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A simplified retriever to improve
accuracy of phenotype
normalizations by large
language models
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Large language models have shown improved accuracy in phenotype term
normalization tasks when augmented with retrievers that suggest candidate
normalizations based on term definitions. In this work, we introduce a
simplified retriever that enhances large language model accuracy by searching
the Human Phenotype Ontology (HPO) for candidate matches using
contextual word embeddings from BioBERT without the need for explicit term
definitions. Testing this method on terms derived from the clinical synopses of
Online Mendelian Inheritance in Man (OMIM

®

), we demonstrate that the
normalization accuracy of GPT-4o increases from a baseline of 62% without
augmentation to 85% with retriever augmentation. This approach is potentially
generalizable to other biomedical term normalization tasks and offers an
efficient alternative to more complex retrieval methods.
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Introduction

Large pre-trained language models are increasingly used in healthcare care, showing

promise in performing a variety of complex natural language processing (NLP) tasks,

such as text summarization, concept recognition, and answer questions (1–3). Large

language models can identify medical concepts in the text and normalize them to an

ontology (4–7). However, when large language models normalize medical terms to a

standard ontology such as the human phenotype ontology (HPO), the retrieved code is

not always accurate.

Shlyk et al. (8) demonstrated that the accuracy of large language models in term

normalization tasks can be improved with Retrieval-Augmented Entity Linking (REAL).

This method generates definitions of HPO terms and target terms needing

normalization. The definitions are converted into word embeddings, and cosine

similarity is used to identify the three closest candidate terms. The large language

model then selects the best normalization from these candidates.

In this work, we introduce a simplified but effective retriever that bypasses the need for

definition generation. Instead, it matches HPO terms to target terms using BioBERT

contextual word embeddings, identifying the closest matches by semantic similarity. By

prompting GPT-4o with the 20 closest candidate terms, we enable the model to take
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advantage of its implicit knowledge of HPO terms and select a

semantically equivalent normalization. This approach achieves

accuracy comparable to more complex methods without using

explicit definitions.

Phenotyping, which involves recognizing the signs and

symptoms of disease in patients and mapping them to an

appropriate ontology such as HPO, is critical for precision

medicine (9–13). Manual phenotyping is labor intensive, which

makes high-throughput automated methods essential (11, 14–18).

Phenotyping can be seen as part of the broader task of term

normalization in different vocabularies, such as drugs to

RXNORM (19), diseases to ICD-11 (20), or laboratory tests

to LOINC (21).

A distinction can be made between surface phenotyping, which

assigns a diagnosis from a disease ontology (22), and deep

phenotyping, which assigns an HPO concept and ID to each

symptom (11). Our work focuses on deep phenotyping (17).

Although often performed together, concept extraction

(identification) and concept normalization are distinct NLP

tasks. In concept extraction, the goal is to find relevant medical

concepts within free text. Concept normalization involves

matching irregular medical terms to standardized terms in an

ontology and their corresponding machine-codes. If the

irregular term to normalize has an exact match in the ontology,

the task is straightforward such a matching “hyporeflexia” to

its standard form in the HPO which is “Hyporeflexia.” If the

irregular term has no exact match (e.g., “diminished reflexes”),

the model must select the most semantically similar concept

(e.g., “decreased reflexes”). Additionally, concept normalization

involves mapping irregular terms to their standard forms

in an ontology and their corresponding machine codes

(“hyporeflexia,” HP:0001265).

Advances in deep learning, transformer architectures, and

dynamic word embeddings have facilitated the development of

tools that perform concept identification and normalization such

as Doc2Hpo, ClinPheno, BERN2, PhenoBERT, and FastHPOCR

(23–30). Evaluations of concept recognition tools show F1 values

ranging from 0.50 to 0.76, with FastHPOCR performing the best

on manually annotated corpora (29, 31).

Although deep learning and transformer-based methods have

shown promise, they require extensive training data, which can

be time consuming to acquire. Pre-trained large language models

offer an alternative approach by eliminating the need for new

training data. Despite their impressive performance, large

language models may still make errors in retrieving the correct

HPO ID (32).

