approaches have shown promise in addressing this problem.

Methods: In this study, we propose a hybrid ensemble framework that
integrates both feature-level fusion (FLF) and decision-level fusion (DLF) to
leverage complementary strengths for detecting and classifying skin diseases.
We employ two convolutional neural network (CNN)-based models, i.e., a
modified DenseNet201 and VGG19, along with an attention-based model
vision transformer (ViT) to identify and classify skin diseases. In FLF, feature
representations from these models are point-wise added and passed through
a shared classification head to make the final prediction. In DLF, decisions
from each base model are collected, and the majority voting scheme is used
to make a final decision. Furthermore, we incorporate a generative adversarial
network (GAN)-based approach for offline-based training data augmentation
to reduce overfitting and improve performance.

Results: Based on different evaluation metrics (i.e., accuracy, precision, recall,
and Fl-score), our proposed framework demonstrates superior performance
on four benchmark datasets: the PH2, HAM10000, ISIC 2018, and ISIC 2019
datasets, with an accuracy of 99.3%/99.2%, 92.7%/96.1%, 86.7%/89.0%, and
94.5%/95.0%, respectively, for FLF/DLF.

Discussion: These results demonstrate that while both fusion strategies are
effective, DLF slightly outperforms FLF, emphasizing the value of ensemble
decision aggregation for robust skin disease classification.

KEYWORDS

skin disease diagnosis, deep learning, feature-level fusion, decision-level fusion, GAN,
classification

1 Introduction

The human skin is the largest and most powerful organ in the body. It guards the
body against outer temperature, ultraviolet rays, and harmful chemicals. Furthermore,
the skin produces essential vitamin D in the human body. However, the human skin
suffers from different causes, namely pollution, poor immunity, viruses, alcohol,
unhealthy lifestyles, and ultraviolet light. Therefore, various diseases affect the human
skin (1). Skin diseases are important public health problems that prevail in almost
all age groups and are one of the most widespread kinds of illnesses worldwide (2).
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In the current context, diagnosing diseases still necessitates self-
monitoring and regular medical examinations. In most cases,
skin diseases can be tackled without any special treatment,
whereas some of them lead to cancer and are life-threatening.
The World Health Organization (WHO) reports that by the age
of 70, one in five Americans will receive a diagnosis of skin
cancer, with approximately 95,000 new cases being diagnosed
daily in the US alone (3).

Early detection and treatment of skin disease are essential for
reducing patient suffering and improving outcomes (4);
otherwise, it may advance, possibly spread, and penetrate deeper
layers of the skin, resulting in more severe stages of the condition
(5). In extreme circumstances, skin diseases can lead to serious
outcomes, including hindrance of daily functions, breakdown of
relationships, and harm to internal organs, even death in cases
like melanoma (a skin disease primarily characterized by the
abnormal growth of melanocytes). Furthermore, they present a
genuine risk of mental health issues such as isolation, depression,
and potentially even suicide. However, if diagnosed early and
properly treated, the survival rate can be as high as 97.0% (6).

For early diagnosis of skin disease, self-examination is a crucial
step (7). The American Center for the Study of Dermatology
developed an ABCD guideline so that individuals can be vigilant
in recognizing asymmetry, wavy borders, color changes, and
diameter on their skin (8). Later, manual diagnoses are employed
to detect skin diseases by dermatologists or other healthcare
providers. Dermoscopy is one of the very popular techniques (9)
to detect skin disease by magnifying and lighting the skin
surface and underlying structures (10). For further investigations,
dermatologists may perform a skin biopsy for pathological
examination if it is required (11). However, these types of
manual diagnosis heavily rely on visual interpretation and
subjective judgment. Particularly, clinicians with varying levels of
experience, knowledge, and diagnostic abilities may obtain
inconsistent diagnoses of skin diseases. Furthermore, it is costly
and necessitates the use of specialized medical diagnostic tools
such as dedicated laser-based devices, micro-spectroscopy, and
other dermoscopy tools to locate the lesion (12).

To tackle this challenge and alleviate the burden of clinicians,
automated computer vision and machine learning systems
have been developed for computer-aided diagnosis (CAD)
systems for skin disease detection and diagnosis (13, 14). The
use of CAD is convenient, less expensive, and faster (15), and
systems can be divided into two categories: traditional machine
learning (ML) and modern deep learning (DL)-based methods.
Traditional machine learning (ML) approaches rely on manually
hand-crafted features, typically involving pre-processing and
extracting features like texture, color, size, and shape, followed
by classification using methods such as gradient boosting,
SVM, or artificial neural networks (ANN). Different ML-based
approaches were employed for skin disease diagnosis in the
literature; for example, Ahammed et al. (16) utilized Decision
Tree (DT), Support Vector Machine (SVM), and K-Nearest
Neighbor (KNN) models for skin disease detection and
classification. Similarly, Jagdish et al. (17) employed KNN
and SVM with wavelet analysis for skin disease detection and

Frontiers in Digital Health

10.3389/fdgth.2025.1478688

classification. However, applying these traditional ML methods
to new, unfamiliar scenarios is often challenging.

In contrast, DL-based methods are convenient as they can
automatically extract features and reduce errors, leading to
better performance (18). They have produced promising results
for the detection and classification of skin disease (19-22). For
example, Abd et al. (22) developed a robust DL-based model for
the classification of skin disease that uses MobileNetV3 for
(20) used deep
convolutional neural network-based models such as VGG and
AlexNet to classify skin disease. Similarly, Brinker et al. (19)
used the network ResNet50 for
classification. Most studies rely on a single end-to-end model,

features extraction purposes. Khan et al.

residual skin  disease
and such models are prone to overfitting and hinder the
adaptability and generalizability to other unfamiliar datasets.

To overcome these limitations, we propose a DL-based
ensemble framework that classifies skin disease using feature-level
fusion (FLF) in an end-to-end way and fusion at the decision
level for a non-end-to-end manner for decision-level fusion
(DLF). FLF merges feature representations before classification,
allowing the model to learn richer, more fine-grained
complementary information of lesions in a shared space, whereas
DLF aggregates final predictions from multiple base models,
reducing bias from a single base model. Using both allows the
system to benefit from joint representation learning for FLF while
still leveraging the robustness of majority voting for the DLF.
More specifically, we demonstrated that DLF slightly outperforms
FLF on most benchmarks, but the combination offers insights
into which level of fusion is more beneficial for specific datasets.

The contribution of this study is summarized as follows:

o We introduce a comprehensive end-to-end ensemble framework
for diagnosing skin diseases, comprising two CNN-based and an
attention-based vision transformer model. The features extracted
from these base models are fused at a feature level to generate
conclusive features in the final layer and employ Softmax for
diagnosis. In addition, the individual classifiers’ decisions are
merged using a majority voting technique to make the final
decision for the skin disease diagnosis.

o We utilize data augmentation with a deep generative
adversarial network (GAN) to produce additional training
data. Through empirical investigations on the benchmark
datasets, we observe a notable improvement in the
performance using data augmentation.

o We evaluate the proposed framework on four publicly available
skin disease datasets: PH2, HAM10000, ISIC 2018, and ISIC
2019. The results demonstrate that the proposed framework
achieves superior performance compared to various metrics

such as accuracy, precision, recall, and F1-score.

