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The role of trustworthy and
reliable AI for multiple sclerosis
Lorin Werthen-Brabants*, Tom Dhaene and Dirk Deschrijver

SUMO Lab, IDLab, INTEC, Ghent University – imec, Ghent, Belgium
This paper investigates the importance of Trustworthy Machine Learning (ML) in
the context of Multiple Sclerosis (MS) research and care. Due to the complex and
individual nature of MS, the need for reliable and trustworthy ML models is
essential. In this paper, key aspects of trustworthy ML, such as out-of-
distribution generalization, explainability, uncertainty quantification and
calibration are explored, highlighting their significance for healthcare
applications. Challenges in integrating these ML tools into clinical workflows
are addressed, discussing the difficulties in interpreting AI outputs, data
diversity, and the need for comprehensive, quality data. It calls for
collaborative efforts among researchers, clinicians, and policymakers to
develop ML solutions that are technically sound, clinically relevant, and
patient-centric.
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1 Introduction

Machine Learning (ML) is increasingly applied to healthcare applications (1). While

traditional statistical methods can help with biomarker discovery and recognizing trends

and correlations, modern ML techniques such as Deep Learning (DL), are able to

uncover complex correlations and provide better results than traditional, simpler

techniques (2) due to their universal nature (3). Conversely, as these techniques become

more complex, the need for reliable and trustworthy models increases (4, 5), especially

within healthcare. However, building trust does not have a one-size-fits-all solution,

resulting in many techniques to be developed to aid decision making.

For an end-user, be it a clinician or a patient, a model that is trustworthy is one that

can provide certain guarantees on its predictions, explain its predictions, and provide a

notion of uncertainty. For a complex disease such as Multiple Sclerosis (MS), the need

for trustworthy models is especially pertinent, as its progression is non-trivially defined,

and the decisions made to hinder its progression are important ones. A machine

learning system that does not provide adequate reliability metrics, or trustworthy

insights, will be less appealing to the end-user when there are high-stakes consequences.

In recent years, the need for Trustworthy ML (TML) has also reached mainstream

attention with the use of generative AI becoming more prevalent. For example, though

Large Language Models have shown impressive results, they may still provide incorrect

results, without any notion of uncertainty or trustworthiness (6). This is also known as

the “hallucination” effect (7). Complex data and relationships warrant the use of

trustworthiness techniques.

In the following Sections, we provide a summary of techniques present in Trustworthy

ML (TML) (Section 2), why TML is necessary for MS (Section 3.1), and the associated

challenges (Section 3.2).
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2 Trustworthy machine learning

2.1 Out-of-distribution generalization

The many ways in which MS progression can occur (different

limbs, locations of lesion growth, etc.), makes the disease variable

and patient specific. Therefore, training data will rarely contain

enough data to cover the full extent of the ways progression can

be observed. Furthermore, due to protocols changing regularly

and equipment variability, concept or model drift (8) may pose a

real issue when ML models are deployed in the real world.

Model drift occurs when new data do not correspond to the data

on which a model was trained. As a result, models must be

continually adapted so changes in data distributions are captured.

These issues can be tackled by making use of techniques such

as domain adaptation (9, 10), a specific case of transfer learning

(11), and synthetic data sampling such as SMOTE (12, 13).

The concept of Out-of-Distribution Generalization can be

elucidated by considering a concrete example within the MS

context. Imagine an ML model trained on data from North

American patients. When this model is applied to patients from

different geographical regions with distinct genetic and

environmental factors, its predictions may falter due to

differences in disease manifestation. Domain adaptation

techniques can help here by adjusting the model to account for

these regional variations. Similarly, synthetic data sampling, like

the aforementioned SMOTE technique, can artificially—not

necessarily in a representative way—augment the dataset to

include underrepresented samples in a given dataset, improving

the model’s robustness against a wide range of clinical scenarios.

