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Clinical letters contain sensitive information, limiting their use in model training,

medical research, and education. This study aims to generate reliable, diverse,

and de-identified synthetic clinical letters to support these tasks. We

investigated multiple pre-trained language models for text masking and

generation, focusing on Bio_ClinicalBERT, and applied different masking

strategies. Evaluation included qualitative and quantitative assessments,

downstream named entity recognition (NER) tasks, and clinically focused

evaluations using BioGPT and GPT-3.5-turbo. The experiments show: (1)

encoder-only models perform better than encoder–decoder models; (2)

models trained on general corpora perform comparably to clinical-domain

models if clinical entities are preserved; (3) preserving clinical entities and

document structure aligns with the task objectives; (4) Masking strategies have

a noticeable impact on the quality of synthetic clinical letters: masking

stopwords has a positive impact, while masking nouns or verbs has a negative

effect; (5) The BERTScore should be the primary quantitative evaluation

metric, with other metrics serving as supplementary references; (6) Contextual

information has only a limited effect on the models’ understanding, suggesting

that synthetic letters can effectively substitute real ones in downstream NER

tasks; (7) Although the model occasionally generates hallucinated content, it

appears to have little effect on overall clinical performance. Unlike previous

research, which primarily focuses on reconstructing original letters by training

language models, this paper provides a foundational framework for generating

diverse, de-identified clinical letters. It offers a direction for utilizing the model

to process real-world clinical letters, thereby helping to expand datasets in the

clinical domain. Our codes and trained models are available at https://github.

com/HECTA-UoM/Synthetic4Health.

KEYWORDS

pre-trained language models (PLMs), encoder-only models, encoder–decoder models,
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1 Introduction

With the development of medical information systems, electronic clinical letters are

increasingly used in communication between healthcare departments. These clinical

letters typically contain detailed information about patients’ visits, including their

symptoms, medical history, medications, etc. (1). They also often include sensitive

personal information, such as patients’ names, phone numbers, and addresses (2, 3). As
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a result, these letters are difficult to share and nearly impossible to

use widely in clinical education and research.

In 2018, 325 severe breaches of protected health information

were reported by CynergisTek (4) placing nearly 3,620,000

patients’ records at risk (4). This data reflects just 1 year, and

similar privacy breaches are unfortunately common. The most

severe hacking incident affected up to 16,612,985 patients (4).

Therefore, generating synthetic letters and applying de-

identification techniques seem indispensable.

Additionally, due to privacy concerns and access controls,

insufficient data remains a major challenge in clinical education,

medical research, and healthcare system development (5). Some

shared datasets offer de-identified annotated data, with the MIMIC

series being a typical example. These datasets are accessible through

PhysioNet. MIMIC-IV (6–8), the latest version, contains clinical

data from 364,627 patients, collected from 2008 to 2019 at a

medical center in Boston. It contains details about hospitalizations,

demographics, and transfers. Numerous research studies have been

conducted using this shared dataset. Another public dataset series

in the clinical domain is i2b2/n2c2 (9), which is accessible through

the DBMI Data Portal. This series includes unstructured clinical

notes, such as process notes, radiology reports, and discharge

summaries and is published for clinical informatics sharing and

natural language processing (NLP) task challenges.

However, these shared datasets are often limited to specific

regions and institutions, making them not comprehensive.

Consequently, models and medical research outcomes derived

from these datasets cannot be widely applied (10). Therefore, to

address the lack of clinical datasets and reduce the workload for

clinicians, it is essential to explore available technologies that can

automatically generate de-identified clinical letters.

Existing systems generate clinical letters primarily by integrating

structured data; however, there are not many studies that explore the

use of natural language generation (NLG) models for this purpose

(11–13). NLG attempts to combine clinical knowledge with general

linguistic expressions to generate clinical letters that are both

readable and medically accurate. However, NLG technology is not

yet mature enough for widespread use in healthcare systems.

Additionally, it faces numerous challenges, including medical

accuracy, format normalization, and de-identification (12).

Therefore, this investigation focuses on how NLG technology can

be used to generate reliable and anonymous clinical letters, which

can benefit medical research, clinical education, and clinical

decision-making.

The main aim of our work is to generate de-identified clinical

letters that can preserve clinical information while differing from

the original letters. A brief example of our objective is shown in

Figure 1. Based on this objective, different generation models are

explored as a preliminary attempt. Then, the best models are

selected and various techniques are tested to improve the quality

of the synthetic letters. The synthetic letters are evaluated not

only with quantitative and qualitative methods but also in

downstream tasks, i.e., NER. We hope this work contributes to

addressing the challenge of insufficient data in the clinical domain.

In summary, this work is centered on the research question

(RQ): “How can we generate reliable and diverse clinical letters

without including sensitive information?” Specifically, it answers

the following related sub-questions (RQs)1:

FIGURE 1

An example of the objective: sentence/segment-level generations.

1We report our extended solid investigation and outcomes based on our

preliminary workshop paper findings (96).

Ren et al. 10.3389/fdgth.2025.1497130

Frontiers in Digital Health 02 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1497130
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


1. How do different models perform in masking and generating

clinical letters?

2. How should the text be segmented in clinical letter generation?

3. How do different masking strategies affect the quality of

synthetic letters?

4. How can we evaluate the quality of synthetic letters?

To answer these questions, we explored various large language

models (LLMs) for masking and generating clinical letters,

ultimately focusing on one that performed well. The overall

highlights of this work are summarized as follows:

1. Mask and generate clinical letters using different LLMs at the

sentence level.

2. Explore methods to improve synthetic clinical letters’

readability and clinical soundness.

3. Initially evaluate synthetic letters using both qualitative and

quantitative methods.

4. Apply synthetic letters in downstream tasks and further

evaluate them using clinically focused methods.

5. Explore post-processing methods to further enhance the quality

of de-identified letters.

2 Background and literature review

We first introduce general language models, followed by their

applications, especially within the clinical domain. We then

present the generative language models based on the transformer

architecture. These models serve as the technical foundation for

most modern text generation tasks. Afterward, we review related

works, discussing their relevance and connections to our work.

Finally, all quantitative evaluation metrics used in this paper

are introduced.

2.1 Development of language models (LMs)

The development of language models can be divided into three

stages: rule-based approach, supervised modeling, and

unsupervised modeling (14).

2.1.1 Rule-based approach
The rule-based approach, first used in the 1950s, marks the

beginning of NLP (15). This approach relies on a set of

predefined rules, which were written and maintained manually

by specialists (16, 17). Although it can generate standardized text

without being fed with extensive input data (17), it has

numerous limitations. Initially, manually crafted rules are often

ambiguous, and the dependencies between different rules

increase the cost of maintenance (15). Second, these stylized

models cannot perform well in understanding realistic oral

English and ungrammatical text, such as clinical discharge

records, although these texts are still readable to humans (15).

Third, they are not objective enough, as they are affected by the

editors of the rule library. Additionally, they are not flexible

enough to deal with special cases. Therefore, the rule-based

method is only suitable for analyzing and generating highly

standardized texts like prescriptions (17).

2.1.2 Supervised language models

To address the limitations of the rule-based approach,

supervised learning has been applied to NLP. The invention of

statistical machine translation (SMT) in 1990 marked the rise of

supervised NLP (14). It learns the correspondence rules between

different languages by analyzing the input of bilingual texts

(parallel corpora) (18). Supervised NLP models are trained on

annotated labels to learn rules automatically. The learned rules

will be used in word prediction or text classification. Hidden

Markov model (HMM) and conditional random field (CRF) are

two typical applications of this stage (19). Both of them work by

tagging features of the input texts. HMM generates data by

statistically analyzing word frequencies (20, 21). CRF, however,

searches globally and calculates joint probabilities to get an

optimal solution (22, 23). Long short-term memory (LSTM) is

another typical example of supervised language modeling (24). In

text generation tasks, the input consists of a set of labeled data

or word vector sequences. By minimizing the loss between the

predicted word vector and the actual word vector, LSTM can

capture the dependencies between words in long texts (25, 26).

Although supervised language models perform better than the

rule-based approach, domain experts still need to annotate the

training dataset (14). In addition, collecting data in some

domains is difficult due to privacy issues (such as medical and

legal domains). This became an ongoing challenge in applying

the supervised language models to specific tasks.

2.1.3 Unsupervised language models

To address the high cost and difficulty of obtaining labeled

data, unsupervised neural networks are applied to the language

modeling (27). The popularity of corpora such as Wikipedia and

social media provides enough data for training unsupervised

models (14). Word embedding is a significant technique in this

stage (28). For example, Word2Vec represents words using

vectors with hundreds of dimensions. The context can be

captured by training word vectors in a sliding window. By

adjusting hyperparameters to maximize the conditional

probability of the target word, the model can learn semantic

information accurately (29, 30) [e.g., “Beijing”-

“China”+“America” => “Washington” (31)]. After training, each

word usually has a fixed word vector regardless of the context in

which it appears (known as static word embedding) (26).

Unlike Word2Vec, BERT and GPT use contextual word

embeddings, meaning that their word vectors reflect the semantic

information and are affected by the context (32). BERT focuses

on contextual understanding (33) (e.g., in the sentence “The

bank is full of lush willows,” the word “bank” refers to a

riverside rather than a financial institution). In contrast, GPT

models focus on text generation within a specific context (34, 35)

(e.g., Prompt: “Do you know Big Ben?” Answer: “Yes, I know

Big Ben. It is the nickname for the Great Bell of the Clock

located in London.”). Although unsupervised language models

have been able to train and understand text proficiently, they still
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face challenges in practical applications, such as difficulty handling

ambiguity and high computing resource consumption. Therefore,

language modeling still has a long way to go.

2.2 Language models applications in clinical
domain

Based on the modeling methods mentioned above, a variety of

language models have been developed. They play an important role

in scientific research and daily life, especially in the field of

healthcare. In this section, we discuss the clinical language model

applications in detail from two aspects: NER and NLG.

2.2.1 Named entity recognition

NER was originally designed for text analysis and recognition

of named entities, such as dates, organizations, and proper nouns

(36). In the clinical domain, NER is used to identify clinical

events (e.g., symptoms, drugs, treatment plans, etc.) from

unstructured documents, along with their qualifiers (e.g., chronic,

acute, mild), classify them, and extract the relationship between

entities (37, 38). Earlier, NER systems relied on rule-based and

machine learning methods that required extensive manual feature

engineering. In 2011, Collobert et al. (39) used word embeddings

and neural networks in NER. Since then, research in NER has

shifted to automatic feature extraction.

spaCy2 is an open-source NLP library used for tasks like POS

tagging and text classification. Additionally, it offers a range of pre-

trained NER models. ScispaCy,3 a fine-tuned extension of spaCy on

medical science datasets, can recognize entities such as “DISEASE,”

“CHEMICAL,” and “CELL,” which are essential for medical

research. Although NER is useful in rapidly extracting clinical

terms, several challenges remain, such as non-standardization

(extensive use of abbreviated words in clinical texts), misspellings

(due to manual input by medical staff), and ambiguity (often

influenced by context, e.g., whether the word “back” refers to an

adverb or an anatomical entity) (37). Existing research mitigates

these problems using entity linking (mapping extracted clinical

entities to medical repositories such as UMLS and SNOMED).