2 Related work
2.1 CNN-based approaches

Convolutional neural networks (CNNs) have been remarkably
efficient methods for handling pre-processing, extracting features,
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and performing classification in various domains of computer
vision, including biometrics (23, 24), medical imaging, as well as
diagnosis of skin diseases (25-29). Some studies (25, 26)
dedicated CNN
classification. For example, Shanthi et al. (25) implemented an

propose architectures for skin disease
architecture consisting of 11 layers, incorporating convolution,
pooling, connected (FC)

classification. On the other hand, four convolutional layers, two

fully layers, and Softmax for
max-pooling layers, one FC layer, and three dense layers are
found in (26). By contrast, some studies (27, 30, 31) employed
existing pre-trained models for the classification of skin disease.
For example, Muhaba et al. (27) utilized a pre-trained
MobileNet CNN model and demonstrated it on a dataset
collected from a clinic using different smartphone cameras. In
contrast, the studies in (32) used four different CNN-based
models: DenseNet121, ResNet50, VGG16, and ResNetl8, and
demonstrated on the HAM10000 dataset and found out that the
ResNet50 obtained the best accuracy at 90.0%. Furthermore,
Kousis et al. (30) conducted a study on the identification of skin
lesions using 11 different CNN architectures. They demonstrated
the classification of seven different types of skin lesions, where
the DenseNetl69 model achieved the best performance at
92.2%, 93.6%, and 93.3%, of accuracy, sensitivity, and Fl-score,
respectively, compared to the end-to-end CNN
architecture using the HAMI10000 dataset. Similarly, Mondal
et al. (31) utilized a modified-DenseNet201 by replacing the last
layers with a single global average pooling layer, five FC layers,

other

dropout, and finally, one Softmax layer for classification and
showed that it outperforms the existing DenseNet169 and
DenseNet121 models where it gains 13.8% more accuracy than
the non-modified DenseNet201 on the HAMI10000 dataset.
Similarly, Karthik et al. (33) have proposed a modification to
the EfficientNet V2 model for the classification of skin disease.
Specifically, they replaced the standard Squeeze-and-Excite block
with an Efficient Channel Attention block. Shan et al. (34)
introduced a convolutional Block Attention Module (CBAM)
and used it in combination with DenseNetl21 to enhance the
feature representation capabilities. Additionally, they utilized an
improved focal loss algorithm to deal with data imbalance
effectively. These modifications have shown promising results in
improving the performance of the model and achieving an AUC
of 0.99 on the HAM10000 dataset. Similarly, Raghavendra et al.
(35) used a model with CNN and a global average pooling layer
to classify skin diseases. They also implemented the black hat
filtering approach and the resampling technique to remove
artifacts and increase data, which aided in outperformance by
achieving accuracy at 97.2% on the HAM10000 dataset.

In addition, several studies explored the uses of CNN-based
models for feature extraction. For example, the studies in (22,
36) implement a lightweight MobileNet for feature extraction.
Additionally, the authors used Long Short-term Memory
(LSTM) in (36) and the Artificial Rabbits Optimizer in (22) and
achieved an accuracy at 87.2%, 96.8%, and 88.7% on the ISIC
2016, PH2, and HAMI0000 datasets, respectively, while an
accuracy of 85.3% was reached in (36) on the HAMI10000
dataset. Similarly, Yu et al. (37) employed ResNet50 to extract
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features and obtain the global feature descriptor using a fisher
vector and finally classified skin diseases using SVM with a Chi-
squared kernel. They validated their model on the ISBI 2016
challenge dataset, achieving accuracy and AUC at 86.8% and
85.2%, respectively. Similarly, Hameed et al. (29) utilized
AlexNet for feature extraction and an SVM for classification.
They evaluated a privately collected dataset and discovered that
their approach achieved an accuracy of 86.2%. On the other
hand, Seeja et al. (38) used U-Net in conjunction with an SVM
for classification, demonstrating its effectiveness on the ISBI
2016 dataset. Their approach achieved an accuracy of 85.2%,
precision of 42.6%, recall of 50.0%, and Fl-score of 46.0%. In
contrast, Bandyopadhyay et al. (39) employed AlexNet,
GoogLeNet, ResNet50, and VGG16 for feature extraction, and
used SVM, AdaBoost,
classification using the ISIC 2016 challenge dataset.

and Decision Tree classifiers for

Some studies employed segmentation techniques to segment
the area of the disease lesion, and subsequently, lesions were
utilized to enhance the classification accuracy. Son et al. (40)
proposed a two-stage approach to classify skin diseases. In the
first stage, they implement a U-net architecture to decompose
and normalize the input images, generating a segmentation map
of the skin lesion. In the second stage, they introduce
EfficientNets to classify the segmented images. This approach
showed promising results in accurately identifying various skin
diseases. Similarly, Adla et al. (41) utilized Tsallis entropy-based
segmentation to detect the lesion area. Later, the classification of
segmented lesions was done using a convolutional sparse
Autoencoder. Furthermore, Kalpana et al. (28) segmented the
malignant lesion using a threshold-based technique and
classified it through an ensemble model with an SVM classifier
and a random forest kernel. In addition, Zhu et al. (42)
employed a CNN-based model for both binary classification
(i.e., benign vs. malignant) and multiclass classification using
high-frequency ultrasound images of skin lesions.

All of the single end-to-end or custom CNN-based models
used a traditional convolutional approach, which may similarly
extract the features, leading to robustness on a single dataset
and less generalize on other datasets (43). However, end-to-end
methods are necessary for real-world applications because they
can automatically extract relevant features directly from raw
data, reduce multiple processing stages, and make decisions
based on the features, which is particularly necessary where
manual feature extraction is challenging, for example, skin
disease detection and identification. In this study, we propose an
ensemble framework and perform experiments end-to-end as a
feature-level fusion and a decision-level fusion.

2.2 Vision transformer-based approaches

The Vision Transformer (ViT) (44)-based approach represents
attention-based architectures showcasing the effectiveness of
attention mechanisms in capturing extensive spatial relationships
within images. These models partition an image into non-
overlapping patches of fixed size, subsequently transforming

frontiersin.org



Zasim Uddin et al.

them into a sequence of vectors through linear embedding. Similar
to CNN-based approaches, ViT models are widely used for
segmentation (45), detection and classification (46), as well as
for skin disease diagnosis and classification (12, 47, 48). For
example, Aladhadh et al. (12) employed a ViT model along with
data augmentation for skin cancer diagnosis. They demonstrated
on the HAMI10000 dataset and found that the ViT-based model
obtained better accuracy than CNN-based approaches for the
classification of skin cancer with accuracy, precision, sensitivity,
and Fl-score at 96.1%, 96.0%, 96.5%, and 97.0%, respectively.
Similarly, Xin et al. (47) introduced a framework including a
multi-scale vision transformer and multi-scale patch embedding
technique to improve the image features and finally apply
Their
proposed approach obtained accuracy, precision, and AUC at
94.3%, 94.1%, and 98.0%, respectively, on the HAMI10000
dataset. Further, Nie et al. (49) employed a two-stage model

contrastive learning for skin disease classification.

including a CNN-based module to extract local and low-level
features, a ViT model for the high-level semantic information
from these features, and finally, a multi-layer perceptron (MLP)
head was used for the classification of skin disease, and achieved
accuracy, precision, recall, and Fl-score at 89.5%, 89.6%, 89.5%,
and 89.1%, respectively, on the HAM10000 dataset. In addition,
Dai et al. (48) introduced the HierAttn model, which uses a
multi-stage and multi-branch attention mechanism to
simultaneously learn local and global contextual features while
maintaining a lightweight architecture. This is particularly
suitable for real-time and mobile-based applications in skin

disease diagnosis, and classification.

