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Introduction: Carotid B-mode ultrasound (U/S) imaging provides more than the

degree of stenosis in stroke risk assessment. Plaque morphology and texture

have been extensively investigated in U/S images, revealing plaque

components, such as juxtaluminal black areas close to lumen (JBAs), whose

size is linearly related to the risk of stroke. Convolutional neural networks

(CNNs) have joined the battle for the identification of high-risk plaques,

although the ways they perceive asymptomatic (ASY) and symptomatic (SY)

plaque features need further investigation. In this study, the objective was to

assess whether class activations maps (CAMs) can reveal which U/S grayscale-

(GS)-based plaque compositions (lipid cores, fibrous content, collagen, and/or

calcified areas) influence the model’s understanding of the ASY and SY cases.

Methods: We used Xception via transfer learning, as a base for feature extraction

(all layers frozen), whose output we fed into a new dense layer, followed by a

new classification layer, which we trained with standardized B-mode U/S

longitudinal plaque images. From a total of 236 images (118 ASY and 118 SY),

we used 168 in training (84 ASY and 84 SY), 22 in internal validation (11 ASY

and 11 SY), and 46 in testing (23 ASY and 23 SY).

Results: In testing, the model reached an accuracy, sensitivity, specificity, and

area under the curve at 80.4%, 82.6%, 78.3%, and 0.80, respectively. Precision

and the F1 score were found at 81.8% and 80.0%, and 79.2% and 80.9%, for

the ASY and SY cases, respectively. We used faster-Score-CAM to produce a

heatmap for each tested image, quantifying each plaque composition area

overlapping with the heatmap to find compositions areas related to ASY and

SY cases. Dark areas (GS≤ 25) or JBAs (whose presence was verified priorly, by

an experienced vascular surgeon) were found influential for the understanding

of both the ASY and the SY plaques. Calcified areas, fibrous content, and lipid

cores, together, were more related to ASY plaques.

Conclusions: These findings indicate the need for further investigation on how

the GS≤ 25 plaque areas affect the learning process of the CNN models, and

they will be further validated.
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1 Introduction

The global incidence and burden of ischemic stroke saw a

substantial increase from 1990 to 2021 (87.69% and 101.8%

increase, respectively) (1). Implementation of effective primary

prevention pathways, after timely identification of individuals in

high risk, for better disease outcomes and patient management,

is needed. Although in (2), a thorough statistical analyses on,

among others, stroke and cardiovascular risk factors has been

provided, summarizing also habits contributing to cardiovascular

health, the early identification and effective management of the

asymptomatic (ASY) carotid stenosis degree (SD; when ≥70%)

seem to remain an essential factor (3). According to Kamtchum-

Tatuene et al. (3), plaques at high risk are common in ASY

patients, while in another study, stroke risk was found

approximately at 15% of patients with severe ASY stenosis (after

5 years of continuous medical therapy) (4), pointing to the

reconsideration of surgical intervention.

B-mode ultrasound (U/S) imaging, a reliable imaging modality

to monitor arterial wall thickness with good resolution, is widely

preferred, mainly because of its cost-effectiveness and non-invasive

nature (5). B-mode U/S enables more than the SD estimation, as

proved by a series of studies relying on the Asymptomatic Carotid

Stenosis and Risk of Stroke cohort data (6). Those studies

exploited B-mode U/S image-based textural and morphological

features of plaques, concluding to strong associations between

echodensity configurations and ASY and symptomatic (SY)

internal carotid artery (ICA) plaques, and plaque types (6–9).

Another study also assessed B-mode U/S characteristics of

unstable carotid plaques (10), where echolucent plaques were more

present in patients with Amaurosis Fugax, Transient Ischaemic

Attack, and stroke (86%) than in patients with ASY (47%,

p-value < 0.001). In (11), a plethora of U/S plaque features were

found, which change significantly throughout the cardiac cycle,

between individuals with ASY and SY.

Researchers in (12) concluded that a high SD is related to more

heterogeneous plaques, which were also found more associated

with symptoms compared with homogeneous plaques, with any

SD. However, later, researchers in (13) showed that unstable

plaques appear as more echolucent and homogeneous

(independently of the SD), based on associations between a

combination of texture and echogenicity U/S plaque features and

histologic plaque instability.

With the advent of artificial intelligence (AI), numerous deep

learning (DL) models have been proposed and evaluated, with

ImageNet (14), in binary and multiclass image classification,

achieving remarkable classification accuracies. Some central

examples were VGG (15), the ResNet-152 (16), and Xception

(17). Multiple studies followed, training and evaluating DL

models in medical image classification, pathological lesion

detection, and segmentation tasks (18), showing promising

performances, in many imaging modalities (19).

2 Related work

Transfer learning, a way to benefit from pretrained DL models,

has also become popular in the automation of medical image

classification tasks (20, 21). However, when used for a first time,

with a medical image dataset, it requires meticulous fine-tuning

of the pretrained model (22), as the efficacy of fine-tuning varies

due to its intense dependence on model architecture and on the

medical imaging modality. Although in medical image analysis,

transfer learning has gained a notable ground, it comes with

certain research gaps, such as the need for a better benchmarking

or the need to comprehensively investigate what convolutional

neural network (CNN) models understand, preferably through

class activations visualizations (23). DL and transfer learning

pathways, for the identification of ASY and SY plaques in carotid

U/S images, supported by different ways of visualizations to show

image areas that contribute to model’s understanding, have been

investigated in a limited amount of studies (Table 1). The idea of

including, among others, class activation maps (CAMs) in CNN-

based carotid U/S plaque classification workflows, has

begun flourishing.

Primarily, researchers in (24) had developed a small custom

CNN model of four convolutional (CONV) layers, which they

trained and evaluated for B-mode U/S carotid plaque tissue

identification, taking into account the area around each pixel, as

contained in image patches (large number of 15 × 15 pixel size

patches), each hosting plaque tissue such as lipid cores, fibrous

tissue, and/or calcified tissue. They visualized the predicted

plaque tissues, calculating a pixel-wise accuracy, comparing them

with ground truth (GT) composition areas. Later, researchers in

(25) employed a slightly larger DL model (six CONV layers),

which they trained with carotid U/S plaque images to

differentiate between ASY and SY cases, and tested it, using local

surrogate models (26) (local approximation of predictions) to

interpret the model’s decision. There, heatmaps showed areas

that highly impacted a correctly classified ASY plaque and a

misclassified SY plaque, reflecting the DL model’s difficulty to

Abbreviations

AI, artificial intelligence; ASY, asymptomatic; BktoGT, proportion of black in

GTplq; BltoGT, proportion of blue in GTplq; CAM, class activation map;

CNN, convolutional neural network; CONV, convolutional; DL, deep learning;

DSCONV, depthwise separable convolutions; DWA, discrete white area;

ECST, European Carotid Surgery Trial; FC, fully connected; GradCAM,

gradient-weighted class activation mapping; GS, grayscale; GT, ground truth;

GtoGT, proportion of green in GTplq; GTplq, groundtruth plaque area;

GTplq-heatmap, proportion of GTplq covered by raw heatmap; HMPBk,

proportion of heatmap corresponding to black in GTplq; HMPBl, proportion

of heatmap corresponding to blue in GTplq; HMPG, proportion of heatmap

corresponding to green in GTplq; HMPinBk, proportion of GT black covered

by heatmap; HMPinBl, proportion of GT blue covered by heatmap; HMPinG,

proportion of GT green covered by heatmap; HMPinO, proportion of GT

orange covered by heatmap; HMPinR, proportion of GT red covered by

heatmap; HMPinY, proportion of GT yellow covered by heatmap; HMPO,

proportion of heatmap corresponding to orange in GTplq; HMPR, proportion

of Heatmap corresponding to red in GTplq; HMPY, proportion of heatmap

corresponding to yellow in GTplq; ICA, internal carotid artery; JBA,

juxtaluminal black area; NASCET, North American Symptomatic Carotid

Endarterectomy Trial; OtoGT, proportion of orange in GTplq; ReLU, rectified

linear unit; RtoGT, proportion of red in GTplq; SY, symptomatic; U/S,

ultrasound; YtoGT, proportion of yellow in GTplq.
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confidently associate high-risk components, such as juxtaluminal

black areas close to lumen (JBAs) (8), with the SY class.

Meanwhile, in (27), ten ImageNet-pretrained models were

used, by replacing the initial top classification layers with new

dense and classification layers, and trained and evaluated against

a custom DL model (11 CONV layers), to classify ASY and SY

plaques in carotid U/S images. There, MobileNet with transfer

learning performed very well. Also, gradient-weighted class

activation mapping (GradCAM) (28) gave heatmap visualizations

in the tested images (when VGG16 was used), to explain the

model’s predictions. GradCAM pointed to echolucent areas for

the SY class vs. more hyperechoic areas in the ASY plaques (only

qualitatively assessed). Later in (29), researchers trained and

evaluated five DL models with high- and low-risk plaques in

carotid U/S images and used a support vector machine to classify

a series of U/S plaque image features they extracted. There,

GoogLeNet yielded the best results. They also used GradCAM on

GoogLeNet to depict the most important plaque regions

contributing to the model’s understanding of high-risk plaques,

without further quantification.

