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Introduction: Artificial intelligence and machine learning are popular
interconnected technologies. AI chatbots like ChatGPT and Gemini show
considerable promise in medical inquiries. This scoping review aims to assess
the accuracy and response length (in characters) of ChatGPT and Gemini in
medical applications.
Methods: The eligible databases were searched to find studies published in
English from January 1 to October 20, 2023. The inclusion criteria consisted
of studies that focused on using AI in medicine and assessed outcomes based
on the accuracy and character count (length) of ChatGPT and Gemini. Data
collected from the studies included the first author’s name, the country where
the study was conducted, the type of study design, publication year, sample
size, medical speciality, and the accuracy and response length.
Results: The initial search identified 64 papers, with 11 meeting the inclusion
criteria, involving 1,177 samples. ChatGPT showed higher accuracy in radiology
(87.43% vs. Gemini’s 71%) and shorter responses (907 vs. 1,428 characters).
Similar trends were noted in other specialties. However, Gemini outperformed
ChatGPT in emergency scenarios (87% vs. 77%) and in renal diets with low
potassium and high phosphorus (79% vs. 60% and 100% vs. 77%). Statistical
analysis confirms that ChatGPT has greater accuracy and shorter responses
than Gemini in medical studies, with a p-value of <.001 for both metrics.
Conclusion: This Scoping review suggests that ChatGPT may demonstrate
higher accuracy and provide shorter responses than Gemini in medical studies.
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Introduction

Artificial Intelligence (AI) and Machine Learning (ML) are interconnected

technologies recently gaining significant popularity. AI involves creating intelligent

machines capable of performing tasks that typically require human intelligence, such as

visual perception, speech recognition, decision-making, and language translation. ML, a

subset of AI, focuses on developing algorithms and statistical models that enable

machines to learn from data and improve their performance over time without explicit
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programming (1, 2). AI is at the forefront of transforming various

aspects of our lives by altering how we analyze information and

enhancing decision-making through problem-solving, reasoning,

and learning (3).

In the dynamic domain of AI chatbots, the comparative

analysis of ChatGPT and Gemini (formerly known as Google’s

Bard) has emerged as a focal point, particularly in medical

inquiries (1, 2). Recent investigations have explored the precision

and effectiveness of these AI models in fielding medical

questions across various specialties (1, 4–7). These studies

demonstrate ChatGPT’s capabilities in diagnostic imaging and

clinical decision support, underscoring its potential value in

healthcare settings (4–6).

In recent years, AI models like ChatGPT and Gemini have

significantly impacted natural language processing, particularly in

healthcare. ChatGPT, developed by OpenAI, provides relevant

and accurate text-based responses using a large dataset (1, 5).

While Gemini, from Google DeepMind, integrates multimodal

capabilities, handling text, audio, and video, which is especially

useful in medical imaging (5). However, both models face

challenges. ChatGPT, for example, shows variability in

psychiatric assessments and struggles with complex cases (2).

Additionally, AI models still struggle to interpret nuanced

human emotions and contexts (4).

While AI chatbots like ChatGPT and Gemini show promise in

medicine, extensive research is still required to understand their

capabilities properly. It is essential to address the variation in

their performance across different medical scenarios and enhance

their accuracy for various medical applications (8). The use of AI

in healthcare faces several challenges, including data privacy,

algorithm accuracy, adherence to ethical standards, societal

acceptance, and clinical integration (9, 10). These challenges

make it difficult to develop precise and reliable AI systems.

Privacy concerns restrict access to relevant data, and potential

biases can result in inaccurate outcomes (8, 10).

This scoping review aims to evaluate and compare the accuracy

and length of ChatGPT and Gemini (Google’s Bard) in addressing

medical inquiries across diverse fields, focusing on their strengths,

limitations, and practical implications for healthcare. As AI models

become increasingly integrated into clinical and educational

settings, understanding their performance variability is essential.