2.3 Fusion-based approaches

Feature-level fusion (FLF) and decision-level fusion (DLF) are
the most commonly used techniques for ensemble learning for
skin disease diagnosis. In FLF, concatenation or pointwise
addition of the extracted features from the multiple base models
takes place. In contrast, in DLF, the decision of the base
classifiers is averaged or selected by majority voting for the final
decision. Regarding FLF, Wang et al. (50) introduced a
multiscale feature fusion model for classifying skin disease using
DenseNet121 and an improved VGG16. They demonstrated its
performance on the HAMI10000 dataset, achieving an accuracy
of 91.2%, while Gairola et al. (51) introduced a multi-feature
fusion approach using different deep networks to improve
accuracy. Similarly, Elashiri et al. (52) extracted features from
ResNet50, VGG16, and Deeplabv3 and concatenated them at the
feature level. These concatenated features were sent to the
feature transformation stage for weighted feature extraction, and
finally, LSTM was employed for classification. They evaluated
the PH2 and HAM10000 datasets and obtained an accuracy of
93.5% and 93.8%, respectively, for the PH2 and HAM10000
datasets. Similarly, Afza et al. (53) introduce an approach
including image acquisition and enhanced contrast, feature
extraction using deep learning, and selecting the best feature
using entropy-mutual information and fuse by employing a
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modified canonical correlation. They evaluated the HAM10000
and ISIC2018 datasets and found that their framework achieved
an accuracy of 93.4% on both datasets.

In contrast, Dang et al. (54) proposed an ensemble model
CNN-based  models:
Densenet169, ResNet50, Inception-ResNet-v2, and Xception,

comprised of five Inception-v3,
along with Squeeze-and-Excitation Blocks to emphasize on
informative features. They employed majority voting for
decision-level fusion. They obtained accuracy, precision, recall,
Fl-score, and AUC at 90.9%, 85.9%, 80.8%, 82.8%, and 91.1%,
respectively, on the ISIC 2017 dataset. Similarly, Harangi (55)
proposed an ensemble model where they considered four
CNN-based methods: VGG, ResNet, GoogLeNet, and AlexNet.
They employed the weighted average technique for the final
prediction of the skin disease. They achieved an AUC of 0.891
on the official test dataset of the IEEE International Symposium
on Biomedical Imaging (ISBI) 2017 challenge on Skin Lesion
Analysis Towards Melanoma Detection. We observed that
most of the methods employed either FLF or DLF; however, in
this study, we studied extensively FLF and DLF in our
ensemble framework.

3 Methodology
3.1 Overview

In this study, we propose a novel ensemble framework that
leverages the complementary strengths of three modules to
extract smart features: two of which are CNN-based, and the
other is an attention-based Vision Transformer (ViT). An
overview of the proposed framework is presented in Figure 1.
Our framework is based on a modified DenseNet201 (56),
and VGG19 (57) as a CNN-based approach, while Vision
Transformer (ViT) (44) is an attention-based vision transformer
model. The fused features are subsequently fed into a fully
connected embedding layer. Finally, a single-layer classification
network with a Softmax activation function is employed. This
network calculates the cross-entropy loss for end-to-end
classification, realizing feature-level fusion (FLF). Additionally,
the decision of each individual model is employed to fuse for
the final decision for decision-level fusion (DLF) as a majority

voting technique.

3.1.1 CNN-based model

Our CNN-based approaches are based on the modified
DenseNet201 and VGG19 architecture.

DenseNet (56) is a high parametric efficient CNN-based
model. It reuses the features from different layers, which
increases the variety of input for subsequent layers. Additionally,
it prevents vanishing gradients by dense connections between
layers and also ensures no loss of information (58) and efficient
memory consumption (59). DenseNet has different versions,
which are categorized based on the number of layers. In our
proposed framework, we exploit the DenseNet201, which
consists of 201 layers. The fundamental component of DenseNet
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FLF, while majority voting techniques are employed for DLF
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Overview of our proposed ensemble framework for the feature extraction (left side) and classification (right side) of skin disease. For feature
extraction, the framework includes three modules: two CNN-based models and an attention-based model. For classification, the framework
includes feature-level fusion (FLF) and decision-level fusion (DLF). The extracted features from base models are fused as pointwise addition for

MHA: Multi-head attention

is a defined number of dense blocks along with a transition block.
At first, an input image X with spatial resolution H x W, where H,
and W stand for height and width, respectively, are passed
through a 7 x 7 convolution and 3 x 3 max-pooling layers and
produces an output feature map Zj with dimension M) x N9,
and can be expressed as:

Z§ = M_Pool(Conv(X)),

where, Conv(-) is convolution, while M_Pool(-) stands for max-
pooling. Then, the feature map passes through several dense
blocks and transition layers. In a dense block, each layer takes
input from all preceding layers. Each dense block begins with a
bottleneck layer, a 1 x 1 convolution layer, which decreases the
number of channels in the input feature maps, followed by a
3 x 3 convolution layer that is densely interconnected. For the
kth block, it can be expressed as follows:
Z = Hi(cat|Z}, Z, ..., Z;')),

where, Hi(-) is a non-linear transformation that comprises batch
normalization, ReLU, and convolution, and generates a feature
map Zi with dimension M} x N} in the Ith layer along with the
kth dense block, while cat(-)
preceding layers’ feature map AN/ respectively, for
the layers 0, 1, ..., I — 1.

Furthermore, a transitional block is introduced between dense

is the concatenation of all

blocks to reduce the size of the feature maps and the number of
The a BN 1x1
convolutional layer, and an average pooling layer with a stride
of 2 x 2. Later, an FC layer with dimension De; is added to

channels. transition includes layer, a
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extract features and fuse with other features [in Equation 1] for
fusion (FLF).
decision-level fusion (DLF), a global average pooling (GAP)

an end-to-end feature-level Regarding the
layer is exploited to aggregate the spatial information into a
fixed-length feature vector and Softmax layer classification.

VGGI19 (57) is the most widely explored method for image
classification. A series of stacked convolutional layers are the
foundation of the VGG19 structure, which is then followed by FC
layers. The convolutional part is made up of 16 convolutional
and is divided into five blocks and three FC layers with ReLU
activation. Each convolution consists of a 3 x 3 kernel with a
2 x 2 pooling layer. Firstly, the input image, X, is passed through
Block A consists of two consecutive convolutions and max-
pooling along with 64 number of channel and generates a feature
map, X;; with dimension K, x L, and is outlined as:

Xi1 = M_Pool(Conv(Conv(X))),

where, Conv(-), and M_Pool represents convolution and max-
pooling respectively. Afterward, this feature map is passed through
Block B in the same way as Block A, generating a feature map Xj,,
and sent to the Block C consisting of four consecutive
convolutions followed by max-pooling along with 256 channels,
generates a feature map X3 with a size of Ky x Ly. Similarly, the
feature map Xj;; is sent to Block D with four consecutive
convolutions followed by max-pooling along with 512 channels,
and generates a feature map Xj,, then this is sent to Block E and
generates the final feature map X5, using in the same way as
Block D. For more information, please follow the original paper (57).

Finally, we added an FC layer after the Block E to have the same
dimensions as the Vgy, which encodes rich spatial information and
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fuses with the FLF used in Equation 1. By contrast, we employed a
global average pooling (GAP) layer to aggregate the spatial
information into a fixed-length feature vector and Softmax layer
classification for the DLF, as shown in Figure 1.