Finally, in (30), a DL model, with ResNet-50 as a backbone,

was developed for carotid plaque detection and stability

assessment, in two rounds of training with U/S images. There,

researchers employed two single-input ResNet-50 architectures

(image input in the former is a version where only edges are

preserved, while input in the latter model is the original U/S

image), whose outputs were fused (by bilinear combination) and

fed into a dense layer to decide on plaque presence or absence.

Then, a dual-input version of this model, sitting at the top of the

plaque detection network, was trained to classify plaques into

stable or unstable. There, researchers also used GradCAM to

visualize areas that heavily contributed to the understanding of

stable and unstable plaques, although in a qualitative manner.

Overall, visualizations of the above-mentioned areas, using

CAMs, have constituted a more explainable pathway for humans

to know what CNN models perceive as ASY or SY plaque-

associated features, in B-mode U/S images. However, apart from

(24, 25), the other above-mentioned studies provided qualitative

visualizations. In (24, 25), there was further representation,

assessment, and discussion on plaque compositions (lipid cores,

fibrous content, calcifications, or JBAs), as detected by the CNNs.

Importantly, in the past, the size of the JBA, without a visible

echogenic cap, had been found linearly associated with the risk

of stroke (8) (SD between 50% and 99%; treated medically),

upon image intensity normalization (31), while other studies

showed that JBAs > 6 mm2 possibly signify vulnerable plaques

(32), as well as that a large JBA is associated with a higher

ulceration score (33).

TABLE 1 Summary of previous research on deep and transfer learning-based carotid plaque classification in ultrasound images, combined with
explainable class activation maps and other visualizations on the predictions, to investigate plaque compositions that mostly contribute to
symptomatic, asymptomatic, low-risk, or high-risk plaques.

Year Study N subjects
N images
ASY/SY

Image
preprocessing

Best CNN
DL/TL

XAI method Results

RN/
INN

Input
size

SE SP Mean
CA

(± STD)

Targeted
composition or

ASY/SY

2017 Lekadir

et al. (24)

56

90,000†

NG/NG

Fixed/* 15 × 15 Custom

CNN

✓/–

GT vs. Pred

areas (mm2)

0.83 ± 0.12

0.70 ± 0.16

0.76 ± 0.15

0.90 ± 0.13

0.80 ± 0.14

0.89 ± 0.12

0.75 ± 0.16 Lipid core

Fibrous cap

calcified area

2021 Ganitidis

et al. (25)

74

NG/NG

58/16

NG/

NG

NG Custom

CNN

✓/–

Local surrogate

models

0.75 ± 0.18

(4-f mean)

0.70 ± 0.10

(4-f mean)

0.73 ± 0.06

(balanced)

ASY vs. SY**

2021 Sanagala

et al. (27)

346

400

150/196

Fixed/

✓

224 × 224

256 × 256

MobileNet‡

Custom CNN

✓/✓

GradCAM

on VGG16

NG NG 0.962, 0.956 ASY vs. SY**

2024 Singh et al.

(29)

190

223

0/190

Fixed/– 224 × 224 GoogLeNet

✓/-

GradCAM

on GoogLeNet

0.986 0.976 0.982 Low vs. high risk

2024 He et al.

(30)

1,339

3,860

–/–

674

1,564

–/–

Fixed/* 256 × 256 ResNet-

50-based

Custom

CNN

✓/✓

GradCAM on

ResNet-50-based

Custom CNN

0.932§

0.953§§

0.816§

0.685§§

0.992§

0.822§§

0.873§

0.895§§

0.956§

0.864§§

0.837§

0.746§§

Plaque Present vs. Absent

Stable vs. Unstable

2024 Liapi et al.

This study

232

236

116/116

✓/✓ 512 × 224 Xception

–/✓

f-ScoreCAM

on Xception

0.826 0.783 0.804

(weighted

average)

ASY vs. SY**

ASY, asymptomatic; CAM, class activation map; CNN, convolutional neural network; DL, deep learning; INN, intensity normalization; N, number; RN, resolution normalization; SE, sensitivity;

SP, specificity; SY, symptomatic; TL, transfer learning; XAI, explainable artificial intelligence.

✓The image intensity normalization method adhered to that in reference (52).

*The image intensity normalization method was different from that in reference (52).

**Classification of plaques as symptomatic or asymptomatic, with visualized insights on compositional components on the classified image.
‡Multiple models were evaluated, pretrained on ImageNet; MobileNet returned their best area under the Receiver operating characteristic curve.
§Internal validation dataset.
§§External validation dataset.
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As included in the clinical practice guidelines, provided by the

European Society for Vascular Surgery (ESVS) in 2023 (34), since

the ESVS 2017 Guidelines, JBAs (grayscale value; GS≤ 25) are

considered among the recommended clinical imaging criteria to

assess the risk of stroke. In addition, discrete white areas (6),

representing calcified regions surrounded by hypoechoic regions,

in plaques without acoustic shadow, are also associated with an

increased risk of stroke (p-value < 0.001) (35). Presumably, the

automatic and reliable identification and quantification of these

critical plaque areas in U/S images could possibly allow an

effective and timely stroke risk stratification, especially in ASY

cases. As high-risk plaque areas might be present in patients with

either ASY or SY, automatic classification into ASY and SY

plaques might not be an adequate approach to depict the risk.

In this study, the aim was to investigate whether a CNN model

(based on transfer learning) could identify plaque compositions as

more ASY- or SY-specific. We performed carotid plaque

classification, into ASY or SY, in B-mode U/S longitudinal images,

utilizing a well-known pretrained CNN model, as feature extractor.

From the model’s last convolutional layer, we produced CAM

heatmaps, and by keeping them as uniform maps, we quantified

how a. the proportion of each plaque composition area covered by

the map (with respect to each plaque composition), and b. the

proportion of each plaque composition area in the map (with

respect to the map), differ between the ASY and SY cases. Plaque

compositions pertained to lipid cores, fibrous content, collagen and/

or calcifications, given as GTs, in the form of six color contours.

When CAMs are used in medical imaging tasks, they cannot

always successfully point to truly affected lesions, due to high

complexity. Here, the CAM maps served as interpretative means to

detect the plaque composition areas involved, influencing the

model’s understanding, with a focus on quantifying their related

area, rather than their overall precise localization.

3 Materials and methods

3.1 Carotid B-mode ultrasound image
dataset

A total of 232 patients were included (116 ASY and 116 SY

patients), from which 236 carotid B-mode U/S longitudinal

images were available (for two SY and two ASY patients,

recordings from the right and the left ICAs were available). Data

information is given in Table 2. The majority of images

corresponded to ICAs. The 236 carotid U/S videos were captured

in three medical centers, in Cyprus, in the United Kingdom

(UK), and in Greece. Overall, there was SD≥ 50% [based on the

European Carotid Surgery Trial protocol (ECST) for the cases

from Cyprus and Greece or based on the North American

Symptomatic Carotid Endarterectomy Trial protocol (NASCET)

for the cases from UK]. An experienced vascular surgeon

manually annotated the plaque in each U/S image, using a

dedicated in-house software, providing us with GT plaques

regions (36).

3.2 Carotid plaque composition ground
truth areas

We produced 236 plaque image counterparts, based on six

color contours (six ground truth colors), to visualize each plaque

composition. Each plaque composition was colored according to

a prespecified GS intensity range, with a method introduced by

Kyriacou and Nicolaides (36). These images served as GT carotid

plaque composition areas, where JBAs (or lipid cores) are

represented by black (GS≤ 25), lipid cores with some amount of

collagen (histologically it is fibro-fatty tissue) are shown in blue

(25 < GS≤ 50) and green (50 < GS≤ 75), and calcified areas are

depicted in red (GS > 125). We provide intermediate areas in

orange (100 < GS≤ 125) and yellow (75 < GS≤ 100) for

visualization purposes.

3.3 Data preparation and preprocessing

All U/S images were first resolution-normalized to 20 pixels/

mm, and then intensity was normalized using linear scaling with

two reference points (blood and adventitia), such that the

grayscale median of blood was 0–5 and that of the adventitia was

185–190, according to the methods in (31, 37). Next, all images

were cropped to closely keep the plaque (in image center) in its

bounding box dimensions, including a limited surrounding U/S

background. Finally, we resized all images to a uniform size,

TABLE 2 Summary of the different carotid ultrasound image sources, for the data used in this study, along with the available patient demographics and
the ultrasound machines.