Retrieval-augmented generation (RAG) (33) addresses this

problem by using a retriever to provide relevant information,

improving the likelihood of generating accurate output (34). In

this paper, we extend the work of Shlyk et al. (8) by

demonstrating that a simplified retriever, which relies on

embedded terms, can improve normalization accuracy without

the need to generate embedded term definitions. By prompting a

large language model with candidate terms that have similarity to

the target term, we achieve high accuracy with a more

efficient approach.
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Methods

Experimental plan

We selected 1,820 phenotypic terms from the Clinical Features

sections of OMIM summaries as a test set for term normalization. In

the first experimental condition, the NLP models (spaCy and

BioBERT) normalized the terms by selecting the best-matching HPO

term and HPO ID based on the cosine similarity of the embedded

word vectors. In the second experimental condition, language models

were prompted to normalize a term via the OpenAI API to the best

matching HPO term and HPO ID. In the third experimental

condition, the prompts for the language models were augmented

with up to 50 candidate terms and HPO IDs generated based on the

cosine similarity between the BioBERT word embeddings and the

term to be normalized. For each experimental condition, we

calculated accuracy, F1, recall, and precision of term normalization.
Data

Terms to normalize were the signs and symptoms of neurogenetic

diseases derived from Clinical Feature summaries in the OMIM

database (35). We downloaded clinical feature summaries for 236

neurogenetic diseases, consisting of 175,724 tokens via the OMIM

API (https://api.omim.org). GPT-3.5-Turbo was used to identify

2,023 terms for normalization (mean 16.5 signs per disease) (18,

36). The text for extracting signs and symptoms was passed to the

GPT-3.5 Turbo API with the following prompt:

prompt =

(You are a neurologist analyzing a case summary.

The input is a JSON object containing:

‘‘clinical Features’’

Your task is to extract all relevant

neurological symptoms (patient complaints) and

signs (findings on examination).

Exclude any signs and symptoms related to family

members.

Please respond with the findings organized into

a dictionary under the key ‘‘Signs.’’

Each sign should be distinctly listed.

Here is the format for your response:

{

‘‘Signs’’: [‘‘sign a,’’ ‘‘sign b,’’ ‘‘sign c’’]

}

Report only signs and symptoms observable by

the physician at the bedside.

Ignore all laboratory, pathological,

and radiological signs)

A domain expert excluded 203 malformed terms (e.g., vague,

contradictory, verbose, or ambiguous phrases). These terms were

excluded because they were judged to be difficult to normalize.

Examples of malformed terms that would be difficult to

normalize included:
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impaired visual pathways

initial good response to dopaminergic therapy

intermittent microsaccadic pursuits

intermittent mobility

intermittent tetanic contraction

intrusive square wave jerks

jerky voice

kineto rigid syndrome

legs and arms

The final test dataset consisted of 1,820 terms to normalize.

The Human Phenotype Ontology (HPO) was downloaded as a

comma-separated value (CSV) file from NCBO BioPortal (37).

A list of 17,957 HPO entry terms was expanded to 30,234 by

adding all available synonyms. Each HPO entry term was

associated with a corresponding HPO ID, formatted as HP:

nnnnnnn, where n is a digit between 0 and 9.

Term normalization using NLP-based
methods

spaCy: SpaCy was combined with en_core_web_lg word

embeddings. Vectors were generated for each HPO entry term

and stored as a Python dictionary.

BioBERT: We utilized the BioBERT v1.1 model (dmis-lab/

biobert-base-cased-v1.1) to compute embeddings for

target terms and HPO entry terms (38). Each term (target or

HPO term) was tokenized using the BioBERT tokenizer. The

resulting embeddings were computed using the BioBERT

transformer model, and the mean of the token embeddings

across all tokens was used as the global embedding vector:

inputs = tokenizer(term, return_tensors=‘‘pt,’’

truncation=True, padding=True, max_length=128)

with torch.no_grad():

outputs = model(**inputs)

embedding = outputs.last_hidden_state.mean

(dim=1).squeeze().numpy()

HPO entry terms and their corresponding IDs were

preprocessed, and their embeddings were calculated and stored in

a CSV file for efficiency. For each target term, cosine similarity

between its BioBERT embedding and the precomputed HPO

embeddings was calculated. The HPO term with the highest

similarity score was selected as the “best match”:

similarities = cosine_similarity(term_vector,

hpo_embeddings).flatten()

best_match_idx = np.argmax(similarities)

The same method was used to retrieve the k best matches for

inputting candidate terms to the the large language model with

retriever methods.

