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Background: Chronic Kidney Disease (CKD) is a global health concern and is
frequently underdiagnosed due to its subtle initial symptoms, contributing to
increasing morbidity and mortality. A comprehensive understanding of CKD
comorbidities could lead to the identification of risk-groups, more effective
treatment and improved patient outcomes. Our research presents a two-fold
objective: developing an effective machine learning (ML) workflow for text
classification and entity relation extraction and assembling a broad list of
diseases influencing CKD development and progression.
Methods: We analysed 39,680 abstracts with CKD in the title from the Embase
library. Abstracts about a disease affecting CKD development and/or
progression were selected by multiple ML classifiers trained on a human-
labelled sample. The best classifier was further trained with active learning.
Disease names in question were extracted from the selected abstracts using a
novel entity relation extraction methodology. The resulting disease list and
their corresponding abstracts were manually checked and a final disease list
was created.
Findings: The SVM model gave the best results and was chosen for further
training with active learning. This optimised ML workflow enabled us to
discern 68 comorbidities across 15 ICD-10 disease groups contributing to
CKD progression or development. The reading of the ML-selected abstracts
showed that some diseases have direct causal effect on CKD, while others,
like schizophrenia, has indirect causal effect on CKD.
Interpretation: These findings have the potential to guide future CKD
investigations, by facilitating the inclusion of a broader array of comorbidities
in CKD prognostic models. Ultimately, our study enhances understanding of
prognostic comorbidities and supports clinical practice by enabling improved
patient monitoring, preventive strategies, and early detection for individuals at
higher CKD development or progression risk.
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1 Introduction

Evidence-based medicine (EBM) provides a systematic

approach to integrating the best available evidence, with clinical

judgement and patient priorities, to inform clinical decision-

making. EBM often relies on systematic reviews to synthesise

clinical evidence, which play a critical role in updating clinical

guidelines, optimising treatment strategies, and informing policy

decisions, while the efficiency of these reviews is crucial in

Health Technology Assessment (HTA) as it enables timely, and

high-quality evidence synthesis to support informed decision-

making on the adoption, reimbursement, and use of health

technologies (1, 2). However, clinical evidence is primarily

obtained from unstructured texts of scientific articles and the

volume of published evidence in the medical field makes it

increasingly difficult to keep up with the latest developments and

to extract meaningful insights from research (3). Conducting

manual literature reviews for systematic studies is not only

labour-intensive and susceptible to human error, but also notably

time-consuming, with the average estimated duration to complete

and publish a systematic review being 15–16 months (4). The

long and labour-intensive process of reviewing the literature does

not only lead to delays in updating clinical guidelines but can

also hinder the efficient synthesis of evidence for policy decisions

such as HTA, pricing and reimbursement.

In recent years, machine learning (ML) algorithms have been

explored as tools to expedite the systematic review process by

automating text classification tasks (5–7). While promising, most

existing ML approaches focus solely on identifying relevant

articles, neglecting the extraction of entities (e.g., disease names)

and the relationship between these entities (e.g., significant

association between two diseases). This is a significant bottleneck

when studying disease comorbidities, where determining the

direction of relationships—such as identifying which disease

contributes to the onset or progression of another—is crucial for

developing clinical guidelines, identifying at-risk populations, and

understanding the sequence of disease occurrence based on

known patterns. Machine learning algorithms have the potential

to aid in the review process by automating the text classification

(8), information extraction (9), and entity relation extraction (10)

tasks. These algorithms use statistical modelling to learn patterns

in the data based on pre-labelled texts and can be trained to

identify relevant information in medical literature.

Active learning is an approach used in machine learning to

improve the efficiency of the training process. It involves

selecting a subset of the available data for annotation by a

human expert, with the aim of achieving the highest possible

accuracy with the minimum amount of labelled data (11). This

approach has shown to be effective in various machine learning

applications such as image classification and bioinformatics (12).

Unlike large languagemodels (LLMs), which are computationally

intensive, ML models can be specifically optimised for text

classification tasks, providing a lightweight and efficient alternative.