Country NPatients NASY NSY NFemales NMales Age
mean ± std

NImages Ultrasound
machine

Initial image resolution
mean ± std (px/mm)

United

Kingdom

186 103 83 69 117 73 ± 10 188 Philips iU22 14.29 ± 3.07

Cyprus 7 4 3 0 7 69 ± 9 7 Philips iE33 or Philips

Affinity 70G

17.36 ± 2.81

Greece 26 9 17 11 15 73 ± 8 28 Philips iU22 14.12 ± 1.66

Greece 13 0 13 NG NG NG 13 ATL HDI-5000 17.00

Total 232 116 116 – – – 236a – –

ASY, asymptomatic; SY, symptomatic.
aFor two symptomatic and two asymptomatic patients, there were ultrasound recordings from both the right and the left internal carotid artery.
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512 × 224 pixels, before model training. This input dimensions

were decided as the resolution-normalized x-axes of the plaques,

in our dataset, were 277 ± 97 pixels long (max x-axis at 512), and

the y-axes were at 96 ± 32 pixels (max y-axis at 201). For all

computational processes and DL workflows, we worked in

Python 3.8 (38).

3.4 Transfer learning carotid plaque
classification with analyzed class attribution
maps

We used transfer learning with B-mode U/S plaque images,

using the pretrained (on ImageNet; (39)) Xception (17) model,

as a feature extractor, to classify carotid plaques into ASY or SY.

We removed the primary classification layer of Xception (keeping

all layers frozen), we flattened its output and added a new dense

layer with 128 neurons (attempting not to introduce a larger

number, to prevent overfitting), for training with our images,

followed by a dropout layer and a new classification layer. We

tested the model on our kept-out images and generated saliency

maps and CAM-based heatmaps, employing SmoothGrad (40)

and the faster-Score-CAM (f-Score-CAM) (41) (Section 3.5),

respectively, to discover which plaque compositions the model

associates with the ASY and SY classes. In Figure 1, we provide a

holistic flow diagram of the transfer learning-assisted carotid

plaque classification and the possible contribution of plaque

compositions to this process, as conducted in the present study.

3.4.1 Transfer learning model
We relied on Xception (17), which consists of 36 CONV layers,

as it preserves a relatively good trade-off between top-1 accuracies

and computational complexity (concerning model size, number of

parameters, inference time and memory consumption, all

together), based on the study of Bianco et al. (42). Here, we

intended to evaluate a CNN model of a moderate size (but

FIGURE 1

The process of transfer learning-based carotid plaque classification in B-mode longitudinal U/S images, as performed in this study, and plaque

compositions involved in class understanding, revealed via f-Score-CAM. From left-to-right-to-left, we show how we used the pretrained

Xception as feature extractor. After removal of the primary classification layer, we froze the backbone, and at the top of it, we added a new set of

dense layers; the final was a classification layer, before which a dropout layer was set. We tested the model on kept-out images, we extracted the

f-Score-CAM-based heatmap, we limited it to the plaque area bounding box and measured what proportion of the GTplq compositions was

covered by the heatmap. ASY, asymptomatic; GS, grayscale; GT, ground truth; GTplq, ground truth plaque region; HMP, Heatmap; JBAs,

juxtaluminal black areas close to lumen; SY, Symptomatic.
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efficient), as the image dataset used here is not very large, and if

used with a very large model, this would likely introduce

overfitting. Xception can be understood as a linear stack of

“depthwise separable convolutions” (DSCONVs), hosted within

14 modules. It consists of an entry, a middle, and an exit flow

part. In the entry flow (two CONV layers and three residual

blocks, with DSCONVs), complex patterns are read by the

model, which gradually increases the depth to capture abstract

features. In the middle flow, there are eight identical residual

blocks, performing a repetitive refinement to understand the

data, which led to the exit flow (residual blocks, average pooling

and a fully-connected layer; FC), for classification. In the CONV

blocks, there are also batch normalization layers, ReLU

activations, and skip connections. Overall, Xception balances

efficiency and better performance, compared with other

previously introduced models.

3.4.2 Model training and hyperparameter settings
Xception was used via Keras (43) [TensorFlow as backend

(44)], as feature extractor. We created a model, with the

pretrained Xception as the base (all layers frozen), to use its

output to further train new dense layers, with supervised

training. The new model was further comprised of a Flatten

layer, a new dense layer (128 neurons; ReLU as activation

function), a dropout layer (0.6 factor) to help prevent

overfitting, and a new classification layer (with Softmax).

Overall, the data was split with the 80%–20% scheme, as

follows: from the 236 total images, 190 were used in training

(168 for training; 84 ASY and 84 SY examples, and 22 for

internal validation; 11 ASY and 11 SY plaques), and 46 images

were used in the final model evaluation (23 ASY and 23 SY

cases). In training, we used a minibatch of 12 images and relied

on categorical cross entropy (loss function), and the root mean

square propagation (“rmsprop”) as optimization algorithm (45)

with default settings, starting with an initial learning rate of

0.0001, which we dropped by 0.6 every seven epochs (step

decay), tracking the validation loss. We also used data

augmentation (rotation range at 20°, horizontal and vertical

flips, and shearing in a 50° range) to give more paradigms to

the small model, and early stopping (patience at 20 epochs;

although seemingly high, experimentation with lower patience

levels resulted in premature training).

We repeated the whole process of training of the new set of

layers, and testing, three times (three different seeds; 7, 12, and

42), to assess the reproducibility of the results in the model’s

classification performance. Each time a certain seed was used, it

was to prepare three aspects: in training, validation, and

testing image generators to prepare the images (data shuffling

was also used in generators), in securing reproducibility

via setting the tf.keras.utils.set_random_seed(seed) [followed by

tf.config.experimental.enable_op_determinism()], and in weight

initialization, via the tf.keras.initializers.HeUniform(seed)

(preferred due to ReLU) in the dense layer with 128 neurons,

and the tf.keras.initializers.GlorotUniform(seed) in the final

classification layer (due to Softmax).

3.4.3 Model classification performance metrics

We evaluated the model’s classification performance measuring

the accuracy, the precision per class, the Sensitivity (SE), the

Specificity (SP), the F1-score, and the area under the receiver

operating characteristic curve (AUC-ROC). We also generated

the confusion matrix, showing the percentages of true positives

(TP), true negatives (TN), false positives (FP), and false negatives

(FN). All metrics used are summarized in (46, 47). The

corresponding formulas (1)–(5) of all model performance

evaluation metrics, in this study, are shown below:

Accuracy ¼
TN þ TP

TP þ TN þ FP þ FN
(1)

Precision ¼
TP

TP þ FP
(2)

Sensitivity (Recall) ¼
TP

TP þ FN
(3)

Specificity ¼
TN

TN þ FP
(4)

F1 score ¼
2�Precision�Recall

Precisionþ Recall
(5)

3.5 Saliency maps and class activation maps

To detect the carotid plaque composition(s) that the model

better understands, individually for the ASY and SY class, we

explored smoothed saliency maps, based on the final FC

classification layer, and CAMs, based on the last CONV layer in

Xception (frozen). For the first process, we used “SmoothGrad”

(40), while in the latter case, we used “f-Score-CAM” (41)

(a faster Score-CAM version). We utilized these processes via the

visualization toolkit “tf-keras-vis” (48).

3.5.1 Smoothed saliency maps
With “SmoothGrad,” we intended to visualize plaque

composition–related areas that influence the model’s final

decision. In (49), we attempted a similar transfer learning-based

classification approach, where we used vanilla saliency maps,

noticing that the resulting visualizations were noise-rich.

SmoothGrad alleviates this problem to some extent, generating

multiple saliency maps (varying noise examples of the input),

averaging noise, and leading to a smoothed, more interpretable

saliency (sensitivity) map. It computes how much difference a

small change per pixel in the input image will cause to the final

classification score, for the examined class; a computation that

needs the derivative (the gradient) of the class activation

function. Here, we will visually assess the SmoothGrad maps.

3.5.2 Gradient-free class activation maps
Importantly, we used f-Score-CAM (41), a gradient-free

approach, to produce CAMs. It upsamples the CAM of a region
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in the input image and perturbs the input with this upsampled

map, whose importance is calculated by the target score of the

masked result. In fact, the upsampled CAM is a mask itself,

which receives a normalized smoothing effect ([0,1]) and can be

used to perturb the input. Here, we used the “jet” colormap with

its continuous color values (50) to give the heatmap (Heatmap;

covering the whole GT plaque; GTplq, including all present

compositions). We kept the overall heatmap, as an area of

uniform values, which overlaps with the areas of the plaque and

calculated what proportion of each plaque composition is

covered by this heatmap and what proportion of each plaque

composition area falls inside the heatmap. We maintained the

continuous “jet” colormap to visually (qualitatively) assess the

plaque composition(s) that is important for Xception (its last

CONV layer) to understand the ASY or the SY class. Splitting

the “jet” map values for a non-linear representation, in six colors

(e.g., black, blue, green, yellow, orange, and red), would not serve

our current aim. It should be made clear that defining a

threshold for the CAM values, to decide on the highly involved

plaque composition(s), per class, would probably introduce bias,

as it is uncertain what this threshold should be, at the moment.