3.1.2 Attention-based model

Our framework employs a Vision Transformer-based model
(44), which applies the standard multi-head self-attention
(MHSA) mechanism originally introduced for natural language

processing (60). The input image X € RE>*WxC

is reshaped into
N = HW/P? non-overlapping patches of size P x P, linearly
projected to a latent dimension D, and prepended with a
learnable class label X . A positional embedding E s is added

to preserve spatial relationships, it can be represented as:
Zo = [de; KB ooos XNE| + Epos.

The resulting sequence is passed through several encoder layers,
each containing a standard MHSA block followed by a two-layer
(MLP) with GELU
activation and residual connections. The MHSA computes

feed-forward multi-layer perceptron

attention as:

T
A(Q, K, V) = Softmax(?fl.)) v,

where Q, K, and V are the learned query, key, and value
projections. The outputs from all heads are concatenated
and linearly projected to produce the final representation.
For additional information on the MHSA formulation, see
(44). Finally, the Vi, features from the MLP head are used
for FLF in Equation 1, while the classification decision is
used for DLF.

3.2 Feature-level fusion (FLF)

We employ the point-wise addition of the extracted features
(e.g., Deg, Vgu, and Viy) from the previously mentioned base
models in our proposed ensemble model for feature-level fusion,
which can be performed as follows:

Frused = Paga([Deg, Vga, Via), (1)

where P,44(-) denotes point-wise addition of the feature vectors.
Prior to fusion, each feature vector is normalized to ensure
comparable scale and distribution across the CNN and ViT
models. After that, we employ a FC layer with 512 dimensions
to enable the model to learn appropriate weighting and
alignment of the fused features during training. Finally, a
Softmax layer produces the output probabilities for skin disease
classification in an end-to-end manner:

Yelass = SOﬁmaX(FC(Ffused))~
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3.3 Decision-level fusion (DLF)

Decision-level Fusion (DLF) combines the decisions for each
of the classifier’s decisions instead of only a single model. In our
framework, we consider the majority voting strategy to count
the votes received from each classifier. The class with the most
votes is chosen as the consensus decision, and the overall
procedure can be outlined as follows:

Py = Des(X)
PB = DeB(X)
Pc = Dec(X)

Yelass = MV(PAa Pg, PC)>

where, X represents the input image, and P,, Pg, and P¢ represent
the prediction classes using the modules A, B, and C, respectively,
while MV(-) denotes majority voting. The overview for the DLF
portion is shown in Figure 1.

4 Datasets and evaluation metrics

To demonstrate the proposed framework for diagnosing skin
diseases, experiments were conducted on four publicly available
benchmark datasets.

4.1 Datasets

PH2 dataset (61) is a dataset with three skin disease classes:
Atypical Nevus (AN), Common Nevus (CN), and Melanoma
(MEL) captured from the Dermatology Service of the Hospital
Pedro Hispano, Matosinhos, Portugal. It comprises 200 images
that were captured under identical conditions and instrumentation
resolution. We followed the K-fold cross-validation technique to
ensure a robust and unbiased evaluation of our proposed method.
Specifically, we used K = 5, dividing the dataset into five equal
parts. In each iteration, four folds were used for training and the
remaining one for testing, with the test fold rotating across the five
runs. Finally, the results were averaged across all five folds. The
benchmark dataset used in this evaluation is denoted as PH2 in
the experimental discussions.

HAMI10000 (62) is a training subset of the ISIC 2018 challenge
dataset, including 10,015 training dermatoscopic image samples.
The dataset includes images of seven types of skin disease:
Actinic keratosis (AKIEC), Basal cell carcinoma (BCC), Benign
keratosis (BKL), Dermatofibroma (DF), Melanocytic nevi (NV),
Melanoma (MEL), and Vascular lesions (VASC). The data were
captured over 20 years from Australia and Austria from 54.0%
male and 45.0% female participants. An example sample image
for each class is shown in Figure 2. Initially, the HAM10000
dataset was released only as a with no
labels provided. Consequently,
numerous state-of-the-art studies adopted a common practice of
splitting the HAM10000 dataset (i.e., 80:20 ratio) into training

training  set,
corresponding  official test
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(b) (©)

FIGURE 2

Example images for each skin disease from the HAM10000 dataset, where AKIEC, actinic keratosis; BCC, basal cell carcinoma; BKL, benign keratosis;
DF, dermatofibroma; NV, melanocytic nevi; MEL, melanoma; VASC, vascular lesions. (a) AKIEC. (b) BCC. (c) BKL. (d) DF. (e) NV. (f) MEL. (g) VASC.

(C)

and testing subsets for performance evaluation. Following this
widely used approach, we similarly conducted experiments for a
fair comparison with prior works. The benchmark dataset is
denoted by HAM10000 in the experiment discussions.

ISIC 2018" is an official test dataset released by the ISIC 2018
challenge organizers, consisting of 1,512 dermatoscopic images
covering the same seven classes: AKIEC, BCC, BKL, DF, NV, MEL,
and VASC. Unlike HAM10000, which was originally provided
solely as a training set, the ISIC 2018 dataset includes ground-truth
labels for the test samples, enabling independent evaluation of
model performance. Following the official ISIC 2018 challenge
protocol, the HAM10000 dataset is used for training, and the ISIC
2018 dataset serves as the independent test set. This setup provides
a robust assessment of the model’s generalizability to unseen data
beyond the HAMI10000 distribution. The benchmark dataset is
denoted by ISIC 2018 in the experiment discussions.

ISIC 2019* is a further challenge training dataset that
comprises two datasets, namely HAM10000 and BCN_20000. It
includes a total of 25,331 images. The dataset covers eight
different skin disease categories, which are AKIEC, BCC, BKL,
DF, MEL, NV, Squamous cell carcinoma (SCC), and VASC. For
a fair comparison with the existing approaches, we followed the
same protocol as the dataset was randomly divided into 90% for
training and the remaining 10% for testing.

4.2 Data augmentation

The deep learning-based approaches require large-scale training
data to enhance performance and mitigate the risk of overfitting.
A common strategy to address this challenge involves artificially
augmenting the training samples to allow the models to gain a
deeper understanding and insight. Typically, there are two types
of data augmentation—offline and online data augmentation—for
computer vision (63, 64). Pre-training data augmentation involves
the a priori application of image transformations to the training

*https://challenge.isic-archive.com/data/#2018
“https://challenge.isic-archive.com/data/#2019
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set. This process generates augmented images, which are then
stored alongside their original counterparts within the dataset.
During model training, both the original and augmented data are
utilized. In contrast, real-time data augmentation entails the
application of image transformations on a per-batch basis during
the training process. These transformations effectively generate
variations of the original training images, which are subsequently
fed into the model for training. Common real-time augmentation
techniques encompass rotation, resizing, horizontal and vertical
flipping, and cropping.

To augment the training set, we employ a pre-training strategy
that leverages a generative adversarial network (GAN) (65) for data
augmentation. Additionally, we incorporate images from the ISIC
archive’ to increase the training data volume. Furthermore, we
data
augmentation. The class-wise distribution of the sample skin disease

employ rotation, resizing, and cropping as online
images before and after augmentation is presented in Figure 3.