This approach ensures scalability in resource-constrained

environments while maintaining high performance. ML models

also offer greater interpretability and customisation, enabling
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researchers to better understand and adapt them. Exploring these

models can address practical challenges and facilitate hybrid

systems that combine efficiency and accuracy with LLMs (13).

Chronic kidney disease (CKD) serves as an ideal case study to

demonstrate the potential of these machine learning techniques, as

it is a complex condition heavily influenced by comorbidities,

where understanding the relationships between diseases is critical

for improving early detection, prevention strategies, and patient

management. CKD is a major public health issue worldwide,

with increasing prevalence and associated morbidity and

mortality (14). This debilitating condition often remains

undiagnosed until the advanced stages due to its insidious nature

and the absence of overt symptoms during the initial stages of

deteriorating kidney function (15). The primary treatment

modalities for CKD include conservative management to treat

symptoms and prevent deterioration, and if it progresses, dialysis

and kidney transplantation, with the costs of these therapies

varying widely depending on the stage and severity of the

disease. Dialysis, for instance, costs the National Health Service

(NHS) around £30,800 per patient per year for haemodialysis

and £23,500 per patient per year for peritoneal dialysis, based on

data from 2010 (16). One factor that contributes to both the

development of CKD and its progression is comorbidity, which

is the presence of one or more additional diseases or conditions

coexisting with CKD. The most common comorbidities

associated with CKD include hypertension, diabetes mellitus, and

cardiovascular disease, which are risk factors for its development

and progression. However, recent studies have shown that other

comorbidities, such as thyroid disorder, can also contribute to

CKD pathogenesis and adversely affect clinical outcomes (17).

Therefore, it is essential to acquire a greater understanding of

these comorbidities and their interplay with CKD in order to

optimise the management of this complex disease, and reduce its

incidence and progression. Comprehensive knowledge of

comorbidities can help clinicians provide more effective

treatment and improve patient outcomes, which ultimately leads

to a better quality of life for individuals living with CKD (18, 19).

Understanding the relationships between diseases within scientific

abstracts is crucial for refining research focus in specific contexts.

Rather than merely identifying diseases, extracting causal or

consequential relationships enables researchers to discern how

diseases interact, such as determining which conditions lead to

specific comorbidities or identifying comorbidities resulting from a

particular disease. In the context of CKD, which is associated with

an extensive body of literature, narrowing the focus of a literature

review to abstracts that explicitly address causal relationships

between CKD and comorbidities helps filter out irrelevant studies

and improves efficiency.
2 Research objective

The research objectives of this paper are twofold. Firstly, we

aspire to develop an efficient machine learning workflow for text

classification and entity relation extraction tasks, employed to

systematically review and synthesise the literature. In doing so,
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we will address the difficulty of determining causal relationships

between diseases, discerning which conditions lead to others.

Secondly, our objective is to compile an extensive list of diseases

that have been demonstrated to contribute to the development

and/or progression of CKD, achieved through the review of

abstracts from medical research articles. This comprehensive list

will serve as a valuable resource for healthcare professionals,

researchers, and policymakers to better understand and manage

the interplay of conditions that precipitate chronic kidney

disease. With this project, we also aim to emphasise the

importance of comorbidities and the challenges associated with

their identification in the context of clinical practice and research.
3 Methods

3.1 Data

Abstracts of articles related to chronic kidney disease were

retrieved from the Embase library in March 31, 2022, with search

terms “chronic kidney disease” or “chronic kidney failure” or

“end stage renal disease” in the title, including title, author

names, publication year and the link to the full text. 45,316

articles were found, of which 39,680 included abstracts and

which were used in the analysis.
3.2 Disease named entity recognition

To eliminate abstracts that did not contain information about a

disease impacting the development and/or progression of chronic

kidney disease or its synonyms (referred to as CKD), our analysis

commenced by identifying all disease terms within the abstracts and

excluding those that mentioned CKD only. We utilised the NCBI

disease corpus for disease named entity recognition, which

comprised 793 PubMed abstracts and disease concept identifiers

from MeSH or OMIM (20). Initially, the abstracts were cleaned by

converting them to lowercase and removing special characters.