More deep learning models and text analysis tools are being

developed to solve these issues.

2.2.2 De-identification

The unprocessed clinical text poses a risk of personal

information leakage. Additionally, manual de-identification is not

only error-prone but also costly. Therefore, research on de-

identification is indispensable for the secondary use of clinical

data. Typically, de-identification is based on NER models to

identify protected health information (PHI). Then, PHI is

processed by different strategies (such as synonym replacement,

removal, or masking) (40, 41).

Similar to NER, early de-identification approaches relied

heavily on rule-based systems, machine learning, or hybrid

models. PhysioNet DeID, the VHA best-of-breed (BoB), and

MITRE’s MIST are three typical examples (42). However, these

algorithms require extensive handcrafted feature engineering.

With the development of unsupervised learning, recurrent neural

networks (RNNs) and transformers are widely used in de-

identification tasks (43, 44).

Philter, a protected health information filter (45), is a

pioneering system that combines rule-based approaches with

state-of-the-art NLP models to identify and remove PHI.

Although Philter outperforms many existing tools like PhysioNet

and Scrubber, particularly in terms of recall and F2 score, it still

requires large amounts of annotated data for training (45).

Additionally, research has shown that while the impact of de-

identification on downstream tasks is minimal, it cannot be

completely ignored (46). Therefore, performing de-identification

without mistakenly removing semantic information is still a

challenge in this field.

2.2.3 Natural language generation
Both label-to-text and text-to-text generation are components

of NLG (47). NLG consists of six primary sub-tasks, covering

most of the NLG process. NLG architectures can generally be

divided into three categories (47):

• Modular architectures: This architecture consists of three

modules: the text planner (responsible for determining the

content for generation), the sentence planner (which

aggregates the synthetic text), and the realizer (which

generates grammatically correct sentences). These modules are

closely related to the six sub-tasks, and each module

operates independently.

• Planning perspectives: This architecture considers NLG as a

planning problem. It generates tokens dynamically based on

the objectives, with potential dependencies between

different steps.

• Integrated or global approaches: Currently the dominant

architecture for NLG, this approach relies on statistical

learning and deep learning. Common generative models, such

as transformers and conditional language models, are included

in this architecture.

In the field of healthcare, NLG applications include document

generation and question-answering. Document generation

involves discharge letters, diagnostic reports for patients,

decision-making suggestions for experts, and personalized patient

profiles for administrators (48). Some systems have already been

implemented in practice. For instance, PIGLIT generates

explanations of clinical terminology for diabetes patients (49),

while MAGIC can generate reports for intensive care unit (ICU)

patients (50). Question answering is another application of NLG.

Tools like chatbots can provide patients with answers to basic

healthcare questions (51).

2https://spacy.io/

3https://allenai.github.io/scispacy/
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Nowadays, NLG in the clinical field focuses on the

development and training of transformer-based LLMs; examples

of this work can be seen in (11, 52). These models perform well

in specific domains such as semantic query (53) and electronic

health record (EHR) generation (54). However, very few systems

can reliably produce concise, readable, and clinically sound

reports across multiple sub-domains (48).

2.3 Generative language models

2.3.1 Transformer and attention mechanism
Although RNNs and LSTM networks are effective at capturing

semantic understanding, their recursive structure not only prevents

parallel computation but also makes them prone to gradient

vanishing (55). The introduction of the transformer architecture

in 2017 addressed this issue by replacing the recurrent structure

with a multi-head attention mechanism (56). Since then, most

deep learning models have been based on the transformer

framework. Transformer architecture is based on an encoder–

decoder model (56). To understand this, we first need to

overview auto-regressive models and the multi-head

attention mechanism.

Auto-regressive models’ predictions for each auto-regressive

model token depend on the previous output. Therefore, it can

only access the preceding tokens and operate iteratively. When

the input sequence is X, the auto-regressive model aims to train

parameters u to maximize the log-likelihood of the conditional

probability P (Equation 1) (56)

L(X) ¼
X

i

log P(xi j xi�k, . . . , xi�1; Q) (1)

Multi-head attention mechanism: The attention mechanism

was initially proposed by Cho et al. (57). It can not only

focus on the element being processed but also capture the

context dependence (56). The scaled dot-product attention is

computed as shown in Equation 2. Multi-head attention

consists of several single-head attention (scaled dot-product

attention) layers (56). Each word in the input sequence is

converted into a high-dimensional vector representing

semantic information by word embedding. These vectors are

then passed through linear transformation layers to generate

vectors for queries (Q), keys (K), and values (V). For each

word, Q, K , and V are inputs to this single-head attention

layer. The importance score of this word is calculated, and V

corresponding to this word is multiplied to get the output of

this head (called attention). Finally, outputs from all layers are

concatenated to form a larger vector, which is the input to a

feed-forward neural network (also the output of the multi-

head attention layer) (56)

Attention(Q, K , V) ¼ softmax
QKT

ffiffiffiffiffi

dk
p

� �

V (2)

Transformer and pre-training language models (PLMs):

Transformer consists of an encoder and a decoder. The auto-

regressive model is the basis of the decoder. When the input

sequence is X ¼ (x1, . . . , xN ) and the output sequence is

YM ¼ (y1, . . . , yM), the model can learn a latent feature

representation Z ¼ (z1, . . . , zN ) from X to Y . The generation

of each new element YM relies on the generated sequence

YM�1 ¼ (y1, . . . , yM�1) and feature representation Z. Both the

encoder and the decoder use the multi-head attention

mechanism (55, 56).

Many modern models are based entirely or partially on the

transformer. They compute general feature representations for

the training set by unsupervised learning. This is the concept of

PLMs. They can be fine-tuned to adapt to the specific tasks on

particular datasets (34, 55).

2.3.2 Encoder-only models
Since the transformer’s encoder architecture can effectively

capture the semantic features, some models only use this part for

training. They are applied in text understanding tasks, such as

text classification and NER. Bidirectional encoder representations

from transformers (BERT) (58) is a representative model

among them.

Unlike the transformer decoder, which uses an auto-regressive

model, BERT is trained based on the masked language model

(MLM) (34). It masks the word in the input sequence and uses

the bidirectional encoder to understand the context semantically,

which will be used in predicting the masked word (58). It has

already been pre-trained on a 16 GB corpus. To deploy it, we

only need to replace the original fully connected layer with a

new output layer and then fine-tune the parameters on the

dataset for specific tasks (58). This approach consumes fewer

computing resources and less time than training a model from

scratch. In the clinical domain, Bio_ClinicalBERT (59) and

medicalai/ClinicalBERT (60) are fine-tuned in the clinical dataset

based on the BERT architecture. Initially, due to BERT’s

focus on semantic understanding, it was rarely used for text

generation (61).

Robustly optimized BERT pretraining approach (RoBERTa)

(62) improved some key hyperparameters based on BERT.

Instead of BERT’s static mask, it uses a dynamic mask strategy,

which helps it better adapt to multitasking. Additionally, it

gained a stronger semantic understanding after training on five

English datasets of 160 GB. However, it was trained with more

epochs and larger batch sizes compared to BERT, indicating

higher computational resource requirements and longer

training time (63).

To better handle long sequences, the Longformer introduces a

sparse attention mechanism to reduce computation (64). This

allows each token to focus only on nearby tokens rather than the

entire sequence. Unlike traditional models like BERT and

RoBERTa, which can only process no more than 512 tokens, the

Longformer can handle up to 4,096 tokens. It consistently

performs better than RoBERTa in downstream tasks involving

long documents (64). The Clinical-Longformer model (65) was

fine-tuned for the clinical domain.
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Supplementary Table S1 summarizes the encoder-only models

used in our work and their corresponding fine-tuning datasets.

2.3.3 Decoder-only models
In 2020, the performance of ChatGPT-3 (66) in question

answering task caught researchers’ attention to decoder-only

architectures. As mentioned earlier, the transformer decoder is

an auto-regressive model. It can only refer to the synthesized

words on the left side to generate the new word, without

considering the context (which is called masked self-attention).

This method made it more flexible in generating coherent text.

Compared with BERT, the GPT series performed well in zero-

sample and small-sample learning tasks by enlarging the size of

the model. Even without fine-tuning, a simple prompt can help

GPT generate a reasonable answer (67).

Unlike GPT, which improves models’ performance by

increasing dataset size and the number of parameters without

limitations, Meta AI published a series of Llama models. These

models aim to maximize the use of limited resources - in other

words, by extending training, they reduce the overall demand on

computing resources. The latest Llama3 model requires only 8–

70 billion parameters (68), significantly less than GPT-3’s 175

billion (67). Additionally, it outperforms GPT-3.5 Turbo in five-

shot learning (69).

2.3.4 Encoder–decoder models
T5 family (70) is a classic example of the encoder–decoder

model. This architecture is particularly suitable for text

generation tasks that require deep semantic understanding (71).

T5 transforms all kinds of NLP tasks into a text-to-text format

(72). Unlike BERT, which uses word-based masking and

prediction, T5 processes text at the fragment level using “span

corruption” to understand semantics (72). For the fill-in-the-

blank task, instead of replacing the specific words with <mask>

like BERT, T5 replaces the text fragments with an ordered set of

<extra_id_n> to reassemble the long sequence text. T5 needs

to pre-process the input text according to the task requirements.

A directive prefix should be added as a prompt.

Some language models fine-tuned with T5 on specific datasets,

such as SciFive (fine-tuned in some science literature) (73) and

ClinicalT5 (fine-tuned in clinical dataset MIMIC-III notes) (74),

have shown excellent performance in their respective fields. The

T5 family models used in this paper and their corresponding

fine-tuned datasets are summarized in Supplementary Table S2.

2.3.5 Comparison and limitations

According to Cai et al. (71), the encoder–decoder architecture

performs best with sufficient training data. However, challenges in

data collection can negatively affect its performance. Despite these

challenges, different architectures are well-suited to different tasks.

For example, for tasks requiring semantic understanding, such as

text summarization, the encoder–decoder architecture is the most

effective. In contrast, for tasks that involve minor word

modifications, the encoder-only structure works better. However,

the decoder-only structure is not suitable for tasks with

insufficient training data and long text processing, but performs

well in few-shot question answering tasks (71, 75).

Following these discussions, transformer-based PLMs have

demonstrated strong performance in NLP tasks, but many

challenges still remain.