3.5.3 Detection of compositions driving carotid

ultrasound plaque classification
For each evaluated GS plaque image, for which the model

predicted a class (ASY or SY), we kept the plaque-covering f-

Score-CAM heatmap and compared its area with the underlying

color-contoured GTplq compositions. We identified the pixel

positions of the heatmap and those of each plaque composition

(six color contours) and generated groups of measurements to

find the influential compositions, in the form of proportions.

Specifically, the steps we followed were:

1. First, a given plaque image for which a prediction was made is

analyzed using f-Score-CAM, which returns a 2D array

(512 × 224) Heatmap (the heatmap colors were not compared

interchangeably with the GTplq contour colors; there red

shows the highest and light blue shows the lowest values,

respectively). Our approach was to keep the heatmap colors

intact (all colors present) to help understand the areas that

are influential in the model’s understanding of each class

(ASY or SY), visually (qualitatively).

2. Next, only the heatmap area covering the GTplq area is the one

used in the main analysis. As this study is of an exploratory

nature, we considered all heatmap values, overlapping with

the GTplq; although it seems paradoxical, it is partially

justified by visualizations in Figures 2, 3 (later), where in the

plaque with JBAs (priorly verified by the doctor), the

heatmap produces low values, however relevant (see Figure 2,

6th row and 5th column). Importantly, the overall heatmap

area was treated as a uniform map.

3. Next, we further defined the following measurements,

per plaque:

a. Proportion of GTplq pixel area covered by the heatmap

(GTplq-Heatmap).

b. Proportion of GTplq composition pixel area, with

respect to the total GTplq pixel area (BktoGT, BltoGT,

GtoGT, YtoGT, OtoGT, and RtoGT, for black, blue,

green, yellow, orange, and red, respectively).

c. Proportion of each heatmap-covered GTplq composition

with respect to this GTplq composition’s pixel area

(HMPinBk, HMPinBl, HMPinG, HMPinY, HMPinO,

and HMPinR, respectively).

d. Proportion of each heatmap-covered GTplq composition

pixel area with respect to the overall heatmap’s pixel area

FIGURE 2

The training and validation accuracy (on the left) and loss values (on the right) of the newmodel (with the pretrained on ImageNet Xception as base for

feature extraction; frozen), trained for asymptomatic vs. symptomatic carotid plaque classification in B-mode ultrasound images (results using 7 and

42 as seeds in training), as performed in this study.
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(HMPBk, HMPBl, HMPG, HMPY, HMPO, and HMPR,

respectively).

Measurements (as percentages) in a, b, and c were averaged per

composition and across all cases, per class (ASY or SY). We explored

the plaque composition area-specific averaged measurement, in c

(e.g., average HMPinBk, HMPinBl, and the others), across all

plaques, as a descriptive measurement showing to what extent a

composition represents the given class (ASY or SY), from the CNN

model’s view. Overall, we relied on the averaged measurement, in d,

to find the influential compositions for each class. The different

colors in the primary heatmap are used only for visual perception of

the overall important plaque compositions, while the six color shades

are used to demonstrate the GTplq compositions. A particular focus

was drawn on plaques, where the largest present GT composition

was also the one mostly covered by the heatmap.

4 Results

4.1 Transfer learning in carotid ultrasound
plaque classification

We trained the new dense layer set at the top of the pretrained

Xception (frozen) and evaluated the model’s performance with 23

ASY and 23 SY U/S plaque images. Based on Early Stopping, the

model’s training stopped at 38, 32, and 50 epochs for seeds 7, 12,

and 42. The model reached the highest (same) precision and

F1-score at 81.8% and 80.0%, and 79.2% and 80.9% for the ASY

and SY cases, respectively (Table 3) with seeds 7 and 42. Also,

there, the accuracy reached 80.4%, while the SE and SP were

found at 82.6% and 78.3%, respectively. The AUC reached 0.80,

for all seeds. In Figure 2, we depict the training and validation

accuracy and loss, for the model training with seed 42. After all

the three model training repetitions (three different seeds), in

testing, the mean ± std accuracy, SE, SP, and AUC were found at

80.4 ± 0.0%, 84.1 ± 2.07%, 76.8 ± 2.07% and 0.80 ± 0.0,

respectively. The mean ± std precision and F1-Score were found

at 82.9 ± 1.5% and 79.7 ± 0.42%, and 78.4 ± 1.08%, and

81.1 ± 0.33% for the ASY and the SY class, respectively. The

training and validation accuracy and loss, for the training with

seed 42 (best results, as also with seed 7) are shown in Figure 2.

We believe that data augmentation possibly caused the primary

intense fluctuations between the training and the validation

accuracies and losses (see Figure 2, left and right, respectively);

the validation loss did not further decrease after a certain value,

which might be attributed to the limited number of

training images.

FIGURE 3

Carotid plaque composition proportions in GTplq total pixel area, depicting plaque synthesis of the 23 ASY and 23 SY evaluated U/S images. Median

values are shown in white horizontal lines inside boxes, while above each box, the interquartile range is given. In the legend, each grayscale (GS) value

range reflects a specific color contour; lipid cores and JBAs are shown in black (GS≤ 25), lipid cores with some amount of collagen (histologically it is

fibro-fatty tissue) in blue (25 < GS≤ 50) and green (50 < GS≤ 75), and calcified areas in orange (100 < GS≤ 125) and/or red (GS > 125). We depict

intermediate areas in yellow (75 < GS≤ 100), for visualization purposes. ASY, asymptomatic; GT, ground truth; GTplq, ground truth plaque region;

JBAs: juxtaluminal black areas; PLQ, plaque; SY, symptomatic; U/S, ultrasound.
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4.2 Identified compositions contributing to
carotid plaque classification

In Figure 3, we provide boxplots showing the overall synthesis

of the 23 ASY and the 23 SY evaluated plaques, in this study. We

may notice that dark (GS≤ 25) areas were largely present in both

the ASY and the SY plaques, compared with the other

compositions, although in the SY plaques, dark areas (lipid cores

and/or JBAs) were even larger than that in the ASY plaques. In

Figures 4, 5, we qualitatively present the saliency maps, for six

ASY and six SY plaques of the evaluated images, showing the

plaque areas that contributed to the final classification score per

TABLE 3 Transfer learning carotid plaque classification metrics (ASY and SY cases), employing the new model (with the pretrained on ImageNet Xception
as base; frozen), for three different training sessions, with seed 7, 12, and 42.

Seed Class Precision F1-score Accuracy Sensitivity Specificity AUC

7 ASY 81.8 80.0 80.4 82.6 78.3 0.80

SY 79.2 80.9

12 ASY 85.0 79.1 80.4 87.0 73.9 0.80

SY 76.9 81.6

42 ASY 81.8 80.0 80.4 82.6 78.3 0.80

SY 79.2 80.9

Mean ± std ASY 82.9 ± 1.51 79.7 ± 0.42 80.4 84.1 ± 2.07 76.8 ± 2.07 0.80

SY 78.4 ± 1.08 81.1 ± 0.33

ASY, asymptomatic; AUC, area under the curve; SY, symptomatic.

FIGURE 4

Saliency maps and heatmaps based on faster-Score-CAM, for a sample of six ASY evaluated images, in this study. We show GTplq in standardized,

cropped, and resized U/S images (column 1), the SmoothGrad map (column 2), the primary Score-CAM-based heatmap overlaid on the GTplq

(column 3), the heatmap within the GTplq (column 4), and the final uniform version of the heatmap, overlaid on the individual GTplq

compositions, using the six-color contouring method (column 5), according to Kyriacou and Nicolaides (36). Column 6 shows the proportions of

GTplq composition pixel areas, with respect to the total GTplq area. Column 7 shows the proportion of each heatmap-covered GTplq

composition with respect to this GT composition area. Lipid cores and JBAs are shown in black (GS≤ 25), lipid cores with some amount of

collagen (histologically it is fibro-fatty tissue) in blue (25 < GS≤ 50) and green (50 < GS≤ 75), and calcified areas in orange (100 < GS≤ 125) and red

(GS > 125). We depict intermediate areas in yellow (75 < GS≤ 100), for visualization purposes. With a star, we signify the existence of a JBA area

close to lumen. ASY, asymptomatic; GT, ground truth; GTplq, ground truth plaque region; HMP, heatmap; JBA, juxtaluminal black area.
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class (see Figures 4, 5, column 2; SmoothGrad maps from the new

classification layer). We extracted these maps by setting the number

of calculating gradient iterations to 20 and the noise level to 0.30

(see “tf-keras-vis” implementation). Saliency maps, in many cases,

identified key areas per class, different than those extracted by the f-

Score-CAM. We noticed a tendency of SmoothGrad to focus on

calcifications, in both the ASY and the SY plaques. The saliency

maps and visualizations for the rest of the evaluated plaques are in

the Supplementary Material (see Figures 1, 2).