Subsequently, a search was performed using the NCBI disease list on

the abstracts. We also tested SpaCy’s pre-trained disease named

entity recognition model (en_ner_bc5cdr_md) (21) and compared

the outcomes.
3.3 Manual labelling and text-preprocessing

Our initial objective involved the manual coding of a selected

group of articles, specifically targeting those that discussed

comorbidities of CKD. Our focus was narrowed to diseases

contributing to the development and/or progression of CKD,

deliberately omitting diseases that are consequent to CKD. In

this process, we manually annotated 215 abstracts. Each abstract

was assigned a binary value: “1” if it included information

pertaining to a disease influencing CKD’s development or

progression, and “0” if it did not. This initial coding was crucial

for setting a benchmark for our machine learning model’s
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training. To maintain coding consistency, each abstract was

independently coded by two researchers with relevant expertise.

One of the researchers is a biostatistician with experience in data

annotation and machine learning applications. The second

researcher is an associate professor in pharmacy with extensive

experience in population health and health services research. Any

discrepancies in coding were subsequently addressed and

reconciled through collaborative discussion.

All abstracts, including the pre-labelled ones, underwent pre-

processing and vectorisation in preparation for the machine

learning algorithms. The pre-processing steps included (i)

converting to lowercase, (ii) eliminating whitespace, (iii) removing

line breaks, (iv) removing leading labels, numbers, parenthetical

expressions and URLs, (v) removing stopwords, (vi) discarding

punctuation, (vii) tokenising, (viii) lemmatising, and (ix) applying

word stemming. Following pre-processing, the abstracts were

vectorised using the Term Frequency-Inverse Document Frequency

(TF-IDF) method, where each vector initially included all unique

words in the pre-processed corpus. To reduce dimensionality and

sparsity, we restricted the vocabulary to the top 5,000 terms based

on term frequency across the corpus, ensuring computational

efficiency and maintaining classification performance.
3.4 Comparison of multiple machine
learning classifiers

In the following step, we trained various machine learning

(ML) algorithms on our manually labelled training dataset and

validated them using the manually labelled test dataset. Our goal

was to assign each abstract to one of two categories: 1 if the

abstract includes information on a disease causing CKD

development or progression, 0 otherwise. The classifiers were

trained and validated using the manually labelled dataset of 215

abstracts and then applied to the full dataset of 35,109 abstracts.

We selected a diverse set of ML algorithms, including linear

classifiers (SVM, SGD), ensemble methods (AdaBoost, Gradient

Boosting, XGBoost, Random Forest), and a neural network

classifier (MLP). Each method was chosen for its unique

characteristics and potential advantages. Support Vector

Machines (SVM) are known for their robustness and

effectiveness in high-dimensional text data, they are well-suited

for binary classification tasks like ours where the dataset is

relatively small and features (words) are numerous (22).

Stochastic Gradient Descent (SGD) was selected for its

computational efficiency in optimising linear classifiers on sparse

datasets, especially with TF-IDF vectorised text (22). Ensemble

Methods were included due to their ability to combine the

strengths of multiple decision trees, improving predictive

performance and reducing overfitting. These methods are

particularly effective at handling data with imbalanced classes

(22). Finally, Multi-Layer Perceptron (MLP) method was

included as it is capable of modelling nonlinear relationships in

data and has shown success in various text classification tasks

(22). The variety of classifiers allowed us to evaluate different
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modelling approaches and select the best-performing algorithm for

this task, ensuring flexibility and robustness in the pipeline.
3.5 Evaluation and selection of the best
classifier