To assess the quality of the GAN-generated sample images, we
computed the Fréchet Inception Distance (FID) (66) scores across
datasets and classes. The generated images achieved average FID
scores of 82.9 for PH2, 37.8 for HAM10000, and 36.5 for ISIC
2019. Lower FID values indicate a higher similarity between the
generated and real images, suggesting that the generated samples
are visually realistic and diverse overall. The detailed class-wise
FID scores are summarized in Table 1, and representative
examples of the generated images are shown in Figures 4, 5 for

the PH2 and HAM10000 datasets, respectively.

4.3 Evaluation metrics

We evaluate the effectiveness of our proposed framework
using different evaluation criteria: Accuracy, Precision, Recall,
Fl-score, Balanced accuracy, ROC (Receiver Operating
Characteristic), and AUC (Area Under the Curve) (67). These
evaluation metrics are calculated from the confusion matrices’
key four parameters, i.e., True Positives (TP), True Negatives

https://www.isic-archive.com/
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FIGURE 3
The distribution of the training samples for each class in the different datasets before and after data augmentation, using a generative adversarial
network (GAN) and with ISIC archives. (a) PH2. (b) HAM10000. (c) ISIC 2018. (d) ISIC 2019.

TABLE 1 Fréchet Inception Distance (FID) scores for sample images
generated by the generative adversarial network (GAN) across datasets
and disease classes.

Disease name | PH2 | HAM10000  ISIC 2018 | ISIC 2019
AKIEC - 40.5 405 38.8
BCC - 383 383 36.9
BKL - 29.0 29.0 27.8
DF - 40.7 40.7 39.1
NV - 29.4 29.4 27.2
VASC - 50.5 50.5 44.1
SCC - - - 42.4
AN 80.6 - - -
CN 83.2 - - -
MEL 84.8 35.0 35.0 354
Average 82.9 37.8 37.8 36.5

A lower FID score indicates higher similarity to real images. A “-” denotes the absence of a
particular disease class in the respective dataset.

(TN), False Negatives (FN), and False Positives (FP). TP refers to
the number of instances correctly predicted as a positive class, and
TN refers to the number of instances correctly predicted by the
model as belonging to the negative class. On the other hand, FP
is the number of instances where the model incorrectly predicts
the positive class, and FN is the number of instances where the
model incorrectly predicts the negative class.

In addition, we consider ROC, which visualizes the trade-off
between True Positive Rate (TPR) and False Positive Rate (FPR)
across classification thresholds, while AUC quantifies the model’s
overall performance, with higher values indicating better
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discrimination between classes, where 1.0 represents perfect
classification and 0.5 indicates random guessing. Accuracy is
the ratio of correct predictions made by the model out of the
total number of predictions, and can be calculated as follows:

|TP + TN|

A —
CUTAY = 1TP 1IN + FP 1 FN|

Precision measures the proportion of true positive predictions out of
all positive predictions made by the model and is calculated as:

i ITP)

recision = ————
|TP + FP|

Recall also known as True Positive Rate, TPR measures the

proportion of true positive predictions out of all actual positive

instances in the experiment, which can be calculated as:

|TP|

Recall = TPR = ———
|TP + EN|

False Positive Rate (FPR) measures the proportion of false positive
predictions out of all actual negative instances, calculated as:

|EP|

FPR=—"—1 _
|FP + TN
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FIGURE 4

(c) Melanoma (MEL).

Example of images generated by the generative adversarial network (GAN) for the PH2 dataset. (a) Atypical Nevus (AN). (b) Common Nevus (CN).

(b)

FIGURE 5

DF. (e) NV. (f) MEL. (g) VASC.

Example of images generated by the generative adversarial network (GAN) for the HAM10000 dataset, where AKIEC, actinic keratosis; BCC, basal cell
carcinoma; BKL, benign keratosis; DF, Dermatofibroma; NV, Melanocytic nevi; MEL, Melanoma; VASC, Vascular lesions. (a) AKIEC. (b) BCC. (c) BKL. (d)

Foigan ¥
i o

©

FlI-score is the harmonic mean of precision and recall; it strikes a
balance between precision and recall, making it an effective
metric for assessing both false positives and false negatives. The
Fl-score is calculated as follows:

2(Precision)(Recall)

F1 — score =
Precision + Recall

Balanced accuracy (BACC) is an evaluation metric used to evaluate
the accuracy of a classification model when dealing with imbalanced
datasets. It is defined as the average recall for each class.

Nelasses

BACC = Recall;

classes

5 Experiments and results

In this section, we will introduce the system implementation
and performance of the proposed framework.

Frontiers in Digital Health

5.1 Implementation details

The proposed framework was implemented by leveraging the
TensorFlow library on an NVIDIA GeForce RTX 3090 GPU. The

AdamW optimizer with a learning rate of 1 x e~*
7

, a weight decay
of 4 x ¢7* and an epsilon of 1 x e~7 were used to optimize our
proposed framework. Additionally, categorical cross-entropy loss
is used as a loss function. We employed 150 epochs with 8
mini-batch sizes to train our end-to-end FLF and DLF
framework. The learning rate (LR) was reset to le-5 after 50
epochs and again reset to le-6 after 100 epochs. Moreover, the
the dimension d was set to 768 for the Dey, Vg, and Viy

in Equation 1.

5.2 Comparison with SOTA methods

5.2.1 Evaluation of PH2 dataset

The accuracy, precision, recall, and Fl-score on the PH2
dataset are presented in Table 2 and Supplementary Figure SI1.
Compared with the CNN-based method for feature extraction
and then feeding these features into the ML-based classifier

frontiersin.org



Zasim Uddin et al.

10.3389/fdgth.2025.1478688

TABLE 2 Comparison of the proposed framework with existing methods applied to the PH2 dataset.

Reference Method Accuracy Precision Recall Fl-score
Benyahia et al. (68) DenseNet+SVM 99.0 - - -
Maniraj et al. (69) VGG 99.3 99.2 99.4 -
Elashiri et al. (52) ResNet50+VGG16+DeepLabv3 93.5 90.4 - -

Afza et al. (70) ResNet50+NB 95.4 95.3 - 95.2
Reddy et al. (71) CNN 94.2 96.2 91.8 93.9
Magsood et al. (72) Xception+ResNet50 ResNet101+VGG16+SVM 98.9 - - -
Mustafa et al. (73) ResUNet+AlexNet 94.2 - - -

Our FLF (DenseNet201+VGG19+ViT) 99.3 99.3 99.3 99.3
Our DLF (DenseNet201+VGG19+ViT) 99.2 99.2 99.2 99.2

Bold values indicate the best benchmark.

(68, 70, 72), the custom CNN-based model (71), and CNN-based
End-to-End models (68, 69), our proposed feature-level fusion
(FLF) and decision-level fusion (DLF) ensemble framework
achieved an accuracy of 99.3%, and 99.2% respectively for the
FLF and DLF. Moreover, we observe that the proposed FLF
approach achieves performance comparable to the best existing
method reported by Maniraj et al. (69), while also providing
consistently high precision, recall, and F1-scores.

