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AI-driven sleep apnea screening
with overnight blood oxygen
saturation: current practices and
future directions
Nhung H. Hoang* and Zilu Liang

Ubiquitous and Personal Computing Lab, Faculty of Engineering, Kyoto University of Advanced Science
(KUAS), Kyoto, Japan

Sleep apnea is one of the most common sleep disorders, which, if left untreated,
may have severe health consequences in the long term. Many sleep apnea
patients remain non-diagnosed due to lacking access to medical tests. In
recent years, portable and wearable sensors that measure blood oxygen
saturation (SpO2) are becoming common and affordable for daily use, and
they open the door for affordable and accessible sleep apnea screening in the
context of everyday life. To learn about the advancement in SpO2-based sleep
apnea screening, we conducted a survey of published studies. We searched
databases including Springer, Science Direct, Web of Science, ACM Digital
Library, and IEEE Xplore using the keywords “sleep apnea” AND (“SpO2” OR
“blood oxygen saturation”) AND (“machine learning” OR “deep learning”). After
screening 835 results, we included 31 publications for a full-text review.
Analysis shows that SpO2-based sleep apnea screening studies consist of three
main categories: (1) individual apnea events detection, (2) apnea-hypopnea
index prediction, and (3) apnea severity classification. We found two significant
research gaps: a lack of sufficient and diverse publicly available datasets,
and the absence of standardized protocols for data collection, signal
preprocessing, and model bench marking. Future research should focus on
addressing these gaps to enhance the effectiveness and reliability of AI-driven
sleep apnea screening methods using SpO2 signals.
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1 Introduction

According to a comprehensive review by Benjafield et al. (1), nearly 1 billion people

are affected by sleep apnea, with prevalence exceeding 50% in some countries.

Undiagnosed sleep apnea has been shown to be associated with high comorbidities and

mortality, and reduced quality of life (2). Many people with sleep apnea do not

experience noticeable symptoms, leading to a lack of motivation for diagnostic testing

(3, 4). This review assesses recent advances in AI algorithms for the screening of sleep

apnea, emphasizing the use of SpO2 due to its non-invasive nature and effectiveness,

and aims to highlight future research directions.

The rise of home-based sleep apnea tests (HSAT) has highlighted the potential of wearable

devices in supporting sleep health in everyday life. Smartwatches such as the Apple Watch,

Samsung Watch, Google Pixel Watch, and Fitbit have become popular due to their

convenience and functionality (5, 6). These devices generally include a green light reflective

photoplethysmography (PPG) sensor for measuring blood oxygen saturation (SpO2). Given
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that sleep apnea impacts both airway and SpO2 levels (7–9), many

studies have been conducted to explore SpO2 as a light alternative

to PSG for home-based sleep apnea detection, especially when

combined with AI-driven computational methods (10–13).

However, there remains a gap in understanding current modelling

practices and performance. This mini-review aimed to explore such

gaps and potential solutions in sleep apnea detection. Section 2

outlines the review methodology. Section 3 examines employed

databases, SpO2 processing techniques, feature extraction methods,

sleep apnea screening approaches, model development and

performance across each screening task. The final section will

evaluate remaining limitations and propose future research directions.
2 Materials and methods

We followed a search and selection process that is consistent

with the methodology for mini-reviews, as outlined (14).

Keywords “sleep apnea” AND “SpO2” AND “machine learning”

were used to search publications in 4 databases: Science Direct

(n ¼ 418), ACM Digital Library (n ¼ 208), IEEE Xplore

(n ¼ 25), and Springer Link (n ¼ 173), yielding a total of 824

entries. All entries retrieved were imported into Rayyan (15) to

streamline the review process and eliminate duplicates. Through

Rayyan’s duplication removal feature, 31 duplicate articles were

identified and removed. The remaining articles were then

screened based on predefined inclusion and exclusion criteria.