We evaluated the performance of various ML algorithms by

assessing their accuracy, precision, and F1 scores. To train the

models, we randomly split the manually labelled dataset of n = 215

instances into training (70%) and testing (30%) sets. Prior to model

training, we defined hyperparameters and their corresponding

values for each algorithm using the GridSearchCV function. This

function allowed us to determine the optimal hyperparameter

configuration for each classifier algorithm based on their accuracy

scores for both training and testing, as well as their F1 score and

precision. We selected the best-performing model based on the F1

score (23), as different models exhibited varying levels of

performance based on different metrics. The steps of the complete

machine learning pipeline are visualised in Figure 1.
3.6 Active learning with SVC classifier

In this research phase, we employed the ActiveLearner modAL

library to augment the training of our chosen model using the best-
FIGURE 1

Machine learning pipeline.
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performing hyperparameters. Initially, we trained the active learner

using the pre-coded 215 abstracts and then the trained active

learner was applied to the unlabelled dataset to identify the most

uncertain instances for further annotation. The original test set

was not used during or after the active learning process to

evaluate the model, as this would introduce bias. Using the

predict_proba function and the max uncertainty sampling

method, we identified unlabelled abstracts with the smallest

probability score difference between label 1 and 0.

The active learning process was conducted iteratively, with 10

abstracts being manually labeled in each round. After each round

of labelling, the newly annotated abstracts were added to the

training set, and the model was retrained to incorporate the new

data. The accuracy of the model was evaluated on the original

testing set. After 6 rounds of labelling (a total of 60 abstracts),

the model’s accuracy had improved significantly from 0.85 to

0.94, and the probability score difference between label 1 and 0

increased, indicating that the decision boundary had stabilised.

Based on these improvements, we determined that 60 abstracts

were sufficient for the active learning phase. While the active

learning process itself is automated, manual labelling of the

selected abstracts was conducted by researchers, which limited

the scale of the process.

To enable researchers to run the Python code on any computer

console (in our case Terminal), we developed a function that

allowed them to define the number of abstracts to label and
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create an Excel sheet containing a sample of abstracts ready for

human labelling. After each round of labelling, the Excel sheet

was saved, and the algorithm learned from the new labels. The

labelling protocol employed in this phase mirrored that of the

first “manual labelling” stage. Specifically, each abstract was

assigned a binary value: “1” if it contained information related to

a disease influencing the development or progression of CKD,

and “0” if it did not. Consistent with our initial labelling

approach, two researchers conducted this coding process

independently to ensure accuracy and reliability.
3.7 Entity relation extraction

In this step, we encountered the challenge of identifying

diseases mentioned in abstracts that were positively related to

CKD, given that abstracts often mentioned multiple diseases with

varying contextual relationships to CKD. To address this issue,

we employed an entity relation extraction natural language

processing (NLP) method that consisted of several steps. Firstly,

we utilised the Spacy Stanza package’s built-in negator function,

coupled with a clinical negator termset (en_clinical), to exclude

disease names negatively correlated with CKD. This step allowed

us to eliminate those disease names that had no connection to

CKD development or progression due to the negative correlation

between the two. The resulting list was comprised of diseases

that should not be neglected at this stage. Secondly, we applied

different summarisation methods, including Gensim_summerize

(), TextRankSummarizer(), LexRankSummarizer(), and

LsaSummarizer(), to reduce the text size and eliminate irrelevant

information. Since abstracts have varying wordings and

structures, we utilised different summarisers in case the first one

failed to provide a result that contained a disease name and CKD

together. Finally, we employed Stanford OpenIE, a natural

language processing AI, to identify disease names that had a

positive relation to CKD. As OpenIE did not have a built-in

clinical termset, it was programmed to yield results of only the

positive relationship between disease names and CKD. In cases

where OpenIE did not yield any results, we used a final

dependency extractor NLP to find dependencies between CKD

and disease names.
3.8 Python libraries used in the analysis

The analysis was conducted using several Python libraries to

implement various components of the machine learning

workflow and text extraction process. The Scikit-learn library

(24) was central to our analysis, providing tools for data

preprocessing, model training, hyperparameter optimisation, and

evaluation. For active learning, we utilised the modAL library

alongside Scikit-learn, supported by numpy, pickle, and atexit for

efficient data handling and workflow management. Text

extraction and natural language processing (NLP) tasks were

performed using libraries such as stanza, spacy_stanza, negspacy,

and pycorenlp for entity recognition and relationship extraction.
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Additional packages such as pandas, re, json, and collections