5.2.2 Evaluation of the HAM10000 dataset

The accuracy, precision, recall, and Fl-score on the
HAMI10000 dataset are presented in Table 3 and Supplementary
Figure S1, along with the ROC curves and corresponding AUC
values in Figure 7. The confusion matrices of our proposed
approaches are shown in Figure 6. Compared with existing well-
established models including the pre-trained CNN-based models
ResNet50 (75), EfficientNetB4 (77), EfficinetNetBl (80) and
Xception (97), custom CNN (78, 79, 82), and studies with
attention-based or combined with a CNN-based approach (49,
76, 81), our proposed end-to-end FLF achieves 92.7%, 93.5%,
92.6%, and 92.8% accuracy, precision, recall, and Fl-score. On
the other hand, Our DLF achieves 96.1%, 96.2%, 96.1%, 96.1%
accuracy, precision, recall, and Fl-score. Notably, we also
compared our approach with the recent CNN along with

ViT-based hybrid method proposed in (83), which achieved 95.0%
accuracy, 94.7% precision, 92.1% recall, and 93.3% F1-score.
Furthermore, our proposed DLF framework surpasses the
best-performing existing benchmarks by 0.3%, 0.2%, 0.1%, and
0.1% in terms of accuracy, precision, recall, and Fl-score,
respectively. To further validate the robustness of our method,
we performed a bootstrap analysis with 1,000 iterations to
compute 95% confidence intervals (Cls) for the key performance
metrics. The results are summarized in Table 4. Our DLF
achieved an accuracy of 96.1% [95% CI: 95.2%, 96.9%], while
the second-best method achieved an accuracy of 95.8%. Notably,
the lower bound of our method’s CI (95.2%) is close to the
mean accuracy of the second-best method, indicating a
the
precision, recall, and Fl-score exhibit tight confidence intervals,

consistent—though  modest—improvement.  Similarly,
reflecting stable and reliable performance across multiple
resamples. These findings statistically reinforce that our method
offers a robust and consistent improvement over the existing
benchmarks, with reduced variability in performance.

5.2.3 Evaluation on the ISIC 2018 dataset

The balanced accuracy, precision, recall, and F1-score on the ISIC
2018 dataset are presented in Table 5 and Supplementary Figure S1,
along with the confusion matrix of our approaches, which is shown
in Figure 8. Compared with CNN-based models (84, 87-90), our

TABLE 3 Comparison of the proposed framework with existing methods applied to the HAM10000 dataset.

Reference Method Accuracy Precision Recall F1-score
Liu et al. (74) CNN 925 - 715 60.7
Al et al. (75) ResNet50 89.3 - 81.0 81.3
Nie et al. (49) CNN+Attention 89.5 89.6 89.5 89.1
Cai et al. (76) Attention 93.9 - 90.1 90.1
Ali et al. (77) EfficientNetB4 87.9 88.0 88.0 87.0
Shetty et al. (78) CNN 95.2 88.0 85.0 86.0
Wu et al. (79) ResNet50 95.8 96.0 96.0 96.0
Tajerian et al. (80) EfficientNetB1 84.3 73.4 67.4 70.0
You et al. (81) Attention+CNN 80.4 - - -
Wei et al. (82) DenseNet+ConvNeXt 90.9 83.8 83.8 83.5
Mustafa et al. (73) ResUNet+AlexNet 92.0 - - -
Pacal et al. (83) CNN + ViT 95.0 94.7 92.1 93.3
Our FLF (DenseNet201+VGG19+ViT) 92.7 93.5 92.6 92.8
Our DLF (DenseNet201+VGG19+ViT) 96.1 96.2 96.1 96.1

Bold and italic values indicate the best and second-best benchmarks, respectively.
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FIGURE 6
Normalized confusion matrices of FLF and DLF approaches on the HAM10000 dataset. AKIEC, actinic keratosis; BCC, basal cell carcinoma; BKL,
benign keratosis; DF, dermatofibroma; NV, melanocytic nevi; MEL, melanoma; VASC, vascular lesions. (a) Feature-level fusion. (b) Decision-
level fusion.
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FIGURE 7
ROC curves for the FLF and DLF approaches on the HAM10000 dataset, with corresponding AUC values included in the legend. (a) Feature-level
fusion. (b) Decision-level fusion.

TABLE 4 Bootstrap results with 95% confidence intervals (Cl) for the
decision-level fusion (DLF) method on the HAM10000 dataset for

1,000 iterations.

Metric Mean Cl lower Cl upper
Accuracy [%] 96.1 95.2 96.9
Precision [%)] 96.2 95.4 97.0
Recall [%] 96.1 95.2 96.9
Fl-score [%] 96.1 95.2 96.9
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proposed FLF approach has achieved 86.7%, 97.0%, 84.6%, and 85.2%,
respectively, for balanced accuracy, specificity, recall, and F1-score
while 89.0%, 97.3%, 86.1%, and 86.4% for DLF, respectively. This

implies the supremacy of our proposed approaches, where the DLF
approach achieves 0.5% higher balanced accuracy than the best-
performing existing benchmarks. Our observations demonstrate
that decision-level fusion (DLF) achieves superior benchmark
performance among the evaluated methods.
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TABLE 5 Comparison of the proposed framework with existing methods applied to the ISIC 2018 dataset.

Reference Method B. Acc. Specificity Recall Fl-score
Nozdryn et al. (84) CNN 88.5 98.6 83.3 -
Gessert et al. (85) DenseNet+ResNeXt+SENets 85.6 98.4 80.9 -
Zhuang et al. (86) SENet+PNASNet 84.5 98.0 80.4 -
Mahbod et al. (87) EfficientNetB0+EfficientNetB1+SeReNeXt50 86.2 - - -
Shen et al. (88) EfficientNetB0 85.3 97.3 - -
Barata et al. (89) CNN 79.1 - - -
Tsai et al. (90) CNN 82.1 - - -
Our FLF(DenseNet201+VGG19+ViT) 86.7 97.0 84.6 85.2
Our DLF(DenseNet201+VGG19+ViT) 89.0 97.3 86.1 86.4
Bold and italic values indicate the best and second-best benchmarks, respectively. Here, B.Acc. indicates the balance accuracy.
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FIGURE 8
Normalized confusion matrices of FLF and DLF on the ISIC 2018 challenge test dataset. AKIEC, actinic keratosis; BCC, basal cell carcinoma; BKL,
benign keratosis; DF, dermatofibroma; NV, melanocytic nevi; MEL, melanoma; VASC, vascular lesions. (a) Feature-level fusion. (b) Decision-
level fusion.

5.2.4 Evaluation on the ISIC 2019 dataset
The accuracy, precision, recall, and F1-score on the ISIC 2019

dataset are presented in Table 6 and Supplementary Figure S1, along
with the confusion matrix of our approaches, which is shown in
Figure 9. Comparing the CNN-based model with an SVM (91),
GoogleNet, and DarkNet (96), EfficientNets, SENet, and ResNeXt
(92), and the single end-to-end CNN-based model MobileNetV2
(95), our proposed FLF framework achieves 94.5%, 94.7%, 94.4%, and
94.4% accuracy, precision, recall, and Fl-score, respectively, while
95.0%, 94.9%, 94.8%, and 94.8% for DLF, respectively. This implies
that our proposed end-to-end FLF ensemble framework achieves
comparable performance while DLF slightly improves over the
existing best-performing benchmark. For example, DLF surpasses by
2.9% and 1.8%, respectively, for the precision and recall from the
existing best-performing benchmark [i.e., the approach in (94)] while
by 2.7%, and 1.4% for FLF.

6 Discussion

Our proposed framework leverages an ensemble approach that

integrates two convolutional neural networks (CNN)-based
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architectures: a modified DenseNet201 and a VGGI19. Additionally,
it incorporates an attention-based vision transformer model, ViT.
To address data scarcity, we employed a pre-training strategy
utilizing a generative adversarial network (GAN) (65) for generating
image samples artificially. We also added samples from other ISIC
archives. Moreover, we added other online data augmentation
techniques during training. Here, we conduct a comparative analysis
of the performance achieved by our proposed framework against
various baselines (i.e., base models w/o Data Augmentation (DA),
DA with GAN (DA_GAN), and ISIC archives (DA_Archive)).
Additionally, we also compared each of the base models. Similarly,
we further delve into an in-depth performance analysis of the FLF
and DLF for the final classification. In this section, for ablation
studies of our proposed framework, we selected the small-scale and
large-scale datasets PH2 and ISIC 2019 and adhered to the identical
protocol outlined in Section 4.1 for these analyses.