2.4 Related works on clinical text
generation

2.4.1 LT3: label to text generation
LT3 (76) adopts an encoder–decoder architecture to generate

synthetic text from labels. As shown in Supplementary Figure S1,

labels such as medications are the input of the encoder, which

can generate corresponding feature representations. The decoder

generates prescription sequences based on these features. The

pre-trained BERT tokeniser is used to split the input sequence

into sub-words. LT3 is trained from scratch. Instead of using

traditional greedy decoding, which may miss the global

optimum, the authors proposed beam search decoding with

backtracking (B2SD). This approach broadens the search range

through a backtracking mechanism, preserving possible

candidates for the optimal solution. To reduce time complexity,

they used a probability difference function to avoid searching for

low-probability words. Additionally, the algorithm penalizes

repeated sub-sequences and employs a logarithmic heuristic to

guide the exploration of generation paths. The authors test

LT3 on the 2018-n2c2 dataset and evaluate the results using both

quantitative metrics and downstream tasks. It was demonstrated

that this model outperforms T5 in label-to-text generation.4

2.4.2 Seq2Seq generation for medical dataset

augmentation
Amin-Nejad et al. (75) compared the performance of the

Vanilla transformer and GPT-2 using the MIMIC-III dataset in

seq2seq tasks. Specifically, they fed as input a series of structured

patient information as conditions, as shown in Supplementary

Figure S2, to generate discharge summaries. They demonstrated

that the augmented data outperforms the original data in

downstream tasks (e.g., readmission prediction). Furthermore,

they proved that the Vanilla transformer performs better with

large samples, while GPT-2 excels in few-shot scenarios.

However, GPT-2 is not suitable for augmenting long texts.

Additionally, they used Bio_ClinicalBERT for the downstream

4LT3 achieved significant improvements over the best-performing T5 model

(T5 base) in label-to-text generation, achieving improvements of up to 6.5

BLEU points and 0.02 in the BERTScore. Unfortunately, when we tried

applying B2SD to generate clinical letters, the results were somehow

disappointing. This may be due to the length of clinical letters. B2SD

consumes a lot of time on long text generation. Despite this, it still shows

great potential in generating clinical data.
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tasks and discovered that Bio_ClinicalBERT outperformed the

baseline model (BERT) in almost all experiments. This suggests

that Bio_ClinicalBERT can potentially replace BERT in the

biomedical field. Interestingly, although the synthetic data have a

low score on internal metrics (such as ROUGE and BLEU), the

performance on downstream tasks is notably enhanced. This may

be because augmenting text can effectively introduce noise into

the original text, improving the model’s generalization to

unseen data.

According to their findings, decoder-only models like GPT-2

are not suitable for processing long texts. Bio_ClinicalBERT is

particularly effective for tasks in the clinical area, and the

Clinical transformer is promising in augmenting medical data.

This provides more possibilities for our task of generating

synthetic clinical letters.

2.4.3 Discharge summary generation using clinical
guidelines and human evaluation framework

Unlike the traditional supervised learning of fine-tuning

language models (which requires a large amount of annotated

data), Ellershaw et al. (77) generated 53 discharge summaries

using only a one-shot example and a clinical guideline. Their

research consists of two aspects: generating discharge summaries

and a manual evaluation framework.

As shown in Supplementary Figure S3, the authors used clinical

notes from MIMIC-III as input and incorporated a one-shot

summary along with clinical guidance as prompts to generate

discharge summaries by GPT-4-turbo. Initially, five sample

synthetic summaries were evaluated by a clinician. Based on the

feedback, the clinical guidance was revised to adapt to the

generation task. Through iterative optimization, the revised

guidance, combined with the original one-shot sample, became

the new prompt. Then, the authors generated 53 discharge

summaries using this method and invited 11 clinicians to do a

final manual quantitative evaluation. Clinicians were invited to

evaluate the error rate at the section level (e.g., diagnoses, social

context, etc.). It includes four dimensions:

• Minor omissions,

• Severe omissions,

• Unnecessary text, and

• Incorrect additional text.

Each discharge summary was evaluated by at least two clinicians,

and the authors calculated agreement scores to evaluate the

subjectivity during the human evaluation stage. Unfortunately,

the inter-rater agreement was only 59.72%, raising concerns that

the revised prompts based on such feedback might result in

subjective synthetic summaries. Although this study partially

addresses the issue of insufficient training data and provides

reliable human quantitative evaluation methods, it is still not

well-suited for our investigation. Specifically, it required 11

clinicians to evaluate 53 synthetic samples, demonstrating the

considerable time and manpower required. Therefore, there is

still a long way to go before this technique can be used for large-

scale text generation tasks.

2.4.4 Comparison of masked and causal language

modeling for text generation
Micheletti et al. (78) compared masked language modeling

(MLM, including BERT, RoBERTa, BiomedNLP-PubMedBERT)

and causal language modeling (CLM, including T5, BART,

SciFive-large-Pubmed_PMC) across various datasets for masking

and text generation tasks. They used qualitative and quantitative

evaluations, as well as downstream tasks, to assess the quality of

the synthetic texts. Their workflow is shown in Supplementary

Figure S4. Based on these evaluations, the study yielded the

following results:

• MLM models are better suited for text masking and generation

tasks than CLM.

• Introducing domain-specific knowledge does not consistently

improve model performance.

• Downstream tasks can adapt to the introduced noise. Although

some synthetic texts might not achieve highly quantitative

evaluation scores, they can still perform well in downstream

tasks. This matches the findings from Amin-Nejad et al. (75).

• A lower random masking ratio (i.e., masked tokens/total tokens)

can generate higher-quality synthetic texts.

These very recent findings provide insightful inspiration to our

investigation. Our work builds on their research, expanding on

masking strategies and focusing on the clinical domain.

3 Methodologies and experimental
design

Due to the sensitivity of clinical information, many clinical

datasets are not accessible. As mentioned in Section 2,

numerous studies use NLG techniques to generate clinical

letters and evaluate the feasibility of replacing the original raw

clinical letters with synthetic letters. Most existing research

involves fine-tuning PLMs or training transformer-based

models from scratch on their datasets through supervised

learning. These studies explore different ways to learn mapping

from the original raw text to synthetic text and work on

generating synthetic data that are similar (or even identical) to

the original ones. Our work, however, aims to find a method

that can generate clinical letters that can keep the original

clinical story, while not exactly being the same as the original

letters. To achieve this objective, we employed various models

and masking strategies to generate clinical letters. The

experiment follows these steps:

1. Data collection and pre-processing: We first accessed clinical

letter examples (6–8) for an overview. The texts were

segmented at the sentence level, and clinical entities and

structural templates were extracted to capture the clinical

narratives while maintaining clinical soundness.

2. Randomly masking: We randomly masked the context and

generated clinical letters by predicting masked tokens using

different LLMs.
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3. Model evaluation: We evaluated synthetic letters generated by

different language models. Based on their performance, we

selected Bio_ClinicalBERT and worked on it.

4. Masking strategy exploration: We explored multiple masking

strategies to retain clinical stories and diversity while

removing private information. After generating clinical letters

using these strategies, we evaluated their quality.

5. Post-processing: We applied post-processing techniques to

further enhance the readability of synthetic letters.

6. Downstream task evaluation: We compared the performance

of synthetic and original letters in a downstream NER task to

evaluate the usability of these synthetic letters.

An overall investigation workflow is shown in Figure 2.

3.1 Dataset

Based on the objective of this project, we need a dataset that

includes both clinical notes and some clinical entities. The

dataset we used was from the SNOMED CT Entity Linking

Challenge (6–8). It includes 204 clinical letters and 51,574

manually annotated clinical entities.

Clinical letters: The clinical letters were from a subset of

discharge summaries in MIMIC-IV-Note (6, 79). It uses

clinical notes obtained from a healthcare system in the United

States. These notes were de-identified by a hybrid method

involving the rule-based approach and neural networks. To

avoid releasing sensitive data, the organization also did a

manual review of PHI. In these letters, all PHI was replaced

with three underscores “___.” The letters record the patient’s

hospitalisation information (including the reason for visiting,

consultation process, allergy history, discharge instructions,

etc.). They are saved in a comma-separated value (CSV)

format file “mimic-iv_notes_training_set.csv.” Each row of

data represents an individual clinical letter. It consists of

two columns, where the “note_id” column is a unique

identifier for each patient’s clinical letter, and the “text”

column contains the contents of the clinical letter. Since most

language models have a limitation on the number of tokens to

process (80), we tokenized the clinical letters into words using

the “NLTK” library and found that all clinical letters contained

thousands of tokens. Therefore, it is necessary to split each

clinical letter into multiple chunks to process them. These

separated chunks must be merged in the end to generate the

whole letter.

Annotated clinical entities: The entities were manually

annotated based on SNOMED CT. A total of 51,574 annotations

cover 5,336 clinical concepts. They were saved in another CSV

document which includes four columns: “note_id,” “start,” “end,”

and “concept_id.” The “note_id” column corresponds to the

“note_id” in the “mimic-iv_notes_training_set.csv” file. The

“start” and “end” columns indicate the position of annotated

entities. The “concept_id” can be used for entity linking with

SNOMED CT. For example, for the “note_id” “10807423-DS-19,”

the annotated entity “No Known Allergies” has a corresponding

“concept_id”: “609328004.” This can be linked to SNOMED CT

under the concept of “Allergic disposition” (81).

FIGURE 2

Overall investigation workflow for SYNTHETIC4HEALTH.
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An example of text excerpted from the original letter is

shown in Supplementary Figure S5. It contains the document

structure and some free text. According to the dataset,

document structure often corresponds to capital letters and

colons “:.” Our primary goal is to mask the context that is

neither part of the document structure nor annotated

entities, and then generate a new letter, as both structure and

clinical entities are essential for understanding clinical

information (46).

3.2 Software and environment

All codes and experiments in this paper were carried out in the

integrated development environment (IDE) “Google Colab Pro+”

using a 52 GB system RAM and 225 GB disk space. The built-in

T4 GPU (16 GB VRAM) accelerates the inference process. The

primary tools used in the paper include:

• Programming language and environment: Python 3.10

serves as the main programming language.

• Deep learning framework: PyTorch 2.3.1 is the core

framework used for loading and applying pre-trained language

models (PLMs).

• Natural language pocessing libraries: This includes Hugging

Face Transformers 4.42.4, NLTK (version � 3.1), and

BERTScore 0.3.13, among others. These are popular tools

for text processing and evaluation in the NLP domain.

• Auxiliary tools: Libraries such as pandas (version � 1.0.1)

and mpmath (1.1.0 � version < 1.4) can support data

management, mathematical operations, and other

routine tasks.

3.3 Pre-processing

The collected dataset involves different files and comprises

entirely raw data. It is necessary to pre-process these files before

using them in generation tasks. The pre-processing of this system

contains five steps: “Merge dataset based on ‘note_id,’”

“Annotated Entity Recognition,” “Split Letters in Chunks,”

“Word Tokenization,” and “Feature Extraction.” The pre-

processing pipeline is shown in Figure 3.

3.3.1 Merging dataset and annotated entity
recognition

Initially, we merged the clinical letters file and annotations file

into a new DataFrame. After this, we extracted manually annotated

entities based on their index. An excerpt from an original letter is

shown in Supplementary Figure S6, and the manually annotated

entities are listed in Supplementary Table S3.

3.3.2 Splitting letters into variable-length chunks
Typically, PLMs such as BERT, RoBERTa, and T5 have a limit on

the number of input tokens, usually capped at 512 (82). When dealing

with text that exceeds this limit, common approaches include

discarding the excess tokens or splitting the text into fixed-length

chunks of 512 tokens. In addition, some studies evaluate the tokens’

importance to decide which parts should be discarded (83).