Doc2Hpo: Terms were normalized using the Doc2Hpo API at

https://doc2hpo.wglab.org/parse/acdat using the string-based

matching engine (25).
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Term normalization using large language
models

Three large language models were evaluated for term

normalization: GPT-4o, GPT-3.5-Turbo, and GPT-4o-mini from

OpenAI (San Francisco, CA) via its API (https://api.openai.com).

Each of the terms to normalize was passed to the API with the

following prompt:

prompt = (

You are given a term to normalize to a concept

from the Human Phenotype Ontology and return

the best match and its HPO ID.

‘‘Term: {term}’’

Pick the best one and return it in JSON format:

{‘‘best_match’’: ‘‘term,’’ ‘‘HPO ID’’: ‘‘HP:nnnnnnn’’}
Term normalization using large language
models enhanced with retrieval
augmentation

The performance of large language models for term

normalization was enhanced by augmenting the prompt with up

to 50 candidate terms. The top 20 candidates from the BioBERT

embeddings were used in the final analysis.

prompt = (

You are given a term to normalize to a concept from

the Human Phenotype Ontology and its HPO_ID:

Term: {term}

Possible matches: [match_1…match_20]

Pick the best one from the above matches and

return it in JSON format:

{‘‘best_match’’: ‘‘term,’’ ‘‘hpo_id’’: ‘‘HP:xxxxxxx’’}
Assessment of semantic equivalence

We evaluated the semantic equivalence of the normalized

terms by comparing the “best matches” to the original terms to

normalize. Among the 1,820 terms, 438 had exact matches in the

list of HPO entry terms. To assess semantic equivalence, we

employed three complementary approaches:

1. Cosine Similarity: We calculated the cosine similarity between

the embeddings of the term to normalize and the candidate

HPO terms using BioBERT embeddings.

2. GPT-3.5-Turbo Judgment: GPT-3.5-Turbo was prompted to

assess semantic equivalence by returning a binary judgment

(equivalent or not) for each input term.

3. Expert Review: Domain experts in clinical terminology

provided the final judgment on semantic equivalence, taking

into account the cosine similarity and the GPT-3.5-Turbo

binary judgment.

A term was deemed an accurate match (True Positive, TP) if it was

semantically equivalent to the original term and was mapped to the
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correct HPO ID. A False Positive (FP) occurred when a term was

semantically incorrect or the HPO ID was inaccurate. Malformed

terms that were previously excluded from normalization attempts

were not counted as True Negatives (TN). If a model failed to

return any normalization for a given term, it was considered a

False Negative (FN). Accuracy, F1, recall, and precision were

calculated using standard formulas:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

F1 = 2 � (Precision � Recall) / (Precision + Recall)

Metrics were reported to two decimal places, reflecting the

precision and reproducibility of the calculations.
Results

Table 1 shows the model accuracies for the phenotype

normalization of the 1,820 terms to normalize. To be rated as

“accurate,” the term to normalize had to be semantically

equivalent to the HPO entry term and and the model had to

retrieve the term’s correct HPO ID.

The spaCy and BioBERT methods used word embeddings and

NLP algorithms to find the best match in a complete table of HPO

terms. The spaCy embeddings were general-purpose word

embeddings, whereas the BioBERT embeddings were optimized

for biomedical terminologies. spaCy averaged the vectors of the

component tokens to get a global term vector, whereas BioBERT

utilized a transformer architecture and hidden states to generate

a global term vector. Both methods used cosine similarities to

find the best match for each term to normalize and candidate

terms in the HPO. The BioBERT method, at 69% accuracy,

outperformed the spaCy method at 46%.