Both models face challenges, including inconsistencies in

complex cases, privacy concerns, and ethical issues. This review

offers insights to help researchers, practitioners, and developers

optimize these tools for more effective decision-making and

patient care.
Methods

Study protocols

We applied a systematic approach to assess the methodological

quality of our scoping review, including comprehensive literature

searches, double screening, bias assessment, and evaluation of

publication bias.
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Data sources and search strategy

A systematic search was conducted in databases and search

engines, including Google Scholar, PubMed/MEDLINE,

Cochrane Library, Web of Science, CINAHL, and EMBASE,

using keywords such as (“ChatGPT” OR “GPT-3” OR “GPT-4”

OR “Bard” OR “Gemini”) AND (“Medical” OR “Healthcare” OR

“Clinical” OR “Health Inquiry” OR “Medical Inquiry”) AND

(“comparison” OR “comparative” OR “analysis” OR “review”) to

identify studies published from January 1 to October 20, 2023.

The search was restricted to studies published in English and

related to human health subjects.
Eligibility criteria

To be included in this study, studies needed to meet the

following criteria: focus on the application of ChatGPT and

Gemini across different branch specialties, evaluate outcomes

based on the accuracy and character count of ChatGPT and

Gemini, and be verified against the most recent predatory

journal list (11). Additionally, review articles and case reports

were excluded.
Study selection process

The initial screening involved two researchers reviewing all

titles and abstracts to check if they met the eligibility criteria.

In case of disagreements, a third author was consulted to

reach a final decision and resolve conflicts between the

initial researchers.
Data items

The data collected from the studies included the first

author’s name, country of study, type of study design,

publishing year, sample size, type of medical specialty,

accuracy, and length (character) of ChatGPT and Gemini.

Accuracy refers to the ability of ChatGPT and Gemini to

provide contextually appropriate and correct responses to

medical questions based on the standard guidelines specific to

each medical specialty.
Data analysis and synthesis

Microsoft Excel (2019) was utilized to collect and organize the

extracted data, while descriptive analysis was conducted using the

Statistical Package for Social Sciences (SPSS) software (version

26). The data is displayed as frequencies, percentages, means,

and standard deviations.
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Results

Study selection

During the initial database search, a total of 64 articles were

identified. Pre-screening procedures removed one duplicate, two

articles in non-English languages, and eight with unretrievable

data. Following a comprehensive review of titles and abstracts, 53

studies were assessed, excluding 22 for lack of relevance. The

remaining 31 studies underwent full-text evaluation, excluding 19

for failing to meet the inclusion criteria. Among the 12 studies

that proceeded to the eligibility assessment phase, one was

excluded due to its publication in a predatory journal.

Ultimately, 11 studies met the criteria for inclusion in the

review (Figure 1).
Characteristics of the included studies

The summarized raw data from the included studies are all

observational in Tables 1, 2. India and the United States were the

primary contributors, providing two studies. Additionally,

Canada, Singapore, Turkey, Australia, Ecuador, and Iraq each

contributed one study (Table 1).
Main findings

The research included 1,177 samples from 11 different medical

specialties (12–22). In radiology, there were 421 samples,

encompassing various fields such as neuroradiology (9.12%),

mammography (5.97%), general and physics (27.99%), nuclear

medicine (9.43%), pediatric radiology (5.03%), interventional

radiology (8.18%), gastrointestinal radiology (9.12%),

genitourinary radiology (3.46%), cardiac radiology (5.03%), chest

radiology (1.89%), musculoskeletal radiology (7.86%), and

ultrasound (6.92%). The renal sample size was 240, divided into

the renal diet with high potassium (33.75%), the renal diet with

low potassium (28.33%), and the renal diet with high

phosphorus (37.91%). Emergency and non-emergency cases had

sample sizes of 176, while the smallest samples were in clinical

diagnosis and neurodegenerative disorders, with sizes of 20 and

25, respectively (Table 1).

The comparison between ChatGPT and Gemini across various

specialties reveals accuracy and response length differences.

ChatGPT generally may demonstrate higher accuracy than

Gemini, especially in radiology specialties. The average accuracy

of ChatGPT was 87.43%, higher than Gemini 71%. Additionally,

the average response length of ChatGPT was 907 characters,

shorter than Gemini’s 1,428 characters. This indicates that

ChatGPT’s accuracy relative to response length may be more

reliable and accurate than Gemini. Accuracy in the hematology

specialty, ChatGPT, was 63%, compared to Gemini’s 44%.