In Figures 4, 5 (column 4), we also show the f-Score-CAM-

based maps. To use f-Score-CAM (in the last CONV layer in

Xception; name: “conv2d_3”), we set the channel number to 3

(upon trials; one can investigate more channels). In Figure 4,

based on these maps, we may notice that lipid cores and possibly

the JBAs (shown in blue and black, and an asterisk, respectively)

were the compositions that largely influenced the understanding

of the ASY class. In Figure 5 (SY cases; row 3, 5, and 6), we may

see that HMPinBk and HMPinBl were overall higher than those

of the other compositions.

In Table 4, we provide the average proportion (%) of the heatmap

per plaque composition (HMPBk, HMPBl, HMPG, HMPY, HMPO,

FIGURE 5

Saliency maps and heatmaps based on faster-Score-CAM, for a sample of 6 SY evaluated images, in this study. We show GTplq in standardized,

cropped and resized U/S images (column 1), the SmoothGrad map (column 2), the primary Score-CAM-based heatmap overlaid on the GTplq

(column 3), the heatmap within the GTplq (column 4), and the final uniform version of the heatmap, overlaid on the individual GTplq

compositions, using the six-color contouring method (column 5), according to (36). Column 6 shows the proportions of GTplq composition pixel

areas, with respect to the total GTplq area. Column 7 shows the proportion of each heatmap-covered GTplq composition with respect to this GT

composition area. Lipid cores and JBAs are shown in black (GS≤ 25), lipid cores with some amount of collagen (histologically it is fibro-fatty

tissue) in blue (25 < GS≤ 50) and green (50 < GS≤ 75), and calcified areas in orange (100 < GS≤ 125) and red (GS > 125). We depict intermediate

areas in yellow (75 < GS≤ 100), for visualization purposes. With a star, we signify the existence of a JBA area close to lumen. GT: Ground truth,

GTplq: Ground truth plaque region, HMP: Heatmap, JBA: Juxtaluminal Black Area, SY: Symptomatic.

TABLE 4 Average proportion of each heatmap-covered gTplq
composition area with respect to the f-score-CAM-based (uniform)
heatmap total area, from the evaluated U/S images (23 ASY/23 SY).

Measurement ASY SY

mean ± std mean ± std

% GT Hmap-covered

GTplq-Heatmap 54.6 ± 25.6 39.0 ± 28.4

Heatmap pixel area corresponding to each GTplq composition

(% proportion) mean ± std

HMPR 12.84 ± 14.68 8.35 ± 13.72

HMPO 7.17 ± 5.67 5.11 ± 6.12

HMPY 9.86 ± 5.97 8.54 ± 9.69

HMPG 13.02 ± 7.12 11.81 ± 10.67

HMPBl 17.67 ± 9.83 16.96 ± 10.76

HMPBk 30.71 ± 23.75 36.17 ± 30.07

Results in bold show the largest proportion for a given composition, between the two classes

(ASY or SY). The underlined results depict the composition with the highest proportion

value, within the class. Results in italic show the second more influential composition in

each class.

ASY, asymptomatic; HMPBk, HMPBl, HMPG, HMPO, HMPR, and HMPY, proportion of

the heatmap-covered black, blue, green, orange, red, and yellow GT pixel area with respect

to the Hmap area, respectively; GT, groundtruth; GTplq, groundtruth plaque area; GTplq-

Heatmap, proportion of GTplq covered by raw heatmap; SY, symptomatic.
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and HMPR), with respect to the overall heatmap pixel area.

Interestingly, this measurement reveals that dark areas (lipid cores)

seem important for the model to understand both classes, with the

HMPBk in ASY cases found at 30.71 ± 23.75%, and in SY cases at

36.17 ± 30.07%. It seems that dark areas (GS≤ 25), alone, best

describe an SY plaque, as they were largely perceived in the

evaluated SY plaques, compared with the calcified areas (GS≥ 125)

(see Table 4, column 3, showing 36.17 ± 30.07% HMPBl vs.

8.35 ± 13.72% HMPO, respectively). Notably, lipid cores, calcified

areas, and the collagen and fibrous areas, together, contributed to

the understanding of the ASY cases, with HMPBl, HMPG, HMPY,

HMPO, and HMPR values found at 17.67 ± 9.83%, 13.02 ± 7.12%,

9.86 ± 5.97%, 7.17 ± 5.67%, and 12.84 ± 14.68%, respectively (see

Table 4, column 2, bottom). All corresponding average values for

these composition measurements in the SY cases were notably

lower (see Table 4, column 3, bottom right).

In Figure 6, we provide scatterplots showing the proportions of

all GTplq compositions with respect to the total GTplq pixel area,

against their proportions with respect to their related heatmaps, for

all the ASY (see Figure 6, left) and SY evaluated plaques (see

Figure 6, right). There, the larger the circle was the larger the

area was that the composition occupied in the given plaque

(GTplq). We may notice that all carotid plaque compositions,

except for the dark areas (GS≤ 25), generally constituted smaller

areas in the GTplq, found on multiple levels (HMPColor), for

both in the ASY and SY plaques.

For the dark plaque areas (BktoGT; GS≤ 25) in the ASY

plaques, we notice that an heatmap-covered BktoGT was met

more often (HMPBk > 20%). For eight SY plaques, there was a

40%<HMPinBk < 85% (see Figure 6, right). The dark areas,

although slightly more frequent in the SY plaques, were not

consistently found important in all SY cases, whereas when

present in the ASY plaques, almost in their entirety, they seemed

more influential, based on the heatmap coverage (more than half

of the ASY BktoGTs had a HMPinBk > 40%).

5 Discussion

In this study, we used transfer learning for feature extraction, to

form a new model for plaque classification in carotid B-mode U/S

longitudinal plaques images, followed by the SmoothGrad, and the

f-Score-CAM algorithm individually, to discover compositions

more explanatory for the ASY or the SY plaques. Despite the

limited amount of images, the model yielded a promising

classification accuracy and good SE and SP (80.4%, 82.6%, and

FIGURE 6

(Left) Scatterplot showing the proportions of all GTplq compositions with respect to the total GTplq pixel area against the proportion of their Hmap-

covered area, for all the 23 evaluated ASY plaque images. (Right) Scatterplot showing the proportions of all GTplq compositions with respect to the

total GTplq pixel area against the proportion of their heatmap-covered area, for all the 23 evaluated SY plaque images. The larger the circle the larger

the proportion a given GTplq composition covers inside its associated plaque. Lipid cores and JBAs are shown in black (GS≤ 25), lipid cores with some

amount of collagen (histologically it is fibro-fatty tissue) are shown in blue (25 < GS≤ 50) and green (50 < GS≤ 75), and calcified areas are depicted in

orange (100 < GS≤ 125) and red (GS > 125). We depict intermediate areas in yellow (75 < GS≤ 100), for visualization purposes. ASY, asymptomatic; GS,

grayscale; GT, ground truth; GTplq, ground truth plaque region; SY, symptomatic.
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78.3%, respectively), with AUC at 0.80. To the best of our

knowledge, this is the first study using a well-known pretrained

model for feature extraction, for carotid U/S plaque image

classification, in combination with a process of quantification of

the area of the underlying plaque compositions, to measure their

involvement in the model’s understanding of ASY and SY cases,

individually, with the help of f-Score-CAM.

In DL-based medical image classification processes, when

images (or videos) from different medical centers, observers, or

devices are used, image standardization should be an indispensable

preparatory step; the generalization power of the model does not

always guarantee the reliability of the output or that of the

statistical analysis results that may follow. The authors strongly

believe that reproducible research, comparisons, and results are

possible when image resolution and intensity standardization are

priorly performed, in the medical imaging domain. Image

resolution standardization (37) alleviates differences in resolution

caused by the use of different U/S equipment (devices) and image

intensity normalization is highly important to correct brightness

or darkness (echodensity levels) of the carotid plaque U/S image.

However, not just a carotid U/S image normalization process, but

a clinically relevant process, where linear scaling is applied with

two reference intensity points, from the blood area (GS: 0–5) and

one from the adventitia area (GS: 198) around the plaque, as

proposed in (31), by a highly experienced vascular surgeon. Not

all ultrasonographers utilize the same settings (e.g., gain control

level) in carotid U/S image capturing.