In this work, each clinical letter (“note_id”) contains thousands

of tokens, as mentioned in Section 3.1, to preserve as much critical

clinical information as possible; therefore, we avoided simply

discarding tokens. Instead, we adopted a splitting strategy based

on semantics. Each block is not a fixed length. Rather, they are

complete paragraphs that are as close as possible to the token

limit. This approach aims to help the model better capture the

FIGURE 3

Pre-processing pipeline.
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meaning and structure of clinical letters, thereby improving its

ability to retain essential clinical information while efficiently

processing the text. In fact, we initially generated letters at the

sentence level. However, it was found that processing at the

sentence level is not only time-consuming but also fails to

provide the model with enough information for inference and

prediction. This is why the letters were processed in chunks

rather than in sentences.

As shown in Figure 4, each raw letter is split into sentences

first. We used the pre-trained models provided by the “NLTK”

library, which combines statistical and machine-learning

approaches to identify sentence boundaries. Each clinical letter is

treated as a separate processing unit, with the first sentence

automatically assigned to the first text block (chunk). To control

the length of each chunk, we set a maximum line count

parameter (max_lines). If the first sentence already meets the

value of “max_lines,” the chunk will contain that single sentence

only. Otherwise, subsequent sentences will be added to the

chunk until the line count reaches the max_lines.

Extra care is needed when handling text with specific formats,

such as medication dosage descriptions, as shown in Supplementary

Figure S7. Because there is no clear sentence boundary, these

sentences may exceed the tokens limitation. To address this, we

first checked whether the sentence being processed exceeds the

token limit (max_tokens). If it does not, the sentence will be added

to the current chunk. Otherwise, the sentence should be split into

smaller chunks, each no longer than “max_tokens.” This operation

helps balance processing efficiency while maintaining semantic

integrity. In the example shown in Supplementary Figure S7,

although using line breaks to split the text seems to be more

flexible, considering time complexity and the requirement to index

the annotated entities, this method was not chosen.

3.3.3 Word tokenization
To prepare the text for model processing, we split each chunk

of text into smaller units: tokens. The tokenization methods can be

categorised into two types: one for feature extraction and the other

for masking and generation.

For the tokenization aimed at feature extraction, we used the

“word_tokenise” method from the “NLTK” library. It is helpful to

preserve the original features of the words, which is especially

important for retaining clinical entities. For instance, in the

sentence “Patient is a ___ yo male previously healthy presenting w/

fall from 6 ft, from ladder.” Word boundaries such as spaces can

be automatically detected for tokenization. The results of different

tokenization methods are shown in the Supplementary Table S4.

As for the tokenization used for masking and generating, we

retained the original models’ tokenization methods. The specific

tokenization approach varies by model, as shown in

Supplementary Table S4. For example, BERT family models use

word-piece tokenization, which initially splits text by spaces and

then further divides the words into sub-words (62). This

approach is particularly effective for handling words that are not

in the pre-training vocabulary and is especially useful for

predicting masked words. For complex clinical terms, however,

these models rely heavily on a predefined dictionary, which can

result in unsatisfactory tokenization and hinder the model’s

understanding. For instance, the word “COVID-19” is tokenized

by BERT into [“co,” “##vid,” “–,” “19”]. In contrast, the T5

family models use sentence-piece tokenization. It does not rely

on space to split the text. Instead, this method tokenises directly

from the raw text, making it better suited for handling

abbreviations and non-standard characters (e.g., “COVID-19”),

which are common in clinical letters.

It is important to note that although all BERT family models

use word-piece tokenization, the results can still differ. This is

because different models use different vocabularies during pre-

training, leading to variations in tokenization granularity. The

tokenization methods for each model are detailed in

Supplementary Table S4. Each tokenization approach has its own

advantages and disadvantages for processing clinical letters.

Therefore, exploring how these models impact the clinical letter

generation is also a requirement of our project.

FIGURE 4

Text chunking workflow.

Ren et al. 10.3389/fdgth.2025.1497130

Frontiers in Digital Health 10 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1497130
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


3.3.4 Feature extraction

Since we aimed to generate de-identified clinical letters that can

preserve clinical narratives during masking and generation, it is

necessary to extract certain features beforehand. We extracted the

following features, with an example provided in Supplementary

Figure S8 and Supplementary Table S5.

• Document structure: This feature is identified by a rule-based

approach. As mentioned in Section 3.1, structural elements (or

templates) often correspond to the use of colons “:.” They

should not be masked to preserve the clinical context.

• Privacy information identification: In this part, we used a

hybrid approach. To identify sensitive information such as

“Name,” “Date,” and “Location (LOC),” we employed a NER

toolkit from Stanza (84). To handle privacy information like

phone numbers, postal codes, and e-mail addresses, we

implemented a rule-based approach. Specifically, we devised

several regular expressions to match the common formats of

these data types. These pieces of private information should

be masked.

• Medical terminology recognition: A NER toolkit pre-trained

on the i2b2 dataset is used here (85). It can identify terms like

“Test,” “Treatment,” and “Problem” in free text. Although our

dataset has already been manually annotated, these identified

terms can serve as a supplement to the pre-annotated terms.

• Special patterns observed in sample text: Some specific

patterns, like medication dosages (e.g., enoxaparin 40 mg/0.4

ml) or special notations (e.g., “b.i.d.”), may carry significant

meaning. We retained these terms unless they were identified

as private information to preserve the clinical background of

the raw letters.

• Part of speech (POS) tagging: Different parts of speech (POS)

play distinct roles in interpreting clinical texts. We aimed to

explore how these POS influence the model’s understanding of

clinical text. To achieve this, we used a toolkit (85) trained on

the MIMIC-III (86) dataset for POS tagging. It performs

better than SpaCy5 and NLTK in handling clinical letters.

3.4 Clinical letter generation

We discuss the models and masking strategies that are used in

generating synthetic clinical letters. It is important to clarify that

our key objective is to generate letters that differ from the

original ones, rather than being exact copies, as the same

statement may indirectly reveal the patients’ privacy. Although

fine-tuning the model can always improve precision and enhance

the model’s semantic comprehension ability, it tends to produce

letters that are too closely aligned with the originals. This also

causes the fine-tuned model to rely too heavily on the original

dataset, compromising its ability to generalize. Therefore, simply

fine-tuning the model is not ideal if the PLMs can already

generate the readable text. Instead, we should concentrate on

how to protect clinical terms and patient narratives as well as

avoid privacy breaches.

As discussed in Sections 2.3 and 2.4, decoder-only models

struggle with processing long texts that require contextual

understanding (75). Additionally, deploying them requires

substantial computing resources and time. Therefore, we explored

various PLMs, including both encoder-only and encoder–decoder

models, in this paper. After evaluating their ability to generate

synthetic letters from our dataset, we focused on

Bio_ClinicalBERT, a well-performed model in our task, to

experiment with different masking strategies. Additionally, from

the discussion in Section 3.3, we need to split the text into

various-length-chunks. So, the appropriate length of these chunks

is also experimented with Bio_ClinicalBERT.

3.4.1 Encoder-only models with random masking
As mentioned earlier, the primary method for this paper

involves masking and generation. We focused extensively on

encoder-only models because of their advantage in bi-directional

semantic comprehension. These encoder-only models, including

BERT, RoBERTa, and Longformer (detailed in Section 2.3) were

compared for their performance. Given the clinical focus of this

task, we particularly explored model variants that were fine-tuned

on clinical or biological datasets. However, as no clinically fine-

tuned RoBERTa (62) variant was available, the RoBERTa-base was

used for comparisons. Specifically, the encoder-only models we

explored include Bio_ClinicalBERT (59), medicalai/ClinicalBERT

(60), RoBERTa-base (62), and Clinical-Longformer (65).

We used the standard procedure for masked language

modeling (MLM). First, the tokens that need to be masked were

selected. They were then corrupted, resulting in masked text that

includes both masked and unmasked tokens. Next, the model

predicts the masked tokens and replaces them with the ones

having the highest probabilities.

3.4.2 Encoder–decoder models with random

masking
Although encoder–decoder models are not typically used for

masked language modeling, they are well-suited for text

generation. The architecture of T5, in particular, is designed to

maintain the coherence of the text (70). Therefore, we included

the T5 family models for comparisons.

The process of generating synthetic letters with encoder–decoder

models is very similar to that with encoder-only models. The

difference is that, unlike the BERT family, which automatically

masks tokens and replaces them with “<mask>,” the T5 family

models do not have any built-in masking function. As a result, we

identified the words that needed to be masked by index and

removed them, which are represented as “extra_id_x” in the T5

family models. The text, with these words removed, was then used

for generation, which we refer to as “text with blanks.” To

maintain consistency in the format, we later replaced “extra_id_x”

with “<mask>” when displaying the masked text. Additionally, the

T5 family models require a prompt as part of the input. For this

task, the complete input was structured as “Fill in the blanks in the5https://spacy.io/
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following sentence in the clinical background” + “text with blanks.”

In this paper, we used T5-base (70), Clinical-T5-Base (87, 88),

Clinical-T5-Sci (87, 88), and Clinical-T5-Scratch (87, 88) for

comparison. The comparison of encoder-only and encoder–

decoder model architectures is shown in Figure 5.

3.4.3 Different masking strategies with
Bio_ClinicalBERT

To make the synthetic letters more readable, clinically sound,

and privacy-protective, different masking strategies were tested

based on the following principles.

1. Preserve annotated entities: The manually annotated entities

should not be masked to retain the clinical knowledge and context.

2. Preserve extracted structures: Tokens that are part of the

document structure should be preserved as templates for

clinical letters.

3. Mask detected private information: This is helpful in de-

identification. Although the dataset we use is de-identified,

this approach may be useful when this system is deployed

with real-world data.

4. Preserve medical terminology: It still aims to retain clinical

knowledge, as some diseases and treatments were not

manually annotated.

5. Preserve non-private numbers: Certain numbers, such as drug

dosage or heart rates, are indispensable for clinical

diagnosis and treatment. However, only non-private numbers

should be retained, while private information (such as phone

numbers, ages, postal codes, dates, and email addresses) should

be masked.

6. Preserve punctuation: Punctuation marks such as periods (“.”)

and underscores (“___”) should not be masked, as they clarify

the sentence boundaries and make the synthetic letters more

coherent (89).

FIGURE 5

Comparison of encoder-only and encoder–decoder model architectures.
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7. Retain special patterns in samples: Tokens that match specific

patterns (e.g., “Vitamin C ˆ1,000 mg,” “Ibuprofen > 200 mg,”

etc.) should be retained, as they may contain important

clinical details. These patterns are summarized by analyzing

raw sample letters.

Based on the principles above, different masking strategies were

experimented with:

1. Mask randomly: Tokens that can be masked are selected

randomly from the text. We experimented with masking

ratios ranging from 0% to 100% in 10% increments. This

approach helps to understand how the number of masked

tokens influences the quality of synthetic letters and provides

a baseline for other masking strategies.

2. Mask based on POS tagging: We experimented with different

configurations in this section, such as masking only nouns, only

verbs, etc. It is helpful to understand how POS influences the

models’ context understanding. Similar to the random masking

approach, we selected the tokens based on their POS configuration

and masked them in 10% increments from 0% to 100%.