were employed for data manipulation and preprocessing, while

gensim and sumy were used for text summarisation. The nltk

library supported feature extraction and preprocessing steps for

machine learning. These libraries collectively enabled the

streamlined execution of our machine learning pipeline, active

learning framework, and NLP tasks.
3.9 Qualitative assessment of machine
learning-selected abstracts

As a vital component of our methodology, the final stage

involved a thorough qualitative review of the abstracts identified

through our ML pipeline. This review process focused on a

dataset comprising abstracts and other essential details such as

author names, publication dates, links to the original articles, and

the disease names identified within each abstract. Rather than

reviewing all 35,109 abstracts, this step concentrated on the final

list of cleaned and unique disease names extracted from the

2,954 abstracts labelled as relevant by the SVM classifier. At least

one representative abstract was manually reviewed for each

disease on the final list to confirm that it demonstrated a positive

relationship with CKD.

The primary objective of this step was to verify whether

the ML algorithms had accurately selected abstracts that

provide information about diseases significantly impacting the

development and/or progression of CKD. Specifically, our task

was to filter out false positives—abstracts that either discussed

diseases resulting as consequences of CKD, those with diseases not

serving as significant predictors in models of CKD’s development

and/or progression, or diseases associated with conditions other

than CKD. Given the diverse nature of statistical analysis language

used across different abstracts, the potential for false positives in

ML-assisted text reviews is notable. Therefore, this qualitative

assessment phase was imperative to ensure the integrity of our

results. Two researchers independently read and coded the

abstracts, determining the appropriateness of their inclusion based

on the study’s criteria. Subsequently, we compared and reconciled

these independent assessments to address any discrepancies in

coding. This collaborative process culminated in the creation of a

refined and accurate list of disease names associated with the

development and/or progression of CKD, organised manually into

ICD-10 disease categories.
4 Results

4.1 Manual labelling

In our initial manual labelling process, a sample of 215

abstracts was examined. Of these, 42 abstracts (19.53%) were

coded as 1, signifying relevance to diseases affecting the

development or progression of chronic kidney disease (CKD),

while 173 abstracts (80.47%) were coded as 0, indicating no

such relevance.
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4.2 Disease named entity recognition

Utilising the SpaCy model initially resulted in several false

positives, such as terms like “bleeding” or “microalbuminuria”.

To refine our approach, we employed the NCBI disease list for

more accurate entity recognition. Subsequently, 4,571 abstracts

that only mentioned CKD and did not include other disease

names were excluded. This refinement yielded a focused dataset

of 35,109 abstracts, enhancing the efficacy of our semi-supervised

machine learning algorithms and ensuring a more precise

identification of relevant abstracts.
4.3 Machine learning classifier

Our comparative analysis of machine learning classifiers is

detailed in Table 1. The SVM model demonstrated superior

performance in terms of the F1 score (0.81). The table also

shows that the best hyperparameter configuration for the SVM

model proved to be setting penalty parameter (C) to 0.5, linear

kernel, and the class weight to “balanced” due to the uneven

distribution of the categories in the labelled sample. However,

given its limited efficacy on the small manually labelled sample,

we further refined the SVM model using active learning

techniques with the same parameter settings.
4.4 Active learning classifier

The active learning phase involved labelling an additional 60

abstracts using the refined SVM algorithm. This process led to a

notable increase in the average accuracy score of the classifier,

from 0.85 to 0.94, and a Matthew’s correlation coefficient of 0.85,

indicating a strong alignment between predicted and actual

values. As a result of this enhanced model, we successfully

identified 2,954 abstracts that contained information relevant to

diseases affecting CKD development or progression.
TABLE 1 Results of ML classifiers on the labelled sample.