The GPT-4o-mini, GPT-3.5-Turbo, and GPT-4o models without

a retriever had no access to external data sources and relied entirely

on pre-training to find HPO IDs. Errors made by these language

models typically involved the retrieval of incorrect HPO IDs rather

than errors in the HPO entry terms. In most cases, when the

models made an error, the HPO entry term was correct or nearly
TABLE 1 Model metrics for term normalization to HPO.

Method Accuracy F1 Recall Precision N
spaCy embeddings cosine
similarity

0.46 0.63 0.46 1.00 1,820

BioBERT embeddings by
cosine similarity

0.69 0.81 0.69 1.00 1,820

GPT-4o mini 0.12 0.21 0.40 0.40 1,820

GPT-3.5-Turbo 0.51 0.67 1.00 0.51 1,820

GPT-4o 0.62 0.77 0.95 0.65 1,820

Doc2Hpo API 0.63 0.77 0.62 0.99 1,820

GPT-3.5-Turbo with
retrieval augmentation

0.88 0.93 0.96 0.91 1,820

GPT-4o with retrieval
augmentation

0.85 0.92 0.96 0.88 1,820

Note: The sample size (N) for all methods is 1820. For augmented methods, the language

models were presented with a set of 20 candidate terms generated by the retriever. False

negatives (FN) were excluded as “malformed terms” (see Methods).

Bold values show models with highest accuracy on term normalization task.
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correct, but the HPO ID was inaccurate and matched an incorrect

concept in the HPO. Among large language models without a

retriever, GPT-4o, the largest and most advanced model, performed

best with a accuracy of 62%, while GPT-4o-mini, the smallest

model, performed worse with an accuracy of 12%.

The best-performing methods combined a language model

with a retriever. Each model had 20 candidate normalizations for

a term to normalize based on the closest embedding similarities.

Each language model was prompted to choose the “best match”

from the twenty closest candidates. In this scenario, the GPT-4o

and GPT-3.5-Turbo models outperformed the BioBERT method

with 85% to 88% accuracies (Table 1).

We investigated the optimal number of potential matches to

submit to GPT-4o or GPT-3.5-Turbo (Figure 1). Accuracy

improved as the number of candidate normalization increased to

20 and then reached a plateau with further increases in

candidates not improving accuracy of normalization.
Discussion

The results indicate that the most accurate method for phenotype

term normalization combines a language model with a retriever.

GPT-4o and GPT-3.5-Turbo, when paired with a retriever, achieved

the highest accuracies of 85% to 88%, demonstrating the benefits of

augmenting language models with a retrieval mechanism.

The standalone BioBERT, specifically optimized for biomedical

text, performed better than spaCy or GPT-4o without retrieval,

with an accuracy of 69%. This highlights the limitations of a

standalone large language model relying solely on pre-training

when no external retrieval is available. BioBERT’s ability to

generate specialized biomedical embeddings allowed it to

outperform GPT-3.5-Turbo and GPT-4o without a retriever.

GPT-4o-mini, smaller and less pre-trained than GPT-4o and

GPT-3.5-Turbo, showed weak performance on term

normalization with 12% accuracy, highlighting its lack of

exposure to HPO terms and their HPO IDs during training.

Examining the cases where large language model combined with a

retriever outperformed BioBERT reveals that the “best match” selected

by large language model can deviate from the candidate term with the

highest cosine similarity (Table 2). This demonstrates the strength of

large language models in interpreting semantic equivalence beyond

simple cosine metrics. For example, “foot drop” was selected as a

better semantic match for “bilateral foot drop” than “bilateral

clubfoot,” despite having a lower cosine similarity score. Similarly,

“depigmented fundus” was preferred for “pale fundi” over “pale

eyelashes.” The ability of a large language model to override cosine

similarity based on contextual understanding explains the superior

accuracy of the retriever-augmented method. Part of this superiority

likely resides on focusing attention on the semantically most

important words in compound terms such as “depigmented fundu”

where the focus is appropriately directed to “fundus” in favor of the

less important word “depigmented.”