3. Mask stopwords: Stopwords generally contribute little to the

text’s main idea. Masking stopwords serves two purposes:

reducing the noise for model understanding and increasing

the variety of synthetic text by predicting these words.

Moreover, they do not influence crucial clinical information.

This approach is highly similar to the one used in “Mask

based on POS tagging.” The only difference is the criteria for

selecting tokens. Specifically, tokens are selected based on

whether they are stopwords rather than on their POS. The

“NLTK” library was used for detecting stopwords in the text.

4. Hybrid masking using different ratio settings: After

employing the aforementioned masking strategies, we

observed the influence of these elements. Additionally, we

experimented with their combinations at different masking

ratios based on the outcomes, such as masking 50% nouns

and 50% stopwords simultaneously.

3.4.4 Determining variable-length chunk size with
Bio_ClinicalBERT

As mentioned in Section 3.3, we utilize two parameters in our

chunk segment procedure: “max_lines” and “max_tokens.”

“max_lines” represents the desired length of each chunk, while

“max_tokens” is related to the computing resources and model

limitations. These two parameters determine the final length of

each chunk together. Although most models we used have a

limit of 512 tokens (except for the Longformer, which can

process up to 4,096 tokens), we set 256 as the value for

“max_tokens” due to computing resource constraints.

As for “max_lines,” we experimented with values starting from

10 lines, increasing by 10 lines each time, and calculated the

average tokens for each chunk. Once the token growth began to

slow, we refined the search by using finer increments. Finally, we

selected the number of lines at which the average tokens per

chunk stopped growing. This is because more lines in each

chunk provide more information for the model to predict

masked tokens. However, if the chunk length reaches a critical

threshold, it indicates that the primary limitation is

“max_tokens” not “max_lines.” Continuing to increase

“max_lines” would lead to additional computational overhead, as

the system would have to repeatedly check whether adding the

next sentence meets the required line count.

3.5 Evaluation methods

Both quantitative and qualitative methods will be used to

evaluate the performance. Additionally, a downstream task

(NER) is employed to assess whether the synthetic clinical letters

can replace the original raw data. The evaluation methods

pipeline is illustrated in Figure 6.

3.5.1 Quantitative evaluation
To comprehensively evaluate the quality of the synthetic letters,

we used quantitative evaluation from multiple dimensions,

including the model’s inference performance, the readability of

the synthetic letters, and their similarity to the raw data. The

specific metrics are listed in the following.

Standard NLG metrics: It covers standard NLG evaluation

methods such as ROUGE, BERTScore, and METEOR. ROUGE

measures literal similarity, the BERTScore evaluates semantic

similarity, and METEOR builds on ROUGE by taking synonyms

and word order into account. It provides a more comprehensive

evaluation of the synthetic text (90).

These evaluations are performed by comparing the synthetic

text with the original text. Moreover, a baseline is calculated by

comparing the masked text to the original text. The evaluation

score should exceed the baseline but remain below “1,” ensuring

that it does not exactly replicate the original text.

Readability metrics: To evaluate the readability, we calculated

SMOG, Flesch Reading Ease, and Flesch–Kincaid Grade Level.

Given our clinical focus, we prioritized SMOG as the primary

readability metric, with Flesch Reading Ease and Flesch–Kincaid

Grade Level as reference standards. In this analysis, we compared

the readability metrics of the synthetic text with those of the

original and masked texts. The evaluation results should closely

approximate the original text’s metrics. Significant differences

(91)6 may suggest that the model cannot preserve semantic

coherence and readability adequately.

Advanced text quality metrics: In this part, we calculated the

perplexity, subjectivity, and information entropy. We want the

synthetic letters to be useful in training clinical models.

Therefore, perplexity should not be far away from the value of

the original letters. As for subjectivity and information entropy,

we expect the synthetic letters to be both subjective

and informative.

6We define a significant difference as a change of 1 SMOG grade, 1 Flesch–

Kincaid Grade Level, or 10 points in Flesch Reading Ease, as these thresholds

approximately correspond to a shift of one grade level or readability tier.

Ren et al. 10.3389/fdgth.2025.1497130

Frontiers in Digital Health 13 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1497130
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Invalid prediction rate: We calculated the invalid prediction

rate for each generation configuration. This ratio is determined by

dividing the number of invalid predictions (such as punctuation

marks or subwords) by the total number of masked words that

need to be predicted. We expect the model to generate more

meaningful words. Since punctuation marks are not masked, the

model should avoid generating too many non-words. This metric

can provide insights into the model’s inference capability.

Inference time: The inference time for each generation

configuration across the whole dataset (204 clinical letters)

was recorded. Shorter inference times indicate lower computational

resource consumption. When this system is deployed on

large datasets, it is expected to save both time and computing resources.

3.5.2 Qualitative evaluation
In the quantitative evaluation, we not only calculated the

evaluation metrics for the entire dataset but also recorded the

results for each individual synthetic clinical letter. Interestingly,

while some synthetic texts exhibited strong performance

according to most metrics, they did not always appear

satisfactory upon “visual” inspection. Conversely, some synthetic

letters with average metrics may appear more visually appealing.

Although human evaluation is the most reliable approach for

evaluating clinical letters, it is limited by availability and cost.

Therefore, combining qualitative and quantitative evaluations

helps in identifying suitable quantitative metrics for assessing the

performance of our model. Once identified, one of these metrics

can be used as the primary standard, while the others serve as

supporting indicators. As a workaround, we selected a small

sample of representative clinical letters based on the evaluation

results. Subsequently, we reviewed the outcomes to better

understand how different generation methods impacted these

results, while also evaluating their correspondence with the

quantitative metrics.

FIGURE 6

Evaluation pipeline.
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3.5.3 Downstream NER task

Beyond qualitative and quantitative evaluation, we can

also apply synthetic clinical letters in a downstream NER task.

This is helpful to further evaluate their quality and their

potential to replace original ones in clinical research and

model training.

ScispaCy7 and spaCy8 are used in this part. As shown in

Supplementary Figure S9, they extract features from the text

and learn the weights of each feature through neural networks.

These weights are updated by comparing the loss between the

predicted probabilities and actual labels. If a word does not

belong to any label, it is classified as “O” (outside any entity).

spaCy initializes these weights randomly. However, the

version of ScispaCy we used, “en_ner_bc5cdr_md,” is

specifically fine-tuned on the BC5CDR corpus. It focuses more

on “chemical” and “disease” entities while retaining the

original general features.

In this downstream NER task, as shown in Figure 7, we initially

extracted entities from letters using ScispaCy. Subsequently, these

entities were used to train a base spaCy model. The trained

model was then employed to extract entities from the testing set.

Finally, we compared these newly extracted entities with those

originally extracted by ScispaCy, and the evaluation scores were

calculated. These steps were performed on both original clinical

letters and synthetic letters, to assess whether the synthetic letters

can potentially replace the original ones.

3.5.4 Clinical evaluation
Clinical semantic preservation: To evaluate how much clinical

information is preserved, we used BioBERT (52) for a rough

estimate. Specifically, we tokenized both the original and

synthetic letters, obtained their embeddings using BioBERT, and

computed the cosine similarity between them. Since BioBERT is

trained on biomedical corpora, its embeddings are expected to

capture clinical semantic features. A high similarity score

indicates that clinical information is largely preserved. However,

it is important to note that this method only evaluates the

effectiveness of preserving clinical narratives at the semantic level

and does not guarantee medical factuality.

Expert-simulated evaluation of clinical quality: To further

evaluate the clinical usefulness of our synthetic letters, we

employed GPT-3.5-Turbo (92) through prompt-based evaluation.

Specifically, we evaluated the results from two perspectives:

clinical soundness and narrative coherence. Clinical soundness

measures whether the content aligns with medical factuality,

while narrative coherence evaluates whether the letter is

contextually consistent and resembles a real-world clinical letter.

The prompt we used is shown in Figure 8.

3.6 Post-processing

3.6.1 Filling in the blanks
As described in Section 3, the dataset we used has been de-

identified with all private information replaced by three

FIGURE 7

Workflow of the downstream NER task.

7https://allenai.github.io/scispacy/

8https://spacy.io/
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underscores “___.” We hope that the synthetic clinical letters can

maintain a certain degree of clinical integrity without disclosing

any private patient information. To address this, a post-

processing step was added to the synthetic results. This step

involves masking the three underscores (“___”) detected and

using PLMs to predict the masked part again. For example, if the

original text is “___ caught a cold,” the post-processing result

should ideally be “John caught a cold” or “patient caught a cold.”

Such synthetic clinical letters can better support clinical model

training and teaching.

In this part, we used Bio_ClinicalBERT and BERT-base

models. Although Bio_ClinicalBERT is better at clinical

information understanding, this issue is not directly related to

clinical practice, so we used BERT-base for comparison.

3.6.2 Spelling correction
Since our data come from real-world sources, it is inevitable

that some words may be misspelled by doctors. These spelling

errors can negatively impact the model’s training process or

hinder clinical practitioners’ understanding of the synthetic

clinical letters. Although some errors are masked and re-

generated, our masking ratio is not always 100%, so some

incorrect words may still exist. Toolkit “TextBlob” (93) was

added to correct these errors. Specifically, it uses a rule-based

approach that relies on a built-in vocabulary library to detect and

correct misspellings.

3.7 Summary

In this section, we present the experimental design and

subsequent implementation steps: these include defining project

requirements, data collection and environmental setup, pre-

processing, masking and generating the text, post-processing, the

downstream NER task, clinical evaluation, and both qualitative

and quantitative assessments. An example of the entire process

flow is shown in Supplementary Figure S10.

4 Experimental results and analysis

4.1 Chunk segmentation effects on
inference time

As mentioned in Section 3.4.4, we set “max_lines” as a variable

and “max_tokens” equal to 256. A series of increasing “max_lines”

were tested until the average tokens per chunk peaked. We initially

did this on a small sample (seven letters). The results are shown in

Supplementary Table S6 for the Bio_ClinicalBERT model.

We can see that the average tokens per chunk reaches a peak

as the “max_lines” parameter increases to 41. Similarly, inference

time decreases as “max_lines” increases to 41, but it increases

again once it exceeds this value. This experiment was also

conducted on slightly larger samples of 10 and 30 letters. All of

them showed the same trend. However, the inference time here

may only reflect an overall trend, not exact results, as it is

influenced by many factors, not only the chunk size but also

the internet speed.

4.2 Random masking: qualitative results

We employed both encoder-only and encoder–decoder models

to mask and generate the data, yielding numerous interesting

results for human evaluation. Given space constraints, only a

simple example is provided here. Following the masking

principles in Section 3.4, the eligible tokens were randomly

selected for masking. Although the initial intention was to mask

50% of tokens, the actual masking ratio was lower due to the

requirement to preserve certain entities and structures.

FIGURE 8

GPT-3.5-turbo prompt for clinical evaluation.
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4.2.1 Encoder-only models
The original sentence is displayed in Figure 9. After feature

extraction, the resulting structure is shown in Supplementary

Figure S11. As detailed in Supplementary Table S7, certain

manually annotated entities are excluded from masking. The

output of this masking process is shown in Figure 10.