Inclusion criteria required that articles focus on developing an

application, model, or algorithm specifically for the screening of

sleep apnea. In addition, studies needed to employ blood oxygen

saturation (SpO2) signals as a primary input for the screening

approach and employ machine learning algorithms as part of the

methodology. Exclusion criteria were applied to further refine the

selection. Articles were excluded if SpO2 was not the main signal

used in the algorithm. Studies on pediatric populations were

excluded due to the distinct nature of sleep apnea in children

compared to adults. Articles that were not publicly accessible or

not written in English were also excluded.

Following the title and abstract screening, 52 articles remained. 21

articles were excluded from the analysis: 2 of these excluded articles

were identified as review papers, 3 additional articles employed

demographic data as the primary input for regression or

classification tasks, 9 excluded articles focused solely on apnea event

detection using definitions established by the American Academy of

Sleep Medicine (AASM), not incorporating machine learning

algorithms as required. Finally, 7 articles were excluded due to a

lack of relevance to the overall topic. A final review based on the

main content resulted in a final selection of 31 articles deemed

relevant for this review, the main findings are provided below.
3 Results

3.1 Sleep datasets

More than half of the studies (n ¼ 18) used proprietary

datasets collected within research facilities, with dataset size
Frontiers in Digital Health 02
ranging from fewer than 50 sleep records (16, 17) to several

hundreds (18–21). While proprietary datasets allow tailored data

collection and expert labeling, their limited public availability

poses challenges for comparison and benchmarking.

In contrast, public datasets provide valuable alternatives.

Widely-used ones include the Apnea-ECG Database (AED) (22),

the St.Vincent’s University Hospital/University College Dublin

Sleep Apnea Database (UCD) (23), and more recently, the

OSASUD dataset (24). However, the relatively small sizes of

these datasets (often fewer than 100 records) limit their

applicability primarily to epoch-wise, rather than subject-wise

screening (8, 9). The Sleep Heart Health Study (SHHS) (25),

with over 5,000 recordings and high-resolution labels, is ideal for

deep learning models. Other publicly available datasets, such as

the Wisconsin Sleep Cohort dataset (n ¼ 2,570) (26), Cleveland

Family Study (CFS) dataset (n ¼ 2,284) (27), Osteoporotic

Fractures in Men Study (MROS) dataset (n ¼ 3,753) (28) and

the Multi-Ethnic Study of Atherosclerosis (MESA) dataset

(n ¼ 2,002) (29), offer valuable data but have been less utilized

in sleep apnea research so far.
3.2 Pre-processing SpO2 signals

Physiological signals such as SpO2 are prone to movement

contamination and thus require pre-processing to remove noises.

However, our analysis revealed that many studies (n ¼ 11) proceed

with raw SpO2 without pre-processing, and there is a lack of

standardized protocols for filtering noise or assessing signal quality.

SpO2 are typically calibrated within a range of 70% to 100%

saturation, with an accuracy of +2% to +4% (30). Consequently,

readings below 70% may be inaccurate, prompting some studies to

use thresholds of 70% or 65% to remove unreliable readings (3,

31). A lower threshold of 50% has also been used in several studies

to account for physiological limitations and equipment errors (9,

12, 17, 20, 32). In addition to cut-off thresholds, some studies

applied further noise reduction techniques, such as removing data

points where consecutive SpO2 values differ by more than a

predefined value (e.g., 4%) (3, 12, 20, 33).

Few studies (n ¼ 3) explored optimal SpO2 signal bands. One

study identified the apnea-related band as 0.014–0.033 Hz (33),

while (21) argued that the shape of SpO2 signal is similar to a

sinusoid with 0.02 Hz frequency and therefore used a 0.02 Hz

IIR Butter-worth low-pass filter to suppress and smooth the

SpO2 signal. Another study employed a complex Wavelet filter to

eliminate noise from muscle movements (4). Furthermore,

Stuban and Niwayama (34) demonstrated that lowering the

low-pass filter frequency to a value closer to the fundamental

frequency of the PPG signal reduced noise without

compromising measurement accuracy. An additional 10 dB of

signal-to-noise ratio (SNR) is recommended for accurate SpO2

measurement (35). However, no study provided a detailed

justification for these methods, nor did they analyzed how these

techniques influenced signal quality and subsequent

classification performance.
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The most common pre-processing practice involves using a

threshold between 50% and 100% to eliminate hardware errors.