Model Accuracy score
(training)

Accuracy score
(validation)

F1-score Pr

Random Forest 0.91 0.83 0.77

AdaBoost 0.89 0.82 0.78

Gradient
Boosting

1.00 0.86 0.81

SGD Classifier 1.00 0.82 0.78

SVM 0.99 0.85 0.82

XGBoost 1.00 0.82 0.78

MLPClassifier 1.00 0.80 0.80
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4.5 Qualitative assessment of abstracts and
compilation of final disease list

The result of our study was the creation of a comprehensive

disease list, comprising of 68 disease names across 15 ICD-10

disease categories, as shown in Figure 2. This list was refined by

manually checking each disease name against the original

abstracts to eliminate false positives, such as CKD complications

(e.g., anaemia and abdominal aortic calcification) which were

initially misidentified as causes.
5 Discussion

Our study has demonstrated an innovative methodology that

employs machine learning to systematically identify

comorbidities associated with chronic kidney disease. The current

investigation emphasises the potential of utilising ML for

literature review purposes. The various techniques detailed in this

study possess the ability to discern not merely entities within

texts but also the relationships and their orientations between

these entities, as demonstrated by our identification of conditions

relating to CKD development rather than CKD provoking other

diseases. As this study focused on both development and

progression, some identified comorbidities were consequences of

CKD, however they were also related to progression to later

stages of the disease. The method developed here could also be

extended to differentiate studies focusing on CKD development

and progression. This approach enabled us to extract sought-after

entities from the texts, surpassing mere abstract classification.

Typically, studies may focus on a small number of

comorbidities as risk factors of CKD, whereas this ML-assisted

literature review discerned 68 comorbidities across 15 ICD-10

disease groups. These include less-known risk factors, such as

rosacea (25) from the diseases of the skin and subcutaneous

tissue group (L00-L99), insomnia (26) from the nervous system

diseases group (G00-G99), and schizophrenia (27) from the

mental and behavioural disorders group (F01-F99). This study

identified a diverse range of comorbidities associated with either
ecision Best parameters

0.71 {“class_weight”: “balanced”, “criterion”: “gini”, “max_samples”: 0.5,
“n_estimators”: 10}

0.76 {“algorithm”: “SAMME.R”, “learning_rate”: 0.5, “n_estimators”: 10}

0.88 {“learning_rate”: 1.0, “loss”: “exponential”, “max_depth”: 4,
“max_features”: 0.01, “min_samples_leaf”: 2, “n_estimators”: 1,000,
“subsample”: 0.5}

0.76 {“alpha”: 0.0001, “class_weight”: “balanced”, “eta0”: 100, “l1_ratio”: 0.5,
“learning_rate”: “adaptive”, “loss”: “log”, “max_iter”: 2,500, “penalty”:
“l2”}

0.81 {“C”: 0.5, “class_weight”: “balanced”, “gamma”: 10, “kernel”: “linear”,
“probability”: True}

0.76 {“learning_rate”: 0.5, “max_depth”: 5, “n_estimators”: 50}

0.79 {“activation”: “relu”, “alpha”: 0.0001, “hidden_layer_sizes”: 400,
“learning_rate”: “constant”, “learning_rate_init”: 0.01, “solver”: “adam”}
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Dendrogram of diseases affecting the development and/or progression of CKD with ICD-10 disease categories.
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CKD development or progression, likely with different types of

relationship. Some comorbidities have a direct causal effect on

CKD development, for example well-characterised risk factors

such as hypertension. Other identified comorbidities may have

an indirect causal effect on CKD. For example, examining the

primary literature, the association between schizophrenia and

CKD was attributable to the antipsychotic medications prescribed

to patients with schizophrenia.

To the best of our knowledge, no previous ML-oriented

research has been conducted with the aim of extracting

relationships between diseases from abstracts. Popoff et al. (7)

performed a categorisation of medical abstracts into various

disease domains utilising machine learning techniques. In their

study, they compared three ML approaches (whereas our

analysis involved seven) and executed classification based on

both abstracts and complete texts, assessing the results through

a range of accuracy metrics. Nonetheless, their methods were

not employed for the extraction of information. Our approach

has potential applicability in addressing other research

applications that necessitate extensive review of a substantial

volume of textual sources (e.g., abstracts) to comprehend the

associations between potential predictors and a given disease.