Similar trends are observed in physiology, clinical diagnosis,

neurodegenerative disorders, anatomy, renal diet, high potassium,
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and radiology. Conversely, in myopia care, the response lengths of

ChatGPT and Gemini were nearly the same (1,221.13 vs. 1,275.87),

with ChatGPT achieving a higher accuracy of 80.6% compared to

Gemini’s 54.8%. In rhinoplasty, both ChatGPT and Gemini

demonstrate the same accuracy. In contrast, Gemini may be more

accurate than ChatGPT in emergency scenarios, a renal diet with

low potassium and a renal diet with high phosphorus (87% vs.

77%, 79% vs. 60%, and 100% vs. 77%, respectively) (Table 2).

The statistical analysis compared the accuracy and response

length of ChatGPT and Gemini. The results indicate that

ChatGPT has a higher accuracy (72.06%) than Gemini (63.38%),

with a mean difference of 8.68, a confidence interval of 7.77–9.58,

and a statistically significant p-value of <.001. In terms of response

length, ChatGPT produces shorter responses (960.84 words)

compared to Gemini (1,423.15 words), with a mean difference of

462.31 and a similarly significant p-value of <.001. This statistical

comparison emphasizes that ChatGPT may be more accurate and

generates shorter responses than Gemini (Table 3).
Discussion

Implementing large language models (LLMs) in medical

education shows significant potential for transforming traditional

teaching methods. Models like ChatGPT and Gemini process

extensive medical literature, providing valuable, contextually

relevant information for educators and students (23, 24). LLMs

create interactive, dynamic learning by giving students access to

current medical data, clarifying complex concepts, and enhancing

problem-solving. They also improve knowledge retrieval and

support evidence-based decision-making. Incorporating LLMs

encourages self-directed learning, critical thinking, and ongoing

professional growth. However, recognizing their limitations and

biases is essential for responsible, ethical use, complemented by

practical training and clinical mentorship (25, 26).

AI models have demonstrated significant potential in assisting

medical professionals by enhancing efficiency in problem-solving,

diagnosis, and data interpretation. For instance, ChatGPT has

consistently outperformed models like Bard and Bing in accuracy

when addressing medical vignettes (13, 14). This underscores

AI’s pivotal role in supporting clinical decision-making,

particularly in complex fields such as hematology (13). However,

despite these encouraging results, AI models still face limitations,

including inconsistencies in performance across various medical

specialties, which necessitate further refinement before full

integration into clinical practice (21).

The comparative analysis of ChatGPT and Gemini across

various medical specialties reveals distinct patterns in their

accuracy and response length performance. ChatGPT consistently

demonstrates higher accuracy rates compared to Gemini in most

specialties. This trend is evident in specialties such as

neuroradiology (100% vs. 86.21%), hematology (63% vs. 44%),

physiology (79% vs. 53%), clinical diagnosis (90% vs. 80%) and

neurodegenerative disorders (84% vs. 76%). ChatGPT’s superior

accuracy indicates its potential as a reliable tool for medical
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1482712
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 1

Prisma flow diagram.
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inquiries, providing precise and dependable information across

various medical fields (12–16).

Despite Gemini’s lower accuracy rates, it consistently delivers

longer responses than ChatGPT. In neuroradiology, Gemini’s
Frontiers in Digital Health 04
responses averaged 1,443.52 characters compared to ChatGPT’s

840.90 characters. This pattern is repeated across other

specialties, such as mammography (1,454.95 vs. 787.63) and

general & physics (1,490.69 vs. 1,022.38) (12).
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TABLE 1 Baseline characteristics of the included studies.