However, to determine the optimal filter settings, future studies

are needed to conduct a comprehensive benchmarking of all

possible filter options.
3.3 Feature construction and selection

Two primary approaches dominate feature extraction methods.

The first approach relies on manual feature extraction, leveraging

the researchers’ domain expertise. This approach has been

applied in 19 studies, where hand-crafted features were derived

to ensure model interpretability and applicability across various

shallow learning models. While this method can be time-

consuming, it remains valuable for its transparency and ease of

understanding. A comprehensive list of SpO2 features is detailed

in Xie and Minn (9), Gutiérrez-Tobal et al. (36), Levy et al. (37).

To optimize features for model construction, several techniques

have been employed to select features with strong discriminating

power. These include forward stepwise logistic regression (18),

recursive feature elimination (38), fast correlation-based filter

(36), maximum relevance minimum redundancy (11), and heat-

map (39). One commonly used feature is the Oxygen

Desaturation Index (ODI), due to its strong correlation with the

Apnea-Hypopnea Index (AHI) which is a standard measurement

of sleep apnea severity (7, 11, 20, 33, 39–42). However, ODI

requires a minimum sampling rate of 1 Hz, which limits its

applicability in datasets from lower-frequency devices like

smartwatches. Other features such as entropies (7, 12, 40),

Lempel-Ziv complexity (LZ) (7, 33, 43), and demographic

features (e.g., age, gender, neck circumference, body mass index

(BMI)) (41, 44, 45) have also gained prominence. These features

have been ranked highly in importance compared to others.

Deep learning (DL) has recently emerged as a novel feature

extraction paradigm. DL models, such as convolutional neural

networks (CNNs) (46, 47) and long short-term memory (LSTM)

networks (8), are capable of automatically extracting features,

potentially uncovering patterns that manual feature extraction

may overlook. For instance, a study by Lyden et al. (48)

demonstrated that CNN and LSTM models achieved high

performance in epoch-wise classification, with accuracy,

sensitivity, and precision exceeding 90%, even when working

with reduced signal sampling rates. This highlights the

effectiveness of DL in apnea screening. However, the trade-off is

that the interpretability and explainability of these extracted

features remain an ongoing challenge as visualizing how the

variables are interconnected and weighted within the network is

virtually impossible (49).

Manually crafting features is a viable approach to enhancing

the explainability and interpretability of machine learning

methods, particularly when aiming for clinical acceptance. Unlike

features derived from deep learning models, which often suffer

from the “black box” problem that limits transparency,

handcrafted features are well-defined, easy to visualize, and

straightforward to interpret. Feature-ranking techniques, such as
Frontiers in Digital Health 03
SHAP or Grad-CAM, can further facilitate a deeper

understanding of how machine learning algorithms work.

Ensuring that methods are explainable and transparent not only

improves their transition to real-world applications but also

enables targeted interventions when the model produces

incorrect predictions.
3.4 Apnea screening model development

All studies in this review employ supervised learning for sleep

apnea screening. As shown in Figure 1, the studies were categorized

into three main problem formulations, epoch-wise screening, AHI

regression, and subject-wise screening.
3.4.1 Epoch-wise model development
Epoch-wise classification, used in 18 studies, involves

segmenting a night’s SpO2 recording into 1-min epochs, with

models classifying each epoch as positive or negative for an

apnea event. A few studies framed the problem as multiclass

classification to distinguish among normal, hypopnea, obstructive

and central apnea events (31, 50). While it is true that sleep

apnea screening can be done by calculating AHI by effective

respiratory event detection, only 5 studies further post-process

the epoch-wise classification results to estimate AHI or assess

apnea severity (16, 19, 20, 51, 52).
3.4.2 Subject-wise model development
Subject-wise classification aims to assign a whole night’s SpO2

recording either a binary (positive and negative) or a multiclass

label (normal, mild, moderate, or severe). This approach classifies

the entire night’s recording, eliminating the need to process large

number of 1-min epochs, thereby reducing computational cost.