However, it must be stressed that data quality is key, and an

underrepresented dataset can not fully capture the underlying

factors to guarantee good out-of-distribution generalization.
2.2 Explainability and interpretability

A perfectly interpretable AI provides insights into the inner

workings and decision process of an AI system. When it comes

to the types of ML systems, they can broadly be divided into two

categories: white-box models and black-box models.
2.2.1 White-box models
Models that are inherently explainable and interpretable. These

are often simpler methods such as linear or logistic regression, the

latter of which can be represented as a nomogram (14), a graphical

representation of such models that visually convey the weight of

different input variables. These models can be fully dissected, so

there may be many ways of representing or explaining them.
2.2.2 Black-box models
Models that can not be interpreted easily, and are regarded as a

“black box” out of which little or no knowledge can be derived.

However, there are techniques that can provide explainability

when working with black-box models, such as making use of
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Shapley values (15, 16) or making use of Deep Learning specific

techniques (17) such as Layer-wise Relevance Propagation

(18, 19). These are often post-hoc. In practice, these techniques

will show a number of features and their importances expressed

as a number. This could also be in the form of a heatmap. These

feature importances may not always be as readily interpretable

and may need training and education to comprehend adequately.

Additionally, they do not necessarily explain why those features

are important.

A classifier that may perform well in its evaluation metrics

(sensitivity, specificity, ROC AUC, etc.) may still benefit from

explainability methods. In particular, if models were to take into

account many multimodal variables, the primary drivers of a

given prediction may offer important insight for the user of the

machine learning system.

Related to interpretable AI is explainable AI. Rather than being

able to fully comprehend the inner workings of a model, an

explainable AI model is able to be queried so that a reasonable

explanation to the prediction is provided. Explainable AI can be

viewed on different levels as well: Global, cohort, and local

explainability. Global explainability provides information about

the entire population or dataset. Due to the complex nature of

the MS disease, valuable insights on a population level are scarce.

Cohort explainability gives insight on subsets of the data, which

can be more interesting when taking into account certain

covariates. In this way, different groups of patients can be

identified and correlations within these groups may offer more

helpful insights than looking only at a global level. Lastly, local

explainability provides insight on the model’s output for a single

input example. Every patient has a different profile, and therefore

local explainability may help acquire insight into the prediction

of the model for that specific patient or observation.
2.3 Uncertainty quantification and
calibration

2.3.1 Uncertainty quantification
In machine learning models, uncertainty plays a critical, yet

understated role in understanding and interpreting predictions.

Healthcare specifically can greatly benefit from uncertainty

quantification, as it can add a layer of trust between the user and

the model (20–22). Two major sources of uncertainty are

aleatoric and epistemic uncertainty (23).
2.3.1.1 Aleatoric uncertainty
This type of irreducible uncertainty is inherent in the data itself. It

cannot be reduced by adding more data and manifests as the noise

within the data. An example of this uncertainty arises when using

very few features. For example, a patient’s blood pressure is a

crucial health metric, but it exhibits natural variability within an

individual due to various factors like stress, activity level, time of

day, and even the way it is measured.

This uncertainty can be either homoscedastic, when it remains

constant for all values (e.g., base noise of a sensor), or
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heteroscedastic, when it varies depending on the value of

the sample.

2.3.1.2 Epistemic uncertainty.
Epistemic uncertainty arises from the model’s limited knowledge.

This reducible uncertainty is high when the model has

insufficient data to characterize or capture the target variable.

Increasing the size of the data set can help reduce epistemic

uncertainty. An intuitive example can be demonstrated as

follows: Say there are multiple experts for a single disease such as

MS. These experts may disagree on a given prognosis, despite all

of them being equally trained for such a task. Analogously, in a

machine learning model predicting patient outcomes for MS, the

model might exhibit high epistemic uncertainty if it has been

trained on a limited or non-representative dataset. Just as the

disagreement among experts might stem from variations in their

individual experiences and interpretations, the model’s

uncertainty arises from its limited exposure to the diverse

manifestations of the disease. By providing the model with more

comprehensive data that captures a wider range of patient

histories, symptoms, and outcomes, the epistemic uncertainty can

be reduced, leading to more consistent and reliable predictions.

