AUTHOR=Wanniarachchi Vajisha Udayangi , Greenhalgh Chris , Choi Adrien , Warren James R. TITLE=Personalization variables in digital mental health interventions for depression and anxiety in adolescents and youth: a scoping review JOURNAL=Frontiers in Digital Health VOLUME=Volume 7 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1500220 DOI=10.3389/fdgth.2025.1500220 ISSN=2673-253X ABSTRACT=IntroductionThe impact of personalization on user engagement and adherence in digital mental health interventions (DMHIs) has been widely explored. However, there is a lack of clarity regarding the prevalence of its application, as well as the dimensions and mechanisms of personalization within DMHIs for adolescents and youth.MethodsTo understand how personalization has been applied in DMHIs for adolescents and young people, a scoping review was conducted. Empirical studies on DMHIs for adolescents and youth with depression and anxiety, published between 2013 and July 2024, were extracted from PubMed and Scopus. A total of 67 studies were included in the review. Additionally, we expanded an existing personalization framework, which originally classified personalization into four dimensions (content, order, guidance, and communication) and four mechanisms (user choice, provider choice, rule-based, and machine learning), by incorporating non-therapeutic elements.ResultsThe adapted framework includes therapeutic and non-therapeutic content, order, guidance, therapeutic and non-therapeutic communication, interfaces (customization of non-therapeutic visual or interactive components), and interactivity (personalization of user preferences), while retaining the original mechanisms. Half of the interventions studied used only one personalization dimension (51%), and more than two-thirds used only one personalization mechanism. This review found that personalization of therapeutic content (51% of the interventions) and interfaces (25%) were favored. User choice was the most prevalent personalization mechanism, present in 60% of interventions. Additionally, machine learning mechanisms were employed in a substantial number of cases (30%), but there were no instances of generative artificial intelligence (AI) among the included studies.DiscussionThe findings of the review suggest that although personalization elements of the interventions are reported in the articles, their impact on younger people's experience with DMHIs and adherence to mental health protocols is not thoroughly addressed. Future interventions may benefit from incorporating generative AI, while adhering to standard clinical research practices, to further personalize user experiences.