This methodology can be employed across various disease

domains to investigate the described associations between

comorbidities and specific diseases. Additionally, it could be

utilised for discovering molecule-disease connections, thereby

potentially enhancing the pace and efficacy of the drug

development process. This method has been developed and

identified a range of established and under-investigated

comorbidities with prognostic value for CKD. However beyond

this, the method can be extended to other disease areas and

other domains, such as biomarkers, to enhance our

understanding and accelerate scientific progress.

In the realm of healthcare policy, determining the value of

various health technologies—ranging from pharmaceuticals to

medical devices and procedures—is crucial for optimising the

efficient use of scarce resources in healthcare. As health

technology assessment requires evidence that is aligned with the

specific context of the decision, and RCTs with the appropriate

head-to-head comparisons are often not available, it is frequently

required to conduct an extensive review to make indirect

comparisons and network-metaanalyses (28).

The machine learning pipeline we developed, encompassing

entity recognition, abstract categorisation, information extraction,

and entity relation extraction, has significant potential for

application in clinical research and HTA. One of its key

strengths lies in the ability of ML algorithms to significantly

speed up the study selection process in systematic literature

reviews, which is vital in both EBM and HTA. Our methodology

advances beyond mere literature categorisation. It includes entity

relation extraction, a feature that not only identifies relationships

between diseases, as demonstrated in our study, but can also

discern links between health technologies and diseases, or among

different health technologies. This aspect is particularly crucial in

HTA and EBM, as it can greatly streamline the data collection

process, enhancing the efficiency and depth of these reviews.
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constraints of this methodology include the necessity for

human labelling during algorithm training and qualitative

assessment of outcomes, as false positive results may emerge.

These techniques are unsuitable for evaluating the quality of

studies, hence alternative methods must be employed as part of

systematic review and meta-analyses to critically appraise

identified papers. Moreover, proficiency in Python

programming is required, precluding execution via off-the-shelf,

user-friendly platforms. Furthermore, the launch of the

Generative Pre-trained Transformer (29) 4 in March 2023, a

multimodal large language model (LLM) with enhanced AI

capabilities, particularly in natural language processing,

introduces a more efficient and accurate means for conducting

systematic reviews and extracting disease relationships (29).

This rapid advancement in AI technology underscores a

challenge for researchers to stay current with the latest

developments, positioning the use of prior ML technologies as a

notable limitation of this study.

Traditional machine learning methods, such as Support Vector

Machines (SVMs), were chosen for their robustness,

interpretability, and ability to handle small to medium-sized

datasets effectively. These methods are particularly well-suited for

text classification tasks where transparency is critical, as in public

health research. Alternative approaches, such as deep learning or

LLMs, were not applied due to their high data requirements, lack

of interpretability, and significant computational overhead, which

were beyond the scope of this study. This rationale reflects the

importance of traditional ML methods in maintaining

transparency and reproducibility in public health research,

especially given the limitations of LLMs. Nonetheless, the opacity

of LLMs, often described as a “black box” leading to

confabulation—where models generate fluent but factually

incorrect information without a clear understanding of their

processing—raises concerns (13, 30). While LLMs represent

promising frontier, this opacity underscores the enduring value

of traditional ML approaches that offer more interpretable and

transparent workflows. This underlines the importance of

maintaining traditional ML methods and a deeper

comprehension of the internal workings of these models, which

are integral to the “black box” of LLMs.

In summary, our research contributes to the evolving landscape

of systematic reviews by integrating machine learning to enhance

efficiency, transparency, and depth of analysis. While there are

challenges and limitations, particularly in the context of data

preparation and the need for human oversight, the potential

benefits in terms of time-saving and the broadening of scope in

systematic literature reviews are significant.
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