The generated text using Bio_ClinicalBERT is displayed in

Figure 11. For “management of open fracture,” the model

produced “r,” which is commonly used to denote “right” in

clinical contexts, showing a relevant and logical prediction.

Furthermore, the model’s input “R ankle,” despite not being in

the figure due to space constraints, provided context for

predicting “r” instead of “left.” Interestingly, the term “admitted”

was generated, even though it was not in the input, indicating

the model’s understanding of clinical context. Although the

phrase “from 6 stairs, from home” is entirely different from the

original (“from 6 feet, from ladder”), it remains

contextually appropriate.

Overall, Bio_ClinicalBERT produced a clinically sound

sentence, even though no tokens matched the original. In other

examples, the predicted words may partially overlap with the

original text. Nonetheless, this model effectively retains clinical

information and introduces diversity without altering the

text’s meaning.

The results from medicalai/ClinicalBERT and Clinical-

Longformer are shown in Supplementary Figures S12 and S13.

All three clinical-related models correctly predicted “r” from the

input context. The medicalai/ClinicalBERT model performs

comparably to Bio_ClinicalBERT, despite adding an extra

comma, which did not affect the text’s clarity. However, Clinical-

Longformer’s predictions, while understandable, were repetitive

and less satisfactory. Importantly, none of these three models

altered the original meaning.

The result generated by RoBERTa-base is shown in

Supplementary Figure S14. While the generated text initially

seems reasonable, the predicted word “years” shifts the focus to a

temporal context, which was not intended. This is likely because

RoBERTa is pre-trained on a general corpus and lacks sufficient

clinical knowledge for accurate text generation, or it could simply

be a coincidence based on this specific sentence, where

RoBERTa-base inferred “years” from its training data.

4.2.2 Decoder-only GPT-4o

Additionally, GPT-4o was used for comparison, with the

prompt “Replace ‘<mask>’ with words in the following

sentence:.” The results, shown in Supplementary Figure S15, are

satisfactory. As discussed in Section 2.3, decoder-only models

excel in few-shot learning (67), which is confirmed by this

experiment. However, its performance may decline with long

clinical letters (75).

4.2.3 Encoder–decoder models
To further evaluate different PLMs in generating synthetic

letters, we tested the T5 family models. The generated results for

FIGURE 9

Original unprocessed example sentence (6–8) (“note_id”: “10807423-DS-19”) (the circled tokens will be masked).

FIGURE 10

An example of the masked sentence.
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the same sentence are shown in Figure 12 and Supplementary

Figures S16–S18.

T5-base performs the best among these tested models.

However, the results are still not fully rational, as it generated

“open is a ___ yo male.’. The other three models tend to use de-

identification (DEID) tags to replace the masked words, as these

tags are part of their corpora. Furthermore, the T5 family models

may predict multiple words for each token, aligning with

findings in Section 2.3.

All these four T5 family models perform worse than the

encoder-only models. This is consistent with the findings from

Micheletti et al. (78) that MLM models outperform CLM models

in medical datasets.

4.3 Random masking: quantitative results

4.3.1 Sentence-level quantitative results: encoder-
only models

We first calculated representative quantitative metrics at the

sentence level, matching the sample sentence used in Section 4.2.

This approach allows for a better integration of quantitative and

qualitative evaluations. Although SMOG is typically suited for

medical datasets, it is less appropriate for sentence-level analysis,

so the Flesch Reading Ease was used here. The results are

presented in Table 1.

Our objective is to generate letters that differ from the original

while maintaining clinical semantics and structure. Thus, high

ROUGE scores are not desired, as they indicate substantial word/

string overlap. The BERTScore is particularly useful for assessing

semantic similarity, while METEOR offers a comprehensive

evaluation considering word forms and synonyms theoretically.

Flesch Reading Ease, on the other hand, provides a direct

measure of textual readability.

We observed that clinical-related encoder-only models

generally outperform RoBERTa-base in qualitative evaluation

(see Section 4.2). However, from the quantitative perspective,

RoBERTa-base shows mediocre performance across most

metrics except for the BERTScore. In contrast,

Bio_ClinicalBERT, despite no word overlap in this sample

sentence, achieves a reasonable clinical context and the highest

BERTScore among the models. Both medicalai/Clinical BERT

and Bio_ClinicalBERT excel in Flesch Reading Ease, likely

because they tend to predict tokens with fewer syllables that

preserve the original meaning.

Surprisingly, while METEOR is designed to closely reflect

human evaluation, the BERTScore appears to be more

consistent with our evaluation criteria. This trend was

observed in other sample texts as well. Synthetic texts with

higher BERTScore and lower ROUGE scores are more

aligned with our objectives. It is likely because the

BERTScore is calculated using word embeddings, which can

capture deep semantic similarity more effectively. All

evaluation results meet or exceed the baseline, affirming the

effectiveness of these four encoder-only models in generating

clinical letters.

FIGURE 11

Example sentence generated by Bio_ClinicalBERT.

FIGURE 12

Example sentence generated by T5-base.
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4.3.2 Sentence-level quantitative results:

encoder–decoder models
The evaluations for the encoder–decoder models, as presented

in Table 2, generally underperform on most metrics compared to

encoder-only models, except for METEOR. Interestingly, while

the Flesch Reading Ease scores suggest a minimal impact on

readability, the BERTScores are at least 0.05 lower than the

baseline, indicating major deviations from the original meaning.

This is consistent with our qualitative observations that the

outputs from encoder–decoder models are largely unintelligible.

Collectively, the quantitative and qualitative results

demonstrate that encoder–decoder models are not well-suited for

generating clinical letters, as they fail to preserve the original

narratives. These results also support the validity of using

BERTScore as the primary evaluation metric, with other metrics

serving as supplementary references. We also tested this on the

entire dataset, which produced consistent results.

4.3.3 Quantitative results on the full dataset:
encoder-only models

Based on the findings above, we expect a higher BERTScore and

a lower ROUGE score. We used the 0.4 masking ratio to illustrate

the model comparison on the full dataset in Table 3. The other

masking ratios show similar trends. Surprisingly, all encoder-only

models this time showed comparable results, which contradicts

our hypothesis that “Clinical-related” models would outperform

base models. This suggests that training on the clinical dataset has

limited impact on the quality of synthetic letters. This may be

because most clinical-related tokens are preserved, with only the

TABLE 1 Encoder-only models comparison at the sentence level (the “Baseline”without annotations was calculated by comparing the masked text to the
original text).

Evaluation metric Model evaluation

RoBERTa-base medicalai/ClinicalBERT Clinical-Longformer Bio _ ClinicalBERT

ROUGE-1

Generation performance 86.54 88.46 89.52 84.91

baseline 84.91 84.91 84.91 84.91

ROUGE-2

Generation performance 74.51 78.43 79.61 73.08

baseline 73.08 73.08 73.08 73.08

ROUGE-L

Generation performance 86.54 88.46 89.52 84.91

baseline 84.91 84.91 84.91 84.91

BERTScore F1

Generation performance 0.81 0.83 0.84 0.85

baseline 0.79 0.65 0.79 0.65

METEOR

Generation performance 0.87 0.88 0.90 0.86

baseline 0.85 0.85 0.85 0.85

Flesch Reading Ease

Generation performance 10.24 18.70 9.22 16.67

baseline (original) 8.21 8.21 8.21 8.21

Baseline (mask) 16.67 16.67 16.67 16.67

TABLE 2 Encoder–decoder models comparison at the sentence level (the
baseline without annotations was calculated by comparing the masked
text to the original text).

Evaluation
metric

Model evaluation

T5-base Clinical-
T5-base

Clinical-
T5-scratch

Clinical-
T5-Sci

ROUGE-1

Generation

performance

86.79 85.19 87.38 80.36

baseline 73.77 73.77 73.77 73.77

ROUGE-2

Generation

performance

75.00 71.70 75.25 69.09

baseline 63.33 63.33 63.33 63.33

ROUGE-L

Generation

performance

84.91 83.33 87.38 80.36

baseline 73.77 73.77 73.77 73.77

BERTScore F1

Generation

performance

0.44 0.40 0.45 0.40

baseline 0.50 0.50 0.50 0.50

METEOR

Generation

performance

0.85 0.83 0.83 0.82

baseline 0.85 0.85 0.85 0.85

Flesch Reading Ease

Generation

performance

8.21 8.21 19.71 8.21

baseline

(original)

8.21 8.21 8.21 8.21

Baseline (mask) 8.21 8.21 8.21 8.21
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remaining tokens being eligible for masking. Consequently, the

normal encoder-only models can effectively understand the

context and predict appropriate words while preserving clinical

information. This differs slightly from the sentence-level

comparisons, likely because the evaluation of a single sentence

cannot fully represent the overall results. Despite this, the

BERTScore as a primary evaluation metric remains useful, as the

correspondence between qualitative and quantitative evaluation is

consistent, whether at the sentence or dataset level.

We now explore how different masking ratios affect the quality

of synthetic clinical letters. For each model, we generated data with

masking ratios from 0.0 to 1.0, in increments of 0.1 (the masking

ratios here refer only to the eligible tokens, as described in

Section 3.4.3, and do not represent the actual overall masking

ratio). Due to space limitations, we will present only the results

for Bio_ClinicalBERT with a 0.2 increment here.

Table 4 presents that the higher masking ratio, the lower the

similarity (metrics’ scores). As we expected, all evaluation values

are higher than the baseline, but still below “1.” This means the

model can understand the clinical context and generate

understandable text. It is surprising that with a masking ratio of

1.0, the BERTScore increased from the baseline (0.29) to 0.63.

Although this score is not very high, it still reflects that

Bio_ClinicalBERT can generate clinical text effectively.

In Supplementary Table S8, we calculated three readability

metrics, which are mentioned in Section 3.5. None of these

metrics showed significant differences from the original ones.

However, it is strange that the SMOG and Flesh–Kincaid

Grade are not always between the original baseline and

masking baseline. When the masking ratio is high, the

evaluation values even fall below both the masking and the

original baseline. This may be because a higher masking ratio

TABLE 3 Encoder-only models comparison on the full dataset with Masking Ratio 0.4 (the baseline was calculated by comparing the masked text to the
original text).

Evaluation metric Model evaluation

RoBERTa-base medicalai/ClinicalBERT Clinical-Longformer Bio_ ClinicalBERT

ROUGE-1

Generation performance 92.98 93.63 94.66 93.18

baseline 85.64 85.44 85.64 85.61

ROUGE-2

Generation performance 86.10 87.42 89.50 86.50

baseline 74.96 74.64 74.96 74.92

ROUGE-L

Generation performance 92.54 93.22 94.38 92.71

baseline 85.64 85.44 85.64 85.61

BERTScore F1

Generation performance 0.91 0.90 0.92 0.90

baseline 0.82 0.63 0.82 0.63

TABLE 4 Standard NLG metrics across different masking ratios using Bio_ClinicalBERT (the baseline was calculated by comparing the masked text to the
original text).