6.1 Impact of data augmentation

We illustrate the impact of data augmentation for each of the
base models, modified VGG19, DenseNet201 and ViT along with
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Reference Method Accuracy Precision Recall Fl-score
Kassem et al. (91) GoogleNet+SVM 94.9 80.4 79.8 -
Gessert et al. (92) EfficientNets+SENet+ResNeXt 63.0 - 73.0 -
Bhardwa et al. (93) CNN+SVM 86.0 80.0 60.0 -
Jain et al. (94) DNN 95.0 92.0 93.0 -
Wang et al. (95) MobileNetV2 84.6 - - -
Abdelhafeez et al. (96) GoogleNet+DarkNet+SVM 85.7 84.0 76.1 -
Mustafa et al. (73) ResUNet+AlexNet 93.4 - - -
Pacal et al. (83) CNN + ViT 92.5 90.4 87.7 88.9
Our FLF(DenseNet201+VGG19+ViT) 94.5 94.7 94.4 94.4
Our DLF(DenseNet201+VGG19+ViT) 95.0 94.9 94.8 94.8
Bold and italic values indicate the best and second-best benchmarks, respectively.
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FIGURE 9
Normalized confusion matrices of FLF and DLF on the ISIC 2019 dataset. AKIEC, actinic keratosis; BCC, basal cell carcinoma; BKL, benign keratosis;
DF, dermatofibroma; NV, melanocytic nevi; MEL, melanoma; SCC, squamous cell carcinoma; VASC, vascular lesions. (a) Feature-level fusion. (b)
Decision-level fusion.

the proposed frameworks in Table 7. We can observe that the
accuracy is improved by a large margin for a small-scale dataset
(i.e., PH2 dataset) when employing the augmentation using
GAN as well as ISIC archives. As shown in Table 7, the
accuracy is improved from 11.6% to 22.8% when we increase
the training sample size using the deep generative approach.
Moreover, improvement continues when the training data
volume is again increased by adding samples from ISIC
archives. Overall, we can see that the accuracy is improved from
15.2% to 25.4% when we augment the training dataset using a
generative approach and add samples from ISIC archives. We
think that this large margin accuracy improvement for the
small-scale dataset PH2 when augmenting the training dataset
because large-scale training datasets are essential for the DL-
based approach for effective training and generalization.

In contrast, for the large-scale dataset ISIC 2019, we observed
employing  data
augmentation techniques. For instance, the accuracy is improved

marginally  improved accuracy = when
from 0.7% to 0.8% when the training sample is augmented by a

generative approach GAN. A similar tendency we observed when
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we added samples from ISIC archives. In general, the accuracy is
improved by around 3.0% when the training data is augmented
using GAN and ISIC archives. This modest improvement can be
attributed to the inherent characteristics of the ISIC 2019 dataset.
As a large-scale dataset encompassing 22,797 samples, it already
possesses a high degree of diversity and quantity, providing a
sufficient foundation for robust model training.

6.2 Impact of individuals module

We evaluated each of the base models considered in our
framework separately: The modified VGG19, DenseNet201 and
ViT. We can observe that the vision transformer-based ViT
model works better than the CNN-based model. For example,
the accuracy of the ViT model with data augmentation is 98.8%
on the small-scale dataset PH2 while 97.9%/93.4% for the
DenseNet201/VGG19. Regarding the large-scale dataset ISIC
2019, we observe a similar tendency that the ViT model works
better than the CNN-based approach DenseNet201 and VGG19.
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TABLE 7 Result of each base model before and after data augmentation.

10.3389/fdgth.2025.1478688

Method DA_GAN DA_Archive Accuracy Precision Fl-score
PH2 VGG19 X X 70.0 71.6 70.0 68.9
v X 88.9 89.0 88.9 88.9
v v 93.4 93.5 93.4 93.4
DenseNet201 X X 72.5 74.0 72.5 72.6
v X 95.3 953 95.3 95.3
v v 97.9 97.9 97.9 97.9
ViT X X 80.0 83.6 80.0 79.8
v X 95.2 95.4 952 952
v v 98.8 98.8 98.8 98.8
Our FLE X X 82.5 84.1 825 82.6
v X 96.9 95.7 955 955
v v 99.3 99.3 99.3 99.3
Our DLF X X 75.0 75.2 75.0 74.9
v X 95.4 95.4 95.4 95.4
v v 98.2 982 98.2 982
ISIC 2019 VGG19 X X 82.0 82.0 82.0 82.0
v X 85.1 85.0 85.1 85.0
v v 86.5 87.4 86.5 86.7
DenseNet201 X X 90.0 90.0 90.0 90.0
v X 90.8 90.7 90.8 90.7
v v 93.0 933 93.0 93.1
ViT X X 91.6 91.5 91.6 91.5
v X 92.4 923 92.4 92.3
v v 94.2 94.3 94.2 94.1
Our FLF X X 91.7 91.6 91.6 91.5
v X 92.4 923 92.4 92.3
v v 94.5 94.7 94.4 94.4
Our DLF X X 91.9 91.8 91.8 91.7
v X 92.6 92.5 92.6 92.5
v v 95.0 94.9 94.8 94.8

We think that ViT-based models work better because they capture
global and local contexts more effectively and learn complex
fixed fields.
Furthermore, unlike the CNN-based approach, ViT leverages

relationships ~ without relying on receptive

self-attention mechanisms to consider interactions between
image patches, enabling them to better understand long-range
dependencies crucial for tasks like detection and classification.

Regarding the CNN-based approaches of the modified
DenseNet201 and VGGI19, we can observe that DenseNet201
works better than VGG19. For example, DenseNet201 obtained
accuracy at 97.9% on the small-scale dataset PH2 while 93.4%
on the large-scale dataset ISIC 2019. This indicates that it
surpassed 4.5% and 6.5% from the VGG19, respectively, for the
PH2 and ISIC 2019 datasets. We think that it may be the cause
of reason, such as VGGI19 is a relatively straightforward network
where each layer feeds into the next. At the same time,
DenseNet201 incorporates dense connections, where each layer
receives additional inputs from all preceding layers and passes
its feature maps to all subsequent layers. This characteristic
allows for feature reuse throughout the network, consequently
enhancing model performance and mitigating the risks of
overfitting and vanishing gradients.

To further assess the interpretability and clinical relevance of the
models, we generated Grad-CAM (98) visualizations using the
DenseNet201 architecture. These heatmaps highlight the image
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regions that most strongly contributed to each prediction, showing
that the model predominantly focuses on lesion areas rather than
irrelevant background. An example Grad-CAM activation map is
presented in Figure 10, demonstrating the alignment between the
model’s attention and dermatological diagnostic regions.

6.3 Impact of the attention mechanism

Our framework employs the MHSA mechanism of ViT (44). To
assess the impact of using an attention-based model, we compare the
performance of ViT against CNN-based models (i.e., DenseNet201
and VGG19). CNN models,
achieving an accuracy of 98.8% on PH2 compared to 97.9% and
93.4% for DenseNet201 and VGG19, respectively. A similar trend
is observed on ISIC 2019. These results confirm that the inclusion
of MHSA into the ViT improves accuracy and the ViT’s ability to
capture long-range dependencies and global contextual features.