Applying uncertainty quantification in MS involves

recognizing and managing the inherent unpredictability in

patient responses and disease progression. For instance, a model

expressing aleatoric uncertainty might show the variability in a

patient’s symptoms over time, acknowledging that certain aspects

of MS progression cannot be predicted with complete precision.

Epistemic uncertainty can be illustrated by a model’s varying

predictions based on different patient subgroups, reflecting

limited knowledge about specific MS manifestations. To quantify

and capture these uncertainties, techniques like Monte Carlo

Dropout (MCD) (24) can be employed, providing a probabilistic

understanding of a model’s predictions and helping clinicians

make informed decisions under uncertainty.

Uncertainty quantification has been applied to lesion detection

in MRI images (25–27), often making use of MCD or other

methods of obtaining a model that can express uncertainty (28).

2.3.2 Calibration
A well-calibrated machine learning model is one in which the

model’s predicted probabilities closely match the probabilities

observed in the actual data (29). Mathematically, this is

represented as P(yj p̂(y) ¼ a) ¼ a. This equation signifies that

the probability of an event y occurring, given that the model

predicts it with probability a, should ideally be a itself. As a

practical example: a model that predicts the probability of 40%

disease progression for a patient will ideally be correct 40% of

the time of all patients who receive a similar prognosis. For

methods such as neural networks, this is not often the case by

default, and calibration needs to be improved. Additionally,

calibration can also be applied to regressors that output a

distribution, rather than a single value. In this case, the

confidence interval (such as a 95% confidence interval, for

example) can be calibrated to ensure that it matches

the observations.
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The need for calibration is evident in the lack of information an

uncalibrated classifier or regressor provides. Often, as is the case

with neural networks, a neural network classifier will collapse to

output probabilities close to 100% or 0% consistently, rather than

providing accurate probability estimates (29). As a result, a user

of such a system needs to blindly trust the classifier rather than

being able to take the confidence of the classifier into account.
3 Discussion

3.1 Why trustworthy ML is necessary for MS
research

With the current knowledge of MS and performance of state-

of-the-art machine learning models in the field, it stands to

reason that there may not be a one-size-fits-all solution to

detecting disease progression. Although other types of model

(such as image classifiers) may perform very well and can

reliably be used in most, if not all, cases, this may not be the

case for MS. ML models for this purpose will likely be a tool to

aid decision making, rather than a decision maker by itself. To

that end, an ML model that just states “yes” or “no” is not

sufficient. Rather, more information should be supplied to the

user. A trustworthy version of this model will highlight parts of

the input that contribute greatly to the prediction, show which

global and cohort features are important, and also provide a

notion of (un)certainty with the prediction. In this way, the user

can:

• Select which predictions to trust and keep, both by using

aleatoric and epistemic uncertainty as guides

• Analyze the subgroup in which the prediction fits

• Analyze the specific prediction and the features leading to

the prediction

For MS research, the use and adoption of ML will be guided by

advances in trustworthy ML. MS is a disease marked by its

heterogeneity in symptoms, progression, and response to

treatment, making reliable analysis of significant importance.

The ability of ML models to process and analyze different types

of data—from clinical observations to MRI images—can lead to

earlier detection and more precise monitoring of the disease’s

progression. However, the value of these insights depends on

their explainability. Clinicians and patients must be able to

understand and trust the model’s predictions, necessitating a

focus on explainable AI. For example, an ML model might

identify subtle changes in brain lesions over time, but this

information becomes clinically actionable only when it is

presented in an understandable manner. Explainable models can

elucidate the factors driving a prediction, thereby enhancing the

clinician’s ability to make informed treatment decisions.

Moreover, the integration of uncertainty quantification in ML

models is particularly relevant for MS. Given the variability in

how the disease presents and progresses, models that can express

their confidence in predictions are invaluable. They provide

clinicians with a more nuanced understanding of each prediction,
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facilitating more informed risk-benefit analyses when deciding on

treatment plans. A model that indicates a high level of

uncertainty in its prediction might prompt further testing or

closer monitoring, whereas a prediction made with high

confidence could lead to more decisive action.