Bio_ClinicalBERT Masking ratio

1.0 0.8 0.6 0.4 0.2 0.0

ROUGE-1

Generation performance 76.28 83.75 88.91 93.18 96.76 99.51

baseline 64.05 71.56 78.56 85.61 92.63 99.22

ROUGE-2

Generation performance 62.60 70.77 78.81 86.50 93.42 99.02

baseline 51.72 57.88 65.38 74.92 86.27 98.61

ROUGE-L

Generation performance 74.33 81.69 87.71 92.71 96.65 99.50

baseline 64.05 71.56 78.56 85.61 92.63 99.22

BERTScore

Generation performance 0.63 0.75 0.83 0.90 0.95 0.99

baseline 0.29 0.39 0.50 0.63 0.79 0.98

METEOR

Generation performance 0.70 0.80 0.87 0.93 0.97 1.00

baseline 0.66 0.72 0.78 0.85 0.92 0.99
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leads to a lower valid prediction rate. If the predicted words

include many spaces or punctuation marks, the readability will

decrease obviously.

In Supplementary Table S9, considering the perplexity, the

masking baseline is very high, while the values for synthetic

letters are close to the original ones. This indicates that the

synthetic letters are useful for training clinical models. For

information entropy, regardless of the masking ratio, it can

effectively preserve the amount of information. As for subjectivity,

since all the values are similar, we do not need to worry that the

synthetic letters will be biased.

As shown in Table 5, inference time for the entire dataset

consistently ranges between 3 and 4 h. However, it decreases

with either very high or very low masking ratios. A mid-range

masking ratio of approximately 0.6 results in longer inference

times, likely because lower ratios reduce the number of masked

tokens to process, while higher ratios provide less context,

reducing the computational load. This lack of effective context

also increases the invalid prediction rate. Conversely, with a

masking ratio of “0,” even a small number of prediction errors

can substantially affect the overall accuracy, as only a few tokens

are masked.

4.4 Other masking strategies using
Bio_ClinicalBERT

There is a random selection when masking tokens at certain

ratios. Masking different types of tokens will lead to different

results, as shown in Figure 13 and Supplementary Figure S19.

This variability is understandable since the encoder-only models

use bidirectional attention, as mentioned in Section 2.3. These

models need to predict the masked tokens based on the context.

Therefore, it is necessary to experiment with different masking

strategies based on the types of tokens. We used POS tagging

and stopwords to observe how these strategies influence the

quality of synthetic letters.

As discussed in Section 4.3, the BERTScore should be the

primary evaluation metric for our objective. Additionally, the

invalid prediction rate is useful for assessing the model’s ability

to generate informative predictions, and ROUGE scores help

evaluate literal diversity. Therefore, these quantitative metrics,

calculated using different masking strategies, are shown in this

section. Similar to Section 4.3, we experimented with different

masking ratios calculated from the eligible tokens (masked

tokens divided by eligible tokens). The ratios are increased in

increments of 0.1, ranging from 0.0 to 1.0. Due to space

constraints, only metrics with increments of 0.2 are shown here.

A comparison with the same actual masking ratio (masked

tokens divided by total tokens in the text) are also presented in

this subsection.

4.4.1 Masking only nouns
Nouns often correspond to personally identifiable information

(PII), so masking nouns can serve as a verification step for de-

identification.

As shown in Supplementary Table S10, the fewer nouns we

mask, the better all these metrics perform. This trend is

consistent with random masking. When the noun masking ratio

is 1.0, meaning that all nouns are masked, the BERTScore

increases from a baseline of 0.70 to 0.89. This means that the

model predicted meaningful nouns. A similar trend is observed

for the ROUGE scores. All evaluations are higher than the

baseline but lower than “1.” However, ROUGE scores show a

TABLE 5 Inference time and invalid prediction rate across different
masking ratios using Bio_ClinicalBERT.

Masking ratio 1.0 0.8 0.6 0.4 0.2 0.0

Inference time 3:12:05 3:28:56 3:33:26 3:25:16 3:13:26 3:01:11

Invalid prediction rate 0.72 0.47 0.34 0.28 0.25 0.37

FIGURE 13

Example sentence 1 with different masked tokens.
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smaller improvement than BERTScore. This may be because the

model generates synonyms or paraphrases that retain the original

meaning. As the noun masking ratio increases from 0.0 to 1.0,

the BERTScore decrease from 0.99 to 0.89, indicating a

significant decrease.

Therefore, to generate synthetic clinical letters that are

distinguishable but still retain the original clinical information,

we can only partially mask nouns (around 0.8 masking ratio). It

helps maintain balanced evaluation scores. When all nouns are

masked, the quality of synthetic letters deteriorates, with the

BERTScore falling below 0.9 and the invalid prediction rate

increasing to 0.37.

4.4.2 Masking only verbs
Masking only verbs also helps identify which token types are

appropriate for masking to achieve our objective. While verbs are

essential to describing clinical events, some can still be inferred

from context. Therefore, masking verbs may have a slight effect

on the quality of synthetic clinical letters, but it can also introduce

some variation.

Supplementary Table S11 shows a similar trend for masking

verbs as observed with other masking strategies in standard NLG

metrics. However, it is surprising that as the masking ratio

increases, both the invalid prediction rate and NLG metrics

decrease. This phenomenon can be attributed to two main

reasons. First, the model seems to prioritize predicting

meaningful tokens (rather than punctuation, spaces, etc.) to

generate coherent sentences. Contextual relevance is only

considered after the sentence structure is complete. This may be

due to the important role of verbs in sentences. Second, the

original raw data may contain fewer verbs than nouns. Therefore,

the number of actual masked tokens changes slightly when verbs

are masked, making the model less sensitive to them. This is also

reflected in BERTScore. If all verbs are masked, the BERTScore

remains high at 0.95, whereas if all nouns are masked, the

BERTScore drops to 0.89.

4.4.3 Masking only stopwords
As mentioned in Section 3.4.3, masking stopwords aims to

reduce noise for model understanding while introducing

variation in synthetic clinical letters. Supplementary Table S12

shows that masking only stopwords follows a similar trend to

random masking, where a higher masking ratio leads to lower

ROUGE Score and BERTScore. Additionally, the invalid

prediction rate is at its lowest with a medium masking ratio. This

is because higher masking ratios always result in more

information loss. On the other hand, lower masking ratios lead

to fewer tokens being masked, which makes small prediction

errors more influential. The results show an overall low Invalid

Prediction Rate and high BERTScore, indicating that stopwords

have only a limited influence on the model’s understanding of

context. This is not because the original raw letters contain very

few stopwords. In fact, there are even more stopwords than

nouns and verbs, as seen in sample texts.

4.4.4 Comparison of identical actual masking
ratios

To further observe how different masking strategies influence

the generation of clinical letters, we compared the results using

the same actual masking ratios but with different strategies. In

other words, the number of masked tokens is fixed, so the only

variable is the type of tokens being masked. Supplementary

Table S13 shows the results with a 0.04 actual masking ratio, and

Table 6 shows the results with a 0.1 actual masking ratio.

As we can see, masking only stopwords achieved the highest

BERTScore and lowest invalid prediction rate. Therefore,

stopwords have little influence on the overall meaning of the

text, which is consistent with our earlier findings. Additionally,

masking nouns and verbs performed worse than random

masking. Therefore, if we want to preserve the original meaning,

we cannot mask too many nouns and verbs.

4.4.5 Hybrid masking

After comparing different strategies with the same actual

masking ratio, we explored hybrid masking strategies and

compared them with other strategies at the same actual ratio.

The results are presented in Supplementary Table S14. The first

three columns have the same actual masking ratio. Masking only

stopwords achieved the strongest performance among these

strategies. However, when nouns were also masked along with

stopwords, the performance decreased, as masking nouns

negatively affect the results. Despite this, it still performed better

than random masking, indicating that stopwords have a greater

influence than nouns. Next, we compared the last two columns.

If 0.5 of nouns and 0.5 of stopwords were masked, adding an

additional 0.5 of masked verbs led to worse performance,

showing that verbs also negatively influence the

model’s performance.

TABLE 6 Quantitative comparisons of 0.1 actual masking ratio (the
baseline was calculated by comparing the masked text to the original
text).

Bio_ClinicalBERT Nouns
masking
(1.0)

Stopwords
masking (0.6)

Random
masking
(0.3)

ROUGE-1

Generation performance 93.29 96.56 95.10

baseline 88.13 89.04 89.16

ROUGE-2

Generation performance 86.71 92.53 90.17

baseline 78.32 79.99 80.44

ROUGE-L

Generation performance 93.00 96.23 94.86

baseline 88.13 89.04 89.16

BERTScore

Generation performance 0.89 0.95 0.93

baseline 0.70 0.71 0.71

Invalid prediction rate

Generation performance 0.37 0.20 0.26
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4.4.6 Comparison with and without (w/o) entity
preservation

To further explore whether keeping entities is useful for our

task, we compared our results with a baseline that does not

retain any entities. The baseline was trained with four epochs of

fine-tuning on our dataset. Specifically, 0.4 of nouns from all

tokens were randomly masked during baseline training. In

contrast, in our experiments, only eligible tokens—excluding

clinical information—were selected for masking. The

comparisons are shown in Table 7.

As we can see, when 0.4 nouns were masked while preserving

entities, the models performed much better than those without any

entity preservation. Interestingly, when we randomly masked 0.3

while preserving entities, the model achieved lower ROUGE-1

and ROUGE-2 scores but higher ROUGE-L and BERTScores

compared to models without entity preservation. This trend is

consistent across different settings. This suggests that models

preserving entities show less overlap with the original text, while

they can retain the original narrative better. Additionally, the

higher ROUGE-L score suggests that the step of preserving

document structure is indeed effective.

These results also confirm our initial hypothesis that, for our

objective—generating clinical letters that can keep the original

meaning while adding some variety—retaining entities is much

more effective than just fine-tuning the model. Moreover, this

approach can effectively preserve useful information while

avoiding overfitting.

4.5 Downstream NER task

To further evaluate whether synthetic letters have the potential

to replace the original raw letters, particularly in the domains of

clinical research and model training, a downstream NER task

was implemented. Two spaCy NER models were trained

separately on original raw letters and synthetic letters.

Specifically, the synthetic letters were generated with 0.3 random

masking while preserving entities.

As shown in Table 8, spaCy models trained on original and

synthetic letters showed similar evaluation scores. They even

achieved F1 scores comparable to ScispaCy’s score of 0.843.

Therefore, the unmasked context appears to have minimal

influence on model understanding. Consequently, our synthetic

letters can be used in NER tasks to replace real-world clinical

letters, thereby further protecting sensitive information.

4.6 Clinical evaluation

4.6.1 Clinical semantic preservation

As mentioned in Section 3.5.4, we used BioGPT with a random

masking ratio of 0.3 to evaluate the integrity of clinical narrative

preservation. As shown in Table 9, the mean similarity score

reaches 0.98, which is slightly higher than the score obtained

using the BERTScore metric. This may be because BioGPT

evaluates semantic similarity from a clinical perspective.

Additionally, such a high score suggests that the synthetic clinical

letters can potentially serve as replacements for the original ones.