ViT consistently outperforms

6.4 Comparison with feature and decision-
level fusion

For the final classification stage of our proposed ensemble
model, we employed a fusion strategy that leverages both
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(c)

FIGURE 10

MEL. (g) VASC.

(d)

Grad-CAM visualizations of different skin lesion classes from the HAM10000 dataset, where AKIEC, actinic keratosis; BCC, basal cell carcinoma; BKL,
benign keratosis; DF, dermatofibroma; NV, melanocytic nevi; MEL, Melanoma; VASC, vascular lesions. (a) AKIEC. (b) BCC. (c) BKL. (d) DF. (e) NV. (f)

(C)

feature-level fusion (FLF) and decision-level fusion (DLF). The
performance acheived by this framework is presented in
Tables 2, 3, 5, 6. Supplementary Figure S2 includes the
classification report figures for FLF and DLF models, based on
the HAM10000, ISIC 2018, and ISIC 2019 datasets. We can
observe that, DLF exhibits marginally superior performance
compared to the end-to-end FLF model. For example, the DLF
surpasses the accuracy by 2.3% from FLF for the ISIC 2018
dataset and 0.5% for the ISIC 2019 dataset. This may cause
robust training for individual models and merge the individual
decision from the respective classifier. However, the decision-
level fusion (DLF) necessitates a longer processing time to arrive
at the final classification result, and it is not an end-to-end process.

6.5 Comparison of different decision-level
fusion techniques

We performed various fusion strategies for decision-level

fusion, specifically employing averaging voting, weighted
averaging voting, and majority voting (99). Averaging voting
(AVG) refers to taking the mean of the prediction scores from
base classifiers to make the final decision, while weighted
averaging voting (WAVG) applies different weights to these
scores. For the weighted average case, we empirically assigned
weights of 0.4, 0.3, and 0.3 to the prediction scores of ViT,
DenseNet201, and VGG19, respectively. These weightings were
determined through a sensitivity analysis, which revealed that
the selected values provide the best balance between model
performance across the HAM10000, ISIC 2018, and ISIC 2019

datasets. The majority voting (M]J) technique, as described in

Section 3.3, involves selecting the class that appears most
frequently among the predictions of the base classifiers. The
results are presented in Table 8. Our observations show that the
M] technique achieves superior accuracy, while AVG and
WAVG perform almost equally. This superiority of MJ can be
attributed to its core principle of aggregating predictions and
selecting the most frequent class, which reduces the impact of
outliers or misclassifications from individual base models.

6.6 Cross-dataset evaluation

To assess the generalizability and robustness of the proposed
approach, we conducted a cross-dataset evaluation by training
the models on the PH2 dataset and testing them on the
Derm7pt test dataset (100). This setup simulates a real-world
scenario in which a model is trained on a small-scale dataset
and applied to an independent large-scale dataset with
potentially different data distributions. The Derm7pt dataset
includes five general disease classes: melanoma, nevus,
seborrheic keratosis, basal cell carcinoma, and miscellaneous.
In our experimental setting, we focused on the two disease
the PH2 dataset (ie,
melanoma). For this purpose, we merged common nevus (CN)

and atypical nevus (AN) into a single nevus class. The

classes common to nevus and

experimental results are shown in Table 9 for each of the base
ViT, DenseNet201, and VGG19,
proposed FLF and DLF approaches. We can observe that
DenseNet201 achieved the highest accuracy (80.6%) and
Fl-score (79.6%) among the individual models. Compared to
all base models, the FLF ensemble yielded the best overall

models: as well as our

TABLE 8 Performance evaluation of our proposed ensemble framework for decision-level fusion using different fusion techniques [average (AVG),

weighted average (WAVG), and majority voting (MJ)].

Dataset Method Accuracy Precision Recall Fl-score

PH2 AVG 97.9 98.0 97.9 97.9
WAVG 98.1 98.1 98.1 98.1
MJ 98.2 98.2 98.2 98.1

ISIC 2019 AVG 93.8 93.9 93.8 93.8
WAVG 93.9 94.0 93.9 93.8
MJ 95.0 94.9 94.8 94.8
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TABLE 9 Cross-dataset evaluation results: Models trained on the PH2
dataset and tested on the Derm7pt dataset.

| Method __Accuracy _Precision _ Recall_ Fi-score

VGG19 79.6 80.5 79.6 77.3
DenseNet201 80.6 80.0 80.6 79.6
ViT 78.4 79.0 78.4 75.8
Our FLF 82.1 82.4 82.1 80.8
Our DLF 81.3 81.9 81.2 79.4

Bold and italic values indicate the best and second-best benchmarks, respectively.

performance, with an accuracy of 82.1%, precision of 82.4%,
recall of 82.1%, and F1-score of 80.8%. The DLF approach also
outperformed the individual models, achieving 81.3% accuracy
and an Fl-score of 79.4%. These results demonstrate that the
proposed fusion frameworks improve generalization and

robustness for cross-dataset evaluation.

7 Conclusion

Skin disease is one of the most prevalent and potentially life-
threatening diseases that has affected people all over the world.
Early detection and treatment are crucial for improving patient
outcomes. However, the subjective nature of the healthcare
providers’ approach to early diagnosis can be both costly and
unpredictable, potentially leading to variable results in patient
care. In this paper, we proposed a deep learning-based ensemble
model, including CNN-based base models and an attention-
based vision transformer network for diagnosing skin diseases.
The proposed framework considers the feature-level fusion
(FLF) that is extracted from each of the base models and merges
them through pointwise addition in a separated layer along with
a final classification layer with Softmax. We employed the
decision-level fusion (DLF) by employing the majority voting
for each classification result.

To evaluate the proposed framework, we employed four
publicly available datasets encompassing ten distinct skin
Basal cell carcinoma,
Melanocytic
Squamous cell carcinoma, Common nevi, Atypical nevi, and

diseases: Actinic keratosis, Benign

keratosis, Dermatofibroma, nevi, Melanoma,
Vascular lesions. We assessed performance using standard
metrics: accuracy, precision, recall, and Fl-score. Our results
demonstrate that the proposed FLF and DLF outperform
existing methods. The experimental evaluation shows the
majority voting techniques’ effectiveness over other ensemble
like
Furthermore, we conducted a comprehensive analysis of each

techniques Averaging and Weighted  Averaging.
base model within the proposed framework, revealing a
significant accuracy improvement attributable to the framework
itself. Additionally, we employed a variety of online and offline
data augmentation methods to expand the training dataset,
mitigate overfitting, and enhance model generalizability. It is
evident from our findings that data augmentation significantly
the

proposed approach has certain limitations. Particularly, the

enhances accuracy. Despite these promising results,
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architecture of the proposed ensemble model requires the
concurrent training and inference of two CNN-based models
(ViT) model,
leading to increased training time and demanding significant

and an attention-based Vision Transformer

computational resources. Therefore, this may affect practical
challenges in resource-constrained real-time clinical settings.
Future work could explore a more lightweight ensemble model
to mitigate these constraints. Additionally, future architectures
could best investigate a potential closed loop between data
generation and data analysis to avoid the explicit generation and
training of data.

the canonical MHSA without
an additional ablation comparing alternative

Since our model uses
modification,
attention mechanisms is outside the scope of this study but is
suggested as future work.
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