No Author Type of study Publishing years Country Sample size Specialty
1 Patil (12) Cross-sectional 2023 Canada 29 (9.12%) Neuroradiology

19 (5.97%) Mammography

89 (27.99%) General & physics

30 (9.43%) Nuclear medicine

16 (5.03%) Pediatric Radiology

26 (8.18%) Interventional radiology

29 (9.12%) Gastrointestinal radiology

11 (3.46%) Genitourinary radiology

16 (5.03%) Cardiac radiology

6 (1.89%) Chest radiology

25 (7.86%) Musculoskeletal radiology

22 (6.92%) Ultrasound

2 Kumari (13) Cross-sectional 2023 India 50 Hematology

3 Dhanvijay (14) Cross-sectional 2023 India 77 Physiology

4 Muhialdeen (15) Cross-sectional 2023 Iraq 20 Clinical Diagnosis

5 Koga (16) Cross-sectional 2023 USA 25 neurodegenerative disorders

6 Zhi Wei Lim (17) Cross-sectional 2023 Singapore 31 myopia care

7 Ilgaz (18) Cross-sectional 2023 Turkey 131 Anatomy

8 Seth (19) Cross-sectional 2023 Australia 6 Rhinoplasty

9 Salazar (20) Cross-sectional 2023 Ecuador 75 Emergency

101 Non-emergency

10 Qarajeh (21) Cross-sectional 2023 USA 81 (33.75%) Renal Diet High potassium

68 (28.33%) Renal Diet Low potassium

91 (37.91%) Renal Diet High phosphorus

11 Toyama (22) Cross-sectional 2023 Japan 103 Radiology

Fattah et al. 10.3389/fdgth.2025.1482712
The longer response length of Gemini suggests that it may offer

more detailed and comprehensive information, which could be

beneficial in scenarios where a more exhaustive explanation is

needed. While comparing ChatGPT and Gemini for accuracy

and response length in chest radiology and ultrasound, ChatGPT

consistently outperforms Gemini in accuracy. ChatGPT achieves

100% accuracy for chest radiology compared to Gemini’s 83.33%,

with a shorter average response length of 816.33 vs. Gemini’s

1,492.33 characters. ChatGPT also has a perfect accuracy rate of

100% in ultrasound, while Gemini’s accuracy drops to 63.64%.

Similarly, ChatGPT’s responses are more concise, averaging

944.91 characters compared to Gemini’s 1,371.95 characters (12).

ChatGPT and Gemini in myopia care respond to similar

lengths (1,221.13 and 1,275.87 characters, respectively). However,

there is a difference in accuracy: ChatGPT achieves an accuracy

of 80.6%, whereas Gemini achieves 54.8%. This disparity suggests

that while both models may offer comparable responses in terms

of content, ChatGPT tends to provide more reliable and accurate

information in this specialized medical context (17).

ChatGPT and Gemini exhibit nearly identical accuracy in

anatomy and rhinoplasty. ChatGPT achieves 44.27% accuracy in

anatomy, slightly higher than Gemini’s 41.98%. For rhinoplasty,

both models perform equally well, each with an accuracy rate of

80%. This comparison demonstrates that ChatGPT and Gemini

perform similarly in these medical specialties (18, 19).

Exceptions to this trend were observed in emergency scenarios,

where Gemini achieved higher accuracy (87%) compared to

ChatGPT (77%) (20). This highlights that Gemini may have

strengths in specific contexts, such as emergencies where detailed

information could be critical. However, both models showed
Frontiers in Digital Health 05
lower accuracy rates in non-emergency scenarios, with ChatGPT

slightly outperforming Gemini (36% vs. 33%) (20).

The performance of ChatGPT and Gemini in providing dietary

advice for renal conditions also varied. ChatGPT excelled in high

potassium contexts (99% vs. 79%) but was less accurate in low

potassium and high phosphorus scenarios compared to Gemini

(77% vs. 100%) (21). This variability suggests that each model

may have specialized strengths in specific medical contexts, and

their combined use could potentially enhance the quality of

medical inquiry responses.

The comparative analysis of ChatGPT and Gemini (Bard) in

medical inquiry highlights several limitations. ChatGPT may

provide inaccurate medical information due to its limited

understanding of complex contexts, and biases in training data

can affect accuracy. Ethical concerns include the risk of outdated

information and issues related to patient data privacy.

Additionally, the evolving nature of large language models means

that ChatGPT and Gemini are frequently updated, potentially

rendering some findings obsolete as newer versions are released.