4.6.2 Expert-simulated evaluation of clinical
quality

As mentioned in Section 3.5.4, we prompted GPT-3.5-Turbo to

simulate a clinical expert and evaluate clinical soundness and

narrative coherence. The masked letters (with text replaced by

“<mask>”) continued to serve as a baseline. The results are

shown in Table 10

Clinical soundness: The average clinical soundness score of

the generated letters (0.604) is slightly lower than that of the

original letters (0.766). Surprisingly, it is even lower than the

score of the masked letters (0.611). We further identified all cases

where the generated letters scored lower than the masked ones in

clinical soundness. These cases account for 14% (29 out of 204)

of the processed letters. One possible explanation is that

Bio_ClinicalBERT occasionally produces hallucinatory content,

which may obscure or distort the original clinical semantics.

However, in the majority of cases, the generated letters achieve

clinical soundness scores comparable to the masked letters and

close to the original ones—demonstrating the overall potential of

our synthetic letters to replace real ones.

Narrative coherence: As expected, the narrative coherence

score of the generated letters (0.460) is slightly lower than that of

the original ones (0.664), but higher than that of the masked

letters (0.418). These results further support the feasibility of

using synthetic letters as substitutes for real clinical letters.

TABLE 7 Comparison with and without entity preservation using Bio_ClinicalBERT.

Bio_ClinicalBERT With entity preservation (0.4
nouns masking)

With entity preservation (0.3
random masking)

Without entity preservation (0.4
nouns masking)

ROUGE-1 97.62 95.10 97.31

ROUGE-2 95.12 90.17 94.46

ROUGE-L 97.56 94.86 93.71

BERTScore 0.96 0.93 0.91

TABLE 8 Comparisons on downstream NER task.

Metric spaCy trained
on original

letters

spaCy trained
on synthetic

letters

Performance
Delta (D)

F1 Score 0.855 0.853 �0.002

Precision 0.865 0.863 �0.002

Recall 0.846 0.843 �0.003
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4.7 Post-processing results

4.7.1 Filling in the blanks
One example text without post-processing is shown in

Supplementary Figure S20. After filling in the blanks, the results

with BERT-base and Bio_ClinicalBERT are shown in Figure 14

and Supplementary Figure S21, respectively. We can see that

both models can partially achieve the goal of making the text

more complete. However, neither of them created a coherent

story to fill in these blanks. They just used general terms like

“hospital” and “clinic.” Perhaps other decoder-only models, more

suitable for generating stories like GPT, could perform better and

should be explored in the future.

4.7.2 Spelling correction
Supplementary Figure S22 shows that if the incorrect words are

masked, the models may be able to correct the misspelled tokens by

predicting them. However, the masking process is random.

Additionally, sometimes the predicted words will be incorrect

because some models tokenise the sentence into word-pieces.

Therefore, a post-processing step is necessary for correcting spelling.

As shown in Supplementary Figure S23, tooltik “TextBlob” (93)

can successfully correct misspelled words (“healhty”) in our sample

text. However, if clinical entities are not preserved during the pre-

processing step, “TextBlob” (93) may misidentify some clinical

terms as spelling errors. This may be because “TextBlob” (93)

was developed on the general corpus rather than a clinical one.

Additionally, its corrections are limited to the word level and do

not consider any context. Therefore, if words are misspelled

deliberately, they could be processed incorrectly. Thus, developing

a clinical misspelling correction toolkit is a promising research

direction in the future.

4.8 Discussion

We found that different masking strategies result in notable

differences in model performance. To enhance the practical

applicability of our research, we provide a guideline for selecting

appropriate masking strategies for different scenarios, as

presented in Table 11.

As mentioned earlier, we observe that when most clinical

terms are preserved, fine-tuning the model may not be necessary.

In terms of clinical evaluation, hallucinated content was found

to negatively affect clinical soundness, suggesting that

retrieval-augmented generation (RAG) or integration with a clinical

knowledge graph may be beneficial for future improvements.

Further exploration is also needed—such as dynamic vocabulary

construction—to better handle clinical abbreviations and novel

terms. Our synthetic framework for clinical letters did not show

any notable negative effects on narrative coherence or semantic

preservation, and the high performance in downstream NER tasks

further supports the feasibility of using synthetic letters as

substitutes for original ones. Although filling in blanks and

correcting spelling errors are essential for improving text quality,

mitigating errors in processing rare clinical terms remains a major

challenge, as previously discussed.

5 Conclusions and future work

5.1 Key findings

These results provided some useful findings in generating

clinical letters, including

• Encoder-only models generally perform much better in

clinical-letter masking and generation tasks, which is

consistent with a very recent study by Micheletti et al. (78).

When clinical information is preserved, base encoder-only

models perform comparably to clinical-related models.

• To generate clinical letters that preserve clinical narrative while

adding variety, BERTScore should be the primary evaluation

metric, with other metrics serving as supporting references.

This is because BERTScore focuses more on semantic rather

than literal similarity, and it is consistent with qualitative

assessment results.

• Different types of masked tokens influence the quality of

synthetic clinical letters. Stopwords exert a positive impact,

while nouns and verbs exert negative impacts.

• For our objective, preserving useful tokens is more effective than

just fine-tuning the model without preserving any entities.

• The unmasked context has minimal influence on the models’

understanding. As a result, the synthetic letters can be

effectively used in the downstream NER task to replace

original real-world letters.

• The synthetic letters largely preserve the consistency and

coherence of clinical narratives from the original letters.

However, Bio_ClinicalBERT occasionally generates

hallucinated content, which may negatively impact clinical

soundness and factuality.

TABLE 10 Expert-simulated evaluation results.

Metric Avg. Max. Min. Std.

Clinical soundness

Baseline (original) 0.766 1.0 0.5 0.11

Baseline (masked) 0.611 1.0 0.5 0.147

Generation performance 0.604 1.0 0.5 0.145

Narrative coherence

Baseline (original) 0.664 0.8 0.3 0.082

Baseline (masked) 0.418 0.7 0.2 0.168

Generation performance 0.460 0.7 0.2 0.177

TABLE 9 Results of clinical semantic preservation evaluation using BioGPT.

Metric Max score Min score Mean score Std deviation Evaluation set size

Value 0.9996 0.9037 0.9896 0.0147 204
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5.2 Limitations

Although the strategies mentioned above help generate diverse,

de-identified synthetic clinical letters, there are still some

limitations in applying this method generally.

• Challenges in the dataset: Since these clinical letters are derived

from the real world, certain issues are inevitable. For example,

there may be spelling errors in the dataset. In note_id

“10807423-DS-19,” the word “healthy” is misspelled as

“healhty.” Such errors can negatively impact the usability of

the synthetic text. Additionally, some polysemous words may

cause contextual ambiguity. For instance, the word “back” can

refer to an anatomical entity (e.g., the back of the body), or be

used as an adverb.

• Data volume: Due to the difficulty in collecting annotated data,

only 204 clinical letters were included in our research. This

limited sample size may not be sufficiently representative,

which could restrict the generalizability of our findings to a

broader scenario. Moreover, the data we used were already de-

identified. Although we considered de-identification and took

steps to mask all private information, the effectiveness of these

approaches cannot be thoroughly evaluated, as we do not have

access to sensitive datasets.

• Evaluation metrics: In this paper, we primarily used BERTScore as

our main evaluation metric, while also incorporating other metrics

such as ROUGE and readability metrics. However, there is

currently no comprehensive evaluation framework that can

assess all aspects simultaneously, including maintaining the

original meaning, diversity, readability, clinical soundness, and

even privacy protection effectiveness.

• Clinical knowledge understanding: While the model can often

preserve clinical entities and generate contextually reasonable

tokens, it sometimes makes comprehension errors. For

example, in a context where “LLE” (“left lower extremity”) is

used, Bio_ClinicalBERT incorrectly predicts the nearby

masked token as “R ankle” (“right ankle”). In this case, the

model fails to accurately capture the side clinical knowledge.

Other challenges lie in handling long-tail phenomena and

understanding abbreviated expressions, which are common in

clinical language. Although spell correction techniques are

explored in our project, distinguishing between a genuinely

novel term and a simple misspelling remains difficult.

• Computing resources: Due to resource limitations, we explored

a limited range of language generation models. Alternative

architectures—such as enhanced decoder-only models—may

be more suitable for our task.

5.3 Future work

Based on the limitations mentioned above, we outlined some

potential directions to further explore:

• Test on more clinical datasets: To further evaluate the

effectiveness of these masking strategies, more annotated

clinical letters should be tested to assess system generalization.

• Assess de-identification performance: A quantitative metric for

de-identification evaluation should be included in the future.

Non-anonymous synthetic datasets can be used to evaluate the

de-identification process, so that this system can be applied

directly to real-world clinical letters in the future.

• GRPO-based reinforcement learning: The group relative policy

optimization (GRPO) algorithm, as proposed in DeepSeek (94),

has the potential to effectively balance multiple objectives,

including clinical soundness, semantic integrity, textual

diversity, and de-identification quality.

TABLE 11 Priority-based masking guidelines.

Priority Note Suggested
masking
strategy

Application
scenarios

Diversity

first

To improve the

model’s

generalisation

Random masking

(primarily), clinical

terms masking

(limited)

Basic clinical model

pre-training; data

augmentation

Clinical

soundness

first

The synthetic letters

should satisfy

clinical factuality

Keep clinical terms

(complete);

stopwords masking

(extensive); verbs/

nouns masking

Clinical education;

clinical QA model

training; clinical

model fine-tuning

Privacy first To prevent PHI

disclosure and

mitigate privacy

reconstruction

through adversarial

attacks

Private tokens

masking (complete);

nouns masking

(extensive); verbs/

stopwords masking

(medium)

Building open-source

datasets; commercial

deployment

FIGURE 14

Post-processing results with BERT-Base.
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• Evaluation benchmark: A new metric suitable for our task should

be developed. Specifically, this metric should consider both

similarity and diversity. Weighting parameters for each

dimension could be useful and can be obtained through neural

networks. For evaluating clinical soundness, it is necessary to

invite more clinicians to assess the synthetic letters based on

multiple dimensions (77). Furthermore, mapping from clinical

letters to their quality scores can be learned using deep learning.

• Balancing knowledge from both clinical and general domains:

Although there are numerous clinical-related encoder-only

models, only a few can effectively integrate clinical and general

knowledge. Xie et al. (95) demonstrated that mixing the clinical

dataset with the general dataset in a certain proportion can help

the model better understand clinical knowledge. Therefore, a

new BERT-based model should be trained from scratch using

both clinical and general domain datasets.

• Synonymous substitution: We focused on exploring the range

of eligible tokens for masking. Additionally, a masking strategy

similar to BERT’s can be integrated with our results (58).

Specifically, we can select certain tokens to mask, some to

retain, and replace others with synonyms. This approach can

further enhance the variety of synthetic clinical letters.

Moreover, the retained clinical entities can also be substituted

using entity linking to SNOMED CT.

• Spelling correction: As mentioned in Section 4.7, very few toolkits

are available for spelling correction in the clinical domain.

Standard spelling correction tools may misidentify clinical terms

as misspelled words. Therefore, it is necessary to develop a

specialized spell-checking tool adapted to the clinical domain.
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