In (27, 29), a notable model performance was achieved using

transfer learning and DL for carotid plaque classification (ASY

vs. SY, and high-risk vs. low-risk plaque, respectively), with

researchers in (27) including solely the plaque, and researchers in

(29) including also an amount of the plaque-surrounding carotid

artery area. In both studies, GradCAM was used, although

visualizations were only qualitative. In a recent DL-based study

(30), large carotid U/S longitudinal image datasets were used

with researchers attempting to detect unstable plaques, using also

GradCAM. There, images came from five different U/S machines;

their image intensity normalization method was different from

that in (31). We believe that their final results were, to some

extent, affected by this choice. Interestingly, their model versions,

for the detection and classification of plaques, into stable or

unstable, reached good AUCs in their internal testing, in both

tasks, with higher SE and SP in the former DL process (93.2%

and 99.2%, and 81.6% and 87.2%, respectively). However, SE was

worse on their external dataset, which we believe reflects the true

complexity of this classification problem. Also, their datasets were

imbalanced (especially their training and external testing sets of

stable and unstable plaques. From their GradCAM visualizations,

we may notice that their model, to some extent, relied on the

hyperechoic areas, in both the stable and unstable plaques, which

contradicts our findings, where the lipid cores (hypoechoic) were

more explanatory for the SY cases (and partially for the ASY),

based on f-Score-CAM.

In the present study, image standardization might have

produced altered model performance per plaque composition,

compared with that if we had used the original images.

However, if the model was trained on the original images, the

classification results might not have been completely trusted,

as the plaque compositions’ brightness (e.g., JBAs or discrete

white areas) might not have been consistent across all inputs.

Besides, to consider the JBAs’ evaluations, the U/S images

should first be intensity-normalized (8). Although filtering

improves visual assessment by experts and has been found to

improve the ASY and SY class separation [based on statistics

of texture features (51)], here, we did not consider any

filtering method, as this would change the plaque

texture features.

In the past, two DL studies (24, 25) delved into GS-based

plaque areas, to reveal compositions more effectively learnt by a

CNN model, and whether the model could confidently focus on

high-risk areas such as JBAs. Although researchers in (24)

achieved promising pixel-level SE and SP results, in classification

of calcified, fibrous, and lipid-core areas (see Table 1), these

metrics were not equally high, reflecting that there might be

room for improvement. In (25), researchers discussed in detail a

correctly classified ASY plaque, as well as a misclassified true SY

plaque, visualizing which compositions were most representative

per class. In the latter, they explained that calcified areas possibly

hindered the classification of SY plaques, as they appeared

important for the CNN model’s decision, compared with

simultaneously present JBAs.

In the present study, SmoothGrad maps revealed that in some

SY plaques, the model also highly relied on calcified areas. In

contrast to (25), we have shown that f-Score-CAM pointed to

wide dark areas (in some cases, JBAs) in the recognition of SY

plaques (see examples in Figure 5, column 5), a composition

which, on the other side, in combination with the calcified and

fibrous-content areas, seems to help the model understand and

correctly classify the ASY cases. Although we have not priorly

specified locations of the JBA areas, in this study, we have found

that even in ASY plaques, the dark area (GS≤ 25 or BktoGT)

may not only constitute the largest ASY composition area, but it

might also be the area that highly influences the identification of

the ASY class, in combination with the other areas (see the

plaque in asterisk, in Figure 4, row 6, last column; here, we may

notice that HMPinBk is not only the highest, at 29.28%,

compared with those in the other compositions, but it also

corresponds to the largest GTplq composition, with BktoGT at

44.87%). An SY plaque, carrying a JBA, is given in Figure 5

(row 5), with the measurements given in Column 6. There, we

may notice that the BktoGT is at 80.15%, from which the

HMPinBk is at 81.29%. Many of the 23 evaluated SY plaques, in

this study, carried more homogeneous and echolucent areas,

compared with the ASY cases, as also verified in (13).

It is important to mention that GS≤ 25 areas were not

perceived as ASY- or SY-relevant, for every single evaluated

plaque in our study, which needs further investigation. To

understand the reason behind this:

• It might be beneficial to quantify GS:0 areas inside the GS≤ 25

areas, as in some cases when on the lumen side, they might be

perceived as lumen, practically leading to no CAM values
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(difficult to predict). A very large dataset should be available to

investigate this topic, with manual annotations of JBAs

(GS≤ 25) and GS:0 intra-plaque areas available,

• Measurement of the JBA area (in mm2) simultaneously with

CAM representations could further enhance the detection of

plaques at high risk [see (8)]

Finally, here, an assessment of the contribution of discrete white

areas (in the absence of acoustic shadows), in the model’s

understanding of the ASY or SY plaques, was not possible, as the

number of images used for evaluation, as well as the number of

plaques having discrete white areas, was limited. Equally, further

validation of the current results is needed, with more plaques

with JBAs (manually annotated, as GT areas).

In conclusion, in this study we relied on the frozen pretrained

Xception, as a feature extractor, to train a new set of two dense

layers and classify plaques into ASY or SY, in B-mode U/S

longitudinal images, while we also employed f-Score-CAM, to

acquire maps to depict plaque compositions or groups of

compositions influential in the model’s understanding of classes

(individually). Not surprisingly, the lipid cores (depicted as the

GS≤ 25 areas; in some cases, JBAs) seem to hold an important

role in both the ASY and the SY plaques. The ASY plaques

seemed to be recognized, by the model, mostly based on the

coexistence of echogenic and echolucent areas. These findings will

be further validated, using a larger dataset, and providing

increase in confidence scores (based on Score-CAM), while also

exploring other explainable approaches for CNNs, focusing on

low- vs. high-risk plaque classification.

6 Limitations

In the present study, we have identified some limitations. First,

the utilized image dataset was not sufficiently large, which we

believe had a negative influence on the model’s plaque

classification performance. We also followed image resizing

(advising the resolution-normalized major and minor axis

lengths of the plaques), which possibly caused disruptions in

contents of some of the smallest plaques. Also, we considered the

whole f-Score-CAM-based heatmap, including all values, as

setting a threshold in CAM values would possibly introduce

some bias, leaving out relevant areas per class. Also, for three SY

and two ASY images, the heatmap values did not allow for a

visualization; these were the plaques that the model found very

difficult to classify. Finally, we could have more JBA- and/or

discrete-white-area-rich carotid plaques to train the CNN model.

Data availability statement

The datasets presented in this article are not readily available

because the data were collected under strict bioethics approvals

and need to be further analyzed thoroughly by our research

group, before any public release. Requests to access the datasets

should be directed to Efthyvoulos Kyriacou, ehealthlab@cut.ac.cy.

Ethics statement

The studies involving humans were approved by The Cyprus

National Bioethics Committee and the London-Harrow National

Research Ethics Service Committee. The studies were conducted

in accordance with the local legislation and institutional

requirements. Written informed consent for participation was

required and provided, from all participants or the participants’

legal guardians, in accordance with the national legislation and

institutional requirements.

Author contributions

GL: Conceptualization, Formal analysis, Investigation,

Methodology, Software, Validation, Visualization, Writing –

original draft, Writing – review & editing. CL: Writing – review

& editing. MG: Writing – review & editing, Data curation,

Methodology, Validation, Resources. CP: Writing – review &

editing. AN: Data curation, Methodology, Resources, Validation,

Writing – review & editing. EK: Funding acquisition,

Methodology, Project administration, Software, Supervision,

Validation, Writing – review & editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This study has

been supported by the “AtheroRisk” Project (Excellence/0421/

0292, Call: “Restart 2016-2020”), funded by the Cyprus

Research and Innovation Foundation and Co-funded by the

European Union.

Acknowledgments

We would like to thank the cardiologist Dr. Med. Michalis

Neophytou, who captured the carotid U/S videos, in Cyprus, and

Dr. Dimitrios Kardoulas and his colleagues, who captured the

corresponding videos in Athens, Greece.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of

the authors and do not necessarily represent those of

Liapi et al. 10.3389/fdgth.2025.1484231

Frontiers in Digital Health 13 frontiersin.org

mailto:ehealthlab@cut.ac.cy
https://doi.org/10.3389/fdgth.2025.1484231
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


their affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdgth.2025.