Our results suggest that, while large language models possess

significant capabilities, their performance on phenotype

normalization tasks can be enhanced by retrieval augmentation.
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FIGURE 1

RAG candidate choices vs. accuracy. Accuracy was evaluated for normalization by GPT-3.5-Turbo with candidate prompts in the range of 1 to 50.
Accuracy improved until reaching a plateau at 20 candidate terms in the prompt.
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The accuracy of normalization improves when the large language

model is presented with candidate terms selected via cosine

similarity. The plateau observed for 20 candidate terms in the

prompt suggests that presenting more candidates neither

degrades nor improves accuracy (Figure 1).

Shlyk et al. (8) demonstrated the efficacy of retrieval-augmented

entity linking using embedded term definitions. However, our

approach, which bypasses the need for explicit definitions, achieves

comparable results. This suggests that advanced models like GPT-

4o and GPT-3.5-Turbo can draw on pre-trained knowledge to

assess semantic equivalence without relying on external definitions,

streamlining the normalization process.

Regarding limitations, our study focused solely on term

normalization and did not evaluate term identification.

Additionally, our definition of “semantic equivalence” remains
TABLE 2 GPT-3.5-Turbo may select an HPO term as semantically equivalent th

Term to normalize BioBERT match by CS CS L
Absent ankle jerks Absent knee jerk reflex 0.96 Ab

Pale fundi Pale eyelashes 0.92 De

Lack of speech Poor speech discrimination 0.93 Ab

Disinhibition Inactivity 0.89 So

Hand weakness Shoulder weakness 0.97 Ha

Bilateral foot drop Bilateral clubfoot 0.94 Fo

Note: The table shows the cosine similarity (CS) between the “term to normalize” and the term c

Using the BioBERT method, the term in the HPO with maximal CS to the “term to normalize” is
term with best “semantic equivalence” while ignoring cosine similarity. As shown in this Table, in

ability to pick terms that are better matches to the “term to normalize” that do not have the highes

each method.
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qualitative rather than exact. Determining whether “impaired

sensation” is semantically equivalent to “decreased sensation” can

be approached in three ways: (1) by measuring cosine similarity

between appropriate word embeddings, (2) by the judgment of

large language models trained for semantic reasoning, or (3) by

gold-standard review from human domain experts. However, as

datasets grow beyond 2,000 terms, human review becomes

increasingly impractical, particularly for large ontologies such as

SNOMED CT with over 400,000 terms. Another limitation is the

relatively small and specialized list of terns derived from the

OMIM summaries of neurogenetic diseases, which may not

capture the full diversity of phenotype terms that

require normalization. Expanding the dataset to cover a broader

range of phenotypic terms from other domains could provide

further insight.
at did not have the highest cosine similarity by BioBERT word embeddings.

arge language model + retriever match CS D

sent ankle reflexes 0.95 0.01

pigmented fundus 0.91 0.01

sent speech development 0.92 0.01

cial disinhibition 0.88 0.01

nd muscle weakness 0.96 0.01

ot drop 0.93 0.01

hoice by the BioBERT method and the term choice by the large language model + Retriever.

chosen. The large language model + Retriever method selects from 20 candidate terms the the
some cases large language model + Retriever can outperform the BioBERT method due to its

t cosine similarities. D is the difference between the cosine similarities for the term selected for
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Looking ahead, our retriever-based method is potentially

generalizable to other terminologies, such as Gene Ontology

(GO), UniProt, and SNOMED CT. By avoiding term definitions

and relying solely on word embeddings, our approach could

simplify normalization tasks in domains where definitions are

ambiguous or difficult to generate. Further research into

alternative retrieval strategies could improve the accuracy of the

model and expand its applicability.

In conclusion, retrieval-augmented prompts based on

BioBERT word embeddings improve the accuracy of phenotype

normalization tasks. This simplified retriever performs as well as

methods based on term definitions, offering an alternative

solution for biomedical term normalization.
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