The importance of trustworthy ML in MS research also extends

to patient empowerment. Access to understandable and reliable

ML-driven insights can foster better patient-clinician dialogues.

When patients understand the basis for predictions about their

condition, they are better positioned to make informed decisions

about their treatment and lifestyle choices.
3.2 Challenges of trustworthy ML for MS

3.2.1 Integration of ML tools to aid clinical
decisions

Integrating ML tools into existing clinical workflows presents

another layer of complexity. For these tools to be adopted, they

must fit into the highly regulated environment of healthcare.

This integration involves designing user interfaces and metrics

that are intuitive for clinicians, ensuring that ML predictions are

presented in a way that complements decision-making processes

rather than complicating them (30). Furthermore, imperfect data

pose a problem during the training and prediction stages of an

ML model. Data collection can be a laborious task, and in some

cases the data cannot be accurately represented due to individual

differences in disease expression. This rings especially true in the

case of MS.

3.2.2 Usability of uncertainty quantification and
explainability techniques

As highlighted previously, UQ and explainability techniques

have their merit, as they can highlight potential issues when

making use of ML assisted decision systems. However, the

end-user may not find much use in the way UQ results

are represented in literature. Even explainabilty results have

varying degrees of success concerning their usability (31). These

techniques could benefit from user studies, as their usability

hinges on the representation and, in turn, interpretation by the

end-user. For example, rather than providing the clinician and/or

patient with a numerical value signifying a “trustworthiness”

score or certainty otherwise, larger trust could be gained by

comparing the patient with other patients that have similar

disease trajectories. This opacity can hinder trust and acceptance,

especially in a high-stakes field like healthcare where

understanding the “why” behind a diagnosis or prognosis is as

crucial as the outcome itself (31).

3.2.3 Out-of-distribution data, diverse data,
available data

Data diversity and availability are critical factors that

significantly influence the development and performance of ML

models in MS research. MS is a disease with a highly variable

clinical course and a wide range of symptoms that differ from

patient to patient. This heterogeneity necessitates a rich and
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diverse dataset that captures the broad spectrum of the disease.

After all, deep learning techniques are prone to overfitting, and

may have performance below acceptable levels as a result

(21, 32). Initiatives such as MSBase (33, 34) attempt to address

the issue of out-of-distribution performance by providing multi-

center data. The amount of data by itself may give the end-

user a reason to trust a model, given enough diversity. Data

quality is another concern, with issues such as missing values,

inconsistent data entry, and the need for standardization across

different data sources complicating the development of reliable

ML models. Introducing diversity by including measurements

that stray away from purely medical imaging or clinical data

may also provide a new avenue of research, potentially

discovering novel biomarkers. Future work should focus on

developing models that can adapt to individual patient

variations and incorporating emerging data types such as Motor

Evoked Potentials (35, 36) into ML models.
4 Conclusion

This paper underscores the importance of trustworthiness in

Machine Learning (ML) applications for Multiple Sclerosis (MS).

Key aspects such as explainability, uncertainty quantification and

calibration, and out-of-distribution generalization have been

explored. Additionally, the challenges in integrating ML into

clinical workflows and the hurdles posed by data diversity and

availability have been discussed.

The authors urge the research community and healthcare

providers to prioritize the development and implementation of

trustworthy ML solutions for MS (and healthcare in general).

There is an urgent need to foster partnerships between computer

scientists, neurologists, and patients. This collaboration will

ensure the development of ML solutions that are not only

technically sound but also clinically relevant and patient-centric.

Making comprehensive, high-quality data sets accessible while

respecting privacy concerns is crucial. Initiatives should focus on

standardizing data collection and sharing practices to aid in the

development of more effective ML models. ML tools must be

integrated into clinical workflows in a way that is intuitive and

enhances decision-making processes. This involves designing

user-friendly interfaces and ensuring that clinicians are

adequately trained to use these tools effectively.
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