1484231/full#supplementary-material

References

1. Li XY, Kong XM, Yang CH, Cheng ZF, Lv JJ, Guo H, et al. Global, regional, and
national burden of ischemic stroke, 1990–2021: an analysis of data from the global
burden of disease study 2021. eClinicalMedicine. (2024) 75:102758. doi: 10.1016/j.
eclinm.2024.102758

2. Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al.
Heart disease and stroke statistics: a report of US and global data from the American
Heart Association. Circulation. (2024) 149(8):347–913. doi: 10.1161/CIR.
0000000000001209

3. Kamtchum-Tatuene J, Noubiap JJ, Wilman AH, Saqqur M, Shuaib A, Jickling
GC, et al. Prevalence of high-risk plaques and risk of stroke in patients with
asymptomatic carotid stenosis: a meta-analysis. JAMA Neurol. (2020) 77(12):1524.
doi: 10.1001/jamaneurol.2020.2658

4. Howard DPJ, Gaziano L, Rothwell PM. Risk of stroke in relation to degree of
asymptomatic carotid stenosis: a population-based cohort study, systematic review,
and meta-analysis. Lancet Neurol. (2021) 20(3):193–202. doi: 10.1016/S1474-4422
(20)30484-1

5. Neumann S, Milano EG, Bucciarelli-Ducci C, Biglino G. Imaging the carotid
atherosclerotic plaque. Vasc Biol Bristol Engl. (2019) 1(1):H53–8. doi: 10.1530/VB-
19-0010

6. Nicolaides AN, Kakkos SK, Kyriacou E, Griffin M, Sabetai M, Thomas DJ, et al.
Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification. J
Vasc Surg. (2010) 52(6):1486–96. doi: 10.1016/j.jvs.2010.07.021

7. Kyriacou EC, Petroudi S, Pattichis CS, Pattichis MS, Griffin M, Kakkos S, et al.
Prediction of high-risk asymptomatic carotid plaques based on ultrasonic image
features. IEEE Trans Inf Technol Biomed. (2012) 16(5):966–73. doi: 10.1109/TITB.
2012.2192446

8. Kakkos SK, Griffin MB, Nicolaides AN, Kyriacou E, Sabetai MM, Tegos T, et al.
The size of juxtaluminal hypoechoic area in ultrasound images of asymptomatic
carotid plaques predicts the occurrence of stroke. J Vasc Surg. (2013) 57(3):609–18.
doi: 10.1016/j.jvs.2012.09.045

9. Kyriacou E, Vogazianos P, Christodoulou C, Loizou C, Panayides AS, Petroudi S,
et al. Prediction of the time period of stroke based on ultrasound image analysis of
initially asymptomatic carotid plaques. In: 2015 37th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan: IEEE (2015).
p. 334–7. Available online at: http://ieeexplore.ieee.org/document/7318367/

10. Kakkos SK, Nicolaides AN, Kyriacou E, Daskalopoulou SS, Sabetai MM,
Pattichis CS, et al. Computerized texture analysis of carotid plaque ultrasonic
images can identify unstable plaques associated with ipsilateral neurological
symptoms. Angiology. (2011) 62(4):317–28. doi: 10.1177/0003319710384397

11. Loizou CP, Pattichis CS, Pantziaris M, Kyriacou E, Nicolaides A. Texture feature
variability in ultrasound video of the atherosclerotic carotid plaque. IEEE J Transl Eng
Health Med. (2017) 5:1–9. doi: 10.1109/JTEHM.2017.2728662

12. AbuRahma AF, Wulu JT, Crotty B. Carotid plaque ultrasonic heterogeneity and
severity of stenosis. Stroke. (2002) 33(7):1772–5. doi: 10.1161/01.STR.0000019127.
11189.B5

13. Doonan RJ, Gorgui J, Veinot JP, Lai C, Kyriacou E, Corriveau MM, et al. Plaque
echodensity and textural features are associated with histologic carotid plaque
instability. J Vasc Surg. (2016) 64(3):671–7. doi: 10.1016/j.jvs.2016.03.423

14. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet large
scale visual recognition challenge. Int J Comput Vis. (2015) 115:211–52. doi: 10.1007/
s11263-015-0816-y

15. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image
recognition. arXiv [Preprint]. arXiv:1409.1556 (2015). doi: 10.48550/arXiv.1409.1556

16. Kaiming H, Xiangyu Z, Shaoqing R, Jian S. Deep residual learning for image
recognition. arXiv [Preprint]. arXiv:1512.03385v1 (2015). doi: 10.48550/arXiv.1512.03385

17. Chollet F. Xception: deep learning with depthwise separable convolutions. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Honolulu, HI: IEEE (2017). p. 1800–7 Available online at: http://ieeexplore.ieee.org/
document/8099678/

18. Anaya-Isaza A, Mera-Jiménez L, Zequera-Diaz M. An overview of deep learning
in medical imaging. Inform Med Unlocked. (2021) 26:100723. doi: 10.1016/j.imu.2021.
100723

19. Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B,
Madabhushi A. A review of deep learning in medical imaging: imaging traits,
technology trends, case studies with progress highlights, and future promises. Proc
IEEE. (2021) 109(5):820–38. doi: 10.1109/JPROC.2021.3054390

20. Kim HE, Cosa-Linan A, Santhanam N, Jannesari M, Maros ME, Ganslandt T.
Transfer learning for medical image classification: a literature review. BMC Med
Imaging. (2022) 22(1):69. doi: 10.1186/s12880-022-00793-7

21. Huang Y, Zou J, Meng L, Yue X, Zhao Q, Li J, et al. Comparative analysis of
ImageNet Pre-trained deep learning models and DINOv2 in medical imaging
classification. arXiv [Preprint]. arXiv:2402.07595 (2024). Available online at: http://
arxiv.org/abs/2402.07595 (Accessed June 1, 2024).

22. Davila A, Colan J, Hasegawa Y. Comparison of fine-tuning strategies for transfer
learning in medical image classification. Image Vis Comput. (2024) 146:105012.
doi: 10.1016/j.imavis.2024.105012

23. Morid MA, Borjali A, Del Fiol G. A scoping review of transfer learning research
on medical image analysis using ImageNet. Comput Biol Med. (2021) 128:104115.
doi: 10.1016/j.compbiomed.2020.104115

24. Lekadir K, Galimzianova A, Betriu A, del Mar Vila M, Igual L, Rubin DL. A
convolutional neural network for automatic characterization of plaque composition
in carotid ultrasound. IEEE J Biomed Health Inform. (2017) 21(1):48–55. doi: 10.
1109/JBHI.2016.2631401

25. Ganitidis T, Athanasiou M, Dalakleidi K, Melanitis N, Golemati S, Nikita KS.
Stratification of carotid atheromatous plaque using interpretable deep learning
methods on B-mode ultrasound images. In: 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC). Mexico: IEEE (2021). p. 3902–5. Available online at: https://ieeexplore.
ieee.org/document/9630402/

26. Molnar C. Interpretable Machine Learning: A Guide for Making Black Box
Models Explainable. 3rd ed. Independently published (2025). Available online at:
https://christophm.github.io/interpretable-ml-book/

27. Sanagala SS, Nicolaides A, Gupta SK, Koppula VK, Saba L, Agarwal S, et al. Ten
fast transfer learning models for carotid ultrasound plaque tissue characterization in
augmentation framework embedded with heatmaps for stroke risk stratification.
Diagnostics. (2021) 11(11):2109. doi: 10.3390/diagnostics11112109

28. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM:
visual explanations from deep networks via gradient-based localization. Int J Comput
Vis. (2020) 128(2):336–59. doi: 10.1007/s11263-019-01228-7

29. Singh SS, Jain PK, Sharma N, Pohit M, Roy S. Atherosclerotic plaque
classification in carotid ultrasound images using machine learning and explainable
deep learning. Intell Med. (2024) 4(2):83–95. doi: 10.1016/j.imed.2023.05.003

30. He L, Yang Z, Wang Y, Chen W, Diao L, Wang Y, et al. A deep learning
algorithm to identify carotid plaques and assess their stability. Front Artif Intell.
(2024) 7:1321884. doi: 10.3389/frai.2024.1321884

31. Nicolaides AN, Kakkos SK, Griffin M, Sabetai M, Dhanjil S, Thomas DJ, et al.
Effect of image normalization on carotid plaque classification and the risk of ipsilateral
hemispheric ischemic events: results from the asymptomatic carotid stenosis and risk
of stroke study. Vascular. (2005) 13(4):211–21. doi: 10.1258/rsmvasc.13.4.211

32. Salem MK, Bown MJ, Sayers RD, West K, Moore D, Nicolaides A, et al.
Identification of patients with a histologically unstable carotid plaque using
ultrasonic plaque image analysis. Eur J Vasc Endovasc Surg. (2014) 48(2):118–25.
doi: 10.1016/j.ejvs.2014.05.015

33. Mitchell CC, Stein JH, Cook TD, Salamat S, Wang X, Varghese T, et al.
Histopathologic validation of grayscale carotid plaque characteristics related to
plaque vulnerability. Ultrasound Med Biol. (2017) 43(1):129–37. doi: 10.1016/j.
ultrasmedbio.2016.08.011

34. Naylor R, Rantner B, Ancetti S, de Borst GJ, De Carlo M, Halliday A, et al.
Editor’s choice – European society for vascular surgery (ESVS) 2023 clinical
practice guidelines on the management of atherosclerotic carotid and vertebral
artery disease. Eur J Vasc Endovasc Surg. (2023) 65(1):7–111. doi: 10.1016/j.ejvs.
2022.04.011

35. Nicolaides A, Beach KW, Kyriacou E, Pattichis CS. Ultrasound and Carotid
Bifurcation Atherosclerosis. London: Springer London (2012).