The study’s focus on specific models and predefined case

vignettes may restrict its findings, as the scope of medical

inquiries is limited to particular scenarios, which may not fully

capture the broad range of medical topics these models could

encounter. Moreover, potential biases in the responses of these

language models were not fully explored, affecting the

generalizability of the results. There may be limitations and

potential bias in measuring accuracy, as each specialty uses

different standard answers to compare with the responses of

ChatGPT and Gemini across various studies. This variability

makes it challenging to determine how accurately the models
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TABLE 3 Statistical analysis of ChatGPT and Gemini.

Mean Mean difference Std. deviation Confidence interval p-value

Lower Upper
ChatGPT Accuracy 72.06 8.68 15.82 7.77 9.58 <.001

Gemini Accuracy 63.38

ChatGPT Length 960.84 462.31 158.10 445.64 478.98 <.001

Gemini Length 1,423.15

TABLE 2 Comparison between ChatGPT and Bard.

No Author Specialty ChatGPT
accurate

Gemini
accurate

ChatGPT length
(character)

Gemini length
(character

1 Patil (12)a Neuroradiology 100.00% 86.21% 840.90 (±426.35) 1,443.52 (±415.88)

Mammography 84.21% 68.42% 787.63 (±447.38) 1,454.95 (±442.34)

General & physics 85.39% 68.54% 1,022.38 (±453.50) 1,490.69 (±406.58)

Nuclear medicine 80.00% 56.67% 947.30 (±486.57) 1,321.57 (±374.86)

Pediatric Radiology 93.75% 68.75% 764.63 (±330.04) 1,368.88 (±547.91)

Interventional radiology 88.46% 80.77% 952.31 (±510.00) 1,538.31 (±446.90)

Gastrointestinal radiology 89.66% 79.31% 901.93 (±423.01) 1,427.66 (±322.21)

Genitourinary radiology 72.73% 63.64% 1,048.82 (±338.28) 1,373.09 (±342.2)

Cardiac radiology 75.00% 68.75% 915.50 (±3.48) 1,537.94 (±692.44)

Chest radiology 100.00% 83.33% 816.33 (±303.77) 1,492.33 (±295.28)

Musculoskeletal radiology 80.00% 64.00% 945.48 (±394.93) 1,326.40 (±316.33)

Ultrasound 100.00% 63.64% 944.91 (±518.11) 1,371.95 (±352.66)

2 Kumari (13)b Hematology 3.15/5 (63%)A 2.23/5 (44%)A - -

3 Dhanvijy (14)b Physiology 3.19/4 (79%)A 2.15/4 (53%)A - -

4 Muhialdeen (15)b Clinical Diagnosis 90% 80% - -

5 Koga (16)a neurodegenerative
disorders

84% 76% - -

6 Zhi Wei Lim (17)a myopia care 80.6% 54.8% 1,221.13 (±323.32) 1,275.87 (±393.25)

7 Ilgaz (18)b Anatomy 44.27% 41.98% - -

8 Seth (19)b Rhinoplasty 4/5 (80%)A 4/5 (80%)A - -

9 Salazar (20)b Emergency 77% 87% - -

Non-emergency 36% 33% - -

10 Qarajeh (21)a Renal Diet High
potassium

99% 79% - -

Renal Diet Low potassium 60% 79% - -

Renal Diet high
phosphorus

77% 100% - -

11 Toyama (22)a Radiology 65% 39% - -

aChatGPT-4.
bChatGPT-3.5.

Fattah et al. 10.3389/fdgth.2025.1482712
perform in each specialty. The findings indicate that ChatGPT

generally offers more accurate and concise responses across

various medical specialties, while Gemini provides more detailed

but less accurate answers. The choice between these AI models

should be guided by the specific needs of the medical inquiry—

whether precision or detail is prioritized. Future improvements

should aim to integrate the strengths of both models, enhancing

accuracy while maintaining the comprehensiveness of responses

to support better clinical decision-making and patient care.
Conclusion

This scoping review indicates that ChatGPT has shown

promise in the included medical studies. It may demonstrate
Frontiers in Digital Health 06
higher accuracy and a shorter response than Gemini.

Therefore, further research is needed to maximize ChatGPT’s

accuracy compared to Gemini in the medical field.
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