Liapi et al. 10.3389/fdgth.2025.1484231

Frontiers in Digital Health 14 frontiersin.org

https://www.frontiersin.org/articles/10.3389/fdgth.2025.1484231/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1484231/full#supplementary-material
https://doi.org/10.1016/j.eclinm.2024.102758
https://doi.org/10.1016/j.eclinm.2024.102758
https://doi.org/10.1161/CIR.0000000000001209
https://doi.org/10.1161/CIR.0000000000001209
https://doi.org/10.1001/jamaneurol.2020.2658
https://doi.org/10.1016/S1474-4422(20)30484-1
https://doi.org/10.1016/S1474-4422(20)30484-1
https://doi.org/10.1530/VB-19-0010
https://doi.org/10.1530/VB-19-0010
https://doi.org/10.1016/j.jvs.2010.07.021
https://doi.org/10.1109/TITB.2012.2192446
https://doi.org/10.1109/TITB.2012.2192446
https://doi.org/10.1016/j.jvs.2012.09.045
http://ieeexplore.ieee.org/document/7318367/
https://doi.org/10.1177/0003319710384397
https://doi.org/10.1109/JTEHM.2017.2728662
https://doi.org/10.1161/01.STR.0000019127.11189.B5
https://doi.org/10.1161/01.STR.0000019127.11189.B5
https://doi.org/10.1016/j.jvs.2016.03.423
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1512.03385
http://ieeexplore.ieee.org/document/8099678/
http://ieeexplore.ieee.org/document/8099678/
https://doi.org/10.1016/j.imu.2021.100723
https://doi.org/10.1016/j.imu.2021.100723
https://doi.org/10.1109/JPROC.2021.3054390
https://doi.org/10.1186/s12880-022-00793-7
http://arxiv.org/abs/2402.07595
http://arxiv.org/abs/2402.07595
https://doi.org/10.1016/j.imavis.2024.105012
https://doi.org/10.1016/j.compbiomed.2020.104115
https://doi.org/10.1109/JBHI.2016.2631401
https://doi.org/10.1109/JBHI.2016.2631401
https://ieeexplore.ieee.org/document/9630402/
https://ieeexplore.ieee.org/document/9630402/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.3390/diagnostics11112109
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1016/j.imed.2023.05.003
https://doi.org/10.3389/frai.2024.1321884
https://doi.org/10.1258/rsmvasc.13.4.211
https://doi.org/10.1016/j.ejvs.2014.05.015
https://doi.org/10.1016/j.ultrasmedbio.2016.08.011
https://doi.org/10.1016/j.ultrasmedbio.2016.08.011
https://doi.org/10.1016/j.ejvs.2022.04.011
https://doi.org/10.1016/j.ejvs.2022.04.011
https://doi.org/10.3389/fdgth.2025.1484231
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


36. Kyriacou E, Nicolaides A. LifeQ Medical Software Operation Manual Version 4.5.
Carotid Plaque Texture Analysis Research Software for Ultrasonic Arterial Wall and
Atherosclerotic Plaques Measurements. Nicosia, Cyprus: LifeQ Ltd. (2013).

37. Kakkos SK, Nicolaides AN, Kyriacou E, Pattichis CS, Geroulakos G. Effect of
zooming on texture features of ultrasonic images. Cardiovasc Ultrasound. (2006) 4
(1):8. doi: 10.1186/1476-7120-4-8

38. van Rossum G. Python Reference Manual. Department of Computer Science
[CS]. Amsterdam: CWI (1995).

39. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPR Workshops). Miami, FL: IEEE (2009). p.
248–55. doi: 10.1109/CVPR.2009.5206848

40. Smilkov D, Thora N, Kim B, Viégas F, Wattenberg M. SmoothGrad: removing
noise by adding noise. arXiv [Preprint]. arXiv:1706.03825 (2017). Available online at:
https://arxiv.org/abs/1706.03825 (Accessed June 1, 2024).

41. Wang H, Wang Z, Du M, Yang F, Zhang Z, Ding S. Score-CAM: score-weighted
visual explanations for convolutional neural networks. In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA: IEEE
(2020). p. 111–9. Available online at: https://ieeexplore.ieee.org/document/9150840/

42. Bianco S, Cadene R, Celona L, Napoletano P. Benchmark analysis of
representative deep neural network architectures. IEEE Access. (2018) 6:64270–7.
doi: 10.1109/ACCESS.2018.2877890

43. Chollet F, Rahman F, Lee T, de Marmiesse G, García Badaracco A, Morgan S.
Keras [Computer software]. GitHub (2015). Available online at: https://github.com/
keras-team/keras (Accessed April 2, 2024).

44. TensorFlow Developers. TensorFlow. Zenodo (2024). Available online at: https://
zenodo.org/records/5189249 (Accessed June 1, 2024).

45. Tieleman T, Hinton G. Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural Networks for Machine Learning. (2012) 4(2):26.

46. Hicks SA, Strümke I, Thambawita V, Hammou M, Riegler MA, Halvorsen P,
et al. On evaluation metrics for medical applications of artificial intelligence. Sci
Rep. (2022) 12(1):5979. doi: 10.1038/s41598-022-09954-8

47. Rainio O, Teuho J, Klén R. Evaluation metrics and statistical tests for machine
learning. Sci Rep. (2024) 14(1):6086. doi: 10.1038/s41598-024-56706-x

48. Kubota Y, Contributors. tf-keras-vis (2019). Available online at: https://pypi.org/
project/tf-keras-vis/ (Accessed June 1, 2024).

49. Liapi GD, Markides C, Loizou CP, Griffin M, Nicolaides A, Kyriacou E,
et al. Stroke risk stratification using transfer learning on carotid ultrasound images.
In: Tsapatsoulis N, Lanitis A, Pattichis M, Pattichis C, Kyrkou C, Kyriacou E,
editors. Computer Analysis of Images and Patterns. Cham: Springer Nature
Switzerland (2023). p. 130–9. (Lecture Notes in Computer Science; vol. 14185).

50. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. (2007) 9
(3):90–5. doi: 10.1109/MCSE.2007.55

51. Loizou CP, Pattichis CS, Christodoulou CI, Istepanian RSH, Pantziaris M,
Nicolaides A. Comparative evaluation of despeckle filtering in ultrasound imaging
of the carotid artery. IEEE Trans Ultrason Ferroelectr Freq Control. (2005) 52
(10):1653–69. doi: 10.1109/tuffc.2005.1561621

52. Tegos TJ, Sabetai MM, Nicolaides AN, Pare G, Elatrozy TS, Dhanjil S, et al.
Comparability of the ultrasonic tissue characteristics of carotid plaques. J
Ultrasound Med. (2000) 19(6):399–407. doi: 10.7863/jum.2000.19.6.399

Liapi et al. 10.3389/fdgth.2025.1484231

Frontiers in Digital Health 15 frontiersin.org

https://doi.org/10.1186/1476-7120-4-8
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1706.03825
https://ieeexplore.ieee.org/document/9150840/
https://doi.org/10.1109/ACCESS.2018.2877890
https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://zenodo.org/records/5189249
https://zenodo.org/records/5189249
https://doi.org/10.1038/s41598-022-09954-8
https://doi.org/10.1038/s41598-024-56706-x
https://pypi.org/project/tf-keras-vis/
https://pypi.org/project/tf-keras-vis/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/tuffc.2005.1561621
https://doi.org/10.7863/jum.2000.19.6.399
https://doi.org/10.3389/fdgth.2025.1484231
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

	Transfer learning with class activation maps in compositions driving plaque classification in carotid ultrasound
	Introduction
	Related work
	Materials and methods
	Carotid B-mode ultrasound image dataset
	Carotid plaque composition ground truth areas
	Data preparation and preprocessing
	Transfer learning carotid plaque classification with analyzed class attribution maps
	Transfer learning model
	Model training and hyperparameter settings
	Model classification performance metrics

	Saliency maps and class activation maps
	Smoothed saliency maps
	Gradient-free class activation maps
	Detection of compositions driving carotid ultrasound plaque classification


	Results
	Transfer learning in carotid ultrasound plaque classification
	Identified compositions contributing to carotid plaque classification

	Discussion
	Limitations
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