While many studies focused on binary classification (7, 12, 36,

38, 43, 53), only a few have applied multi-class classification (40,

54). Another approach is AHI regression, in which a machine

learning model aims to predict AHI as a continuous variable,

and later categorize sleep apnea severity into predefined classes

(e.g., normal, mild, moderate, severe) (11, 33, 38, 52). This

approach allows for more granular predictions, which can be

particularly useful in identifying borderline cases or tracking

changes in AHI over time.
3.4.3 Class balancing
A common issue in sleep apnea classification is the imbalanced

distribution among classes. Epoch-wise classifications often have a

skewed distribution towards normal epochs [e.g., 90% normal in

(4)]. Even with high AHI, normal epochs can dominate [e.g.,

69% normal epochs in (16)]. Subject-wise classifications are more

balanced but may still skew towards severe cases (e.g., 56% severe

in (36)). Several studies address class imbalance with techniques

such as random sampling, SMOTE, and ADASYN (10, 21, 33,

38, 44, 45). These methods create synthetic data to balance

classes but may alter natural data distribution and impact model

generalizability (55).
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FIGURE 1

Summary of SpO2-based sleep apnea screening in terms of target outputs, primary achievements, research gaps and challenges, and future
applications.
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3.5 Model performance in sleep apnea
screening

The studies reviewed reveal a combination of classification

techniques for the screening of sleep apnea. Table 1 shows

various shallow and deep learning models have been applied.

However, it is difficult to conclude which method is the most

optimal due to the lack of standardized evaluation metrics. For

classification problems, evaluation metrics include accuracy

(ACC), sensitivity (SE), specificity (SPEC), F1 score, Kappa

coefficient, Matthews correlation coefficient (MCC), and area

under the curve (AUC). On the other hand, regression

problems require a distinct set of evaluation metrics, such as

correlation coefficient, intraclass correlation coefficient (ICC),

Bland-Altman plots, root mean squared error (RMSE), mean

absolute error (MAE), and R-squared. There has yet to be a

consensus as to which metrics are the best for evaluating

model performance.
3.5.1 Epoch-wise model performance
Epoch-wise classification has shown high performance in sleep

apnea events detection. For instance, Lyden et al. (48) reported

impressive results using shallow models combined with DL-based

features, achieving accuracy of 97.04%, specificity of 97.19%, and

sensitivity of 96.94%. This study simulated smartwatch data by

adding Gaussian noise to down-sampled SpO2 signals at various

signal-to-noise ratios. Most models, except SVM, were minimally

affected by reduced sampling frequency, although performance

dropped significantly below a 30dB signal-to-noise ratio. Naive

Bayes models with LSTM-based features provided the most

stable performance.

A major challenge in epoch-wise classification is the delay

between sleep apnea events and SpO2 desaturation, with delays

reported from 10 to 40 s (21, 51, 56). In addition, subjects sleep

only 75.9% of the time, and hypopnea events are more common

than apnea events or periods of normal breathing (e.g., 73% in

the SHHS dataset). Notably, 11.5% of apneic events lack SpO2

desaturation (51), complicating model accuracy. To address these

issues, Bernardini et al. (16) focused on detecting clusters of

anomalies, providing valuable clinical insights despite lower

performance metrics (81.5% ACC, 67.2% SE). The study

accurately classified sleep apnea severity in 21 out of 30 cases.

Punjabi (57) highlighted that the distribution of apneic events

over the night is crucial for understanding their health impact.

In an effort to reduce classification errors, Bark et al. (10)

developed a selective model that improves accuracy by rejecting

low-confidence predictions, achieving 90.26% ACC, 91.29% SE,

and 89.21% SPEC. Despite these promising results, model

generalization remains a concern due to small sample sizes.

Analysis suggests that RNN and LSTM models generally

outperform CNNs in this field (10, 16, 48, 55).
3.5.2 Subject-wise model performance
The OxiNet model by Levy et al. (11) demonstrated high

performance and generalization, analyzing 12,923 PSG recordings
Frontiers in Digital Health 05
from multiple databases. Despite a slight decrease in performance

on external datasets, the model achieved an F1-score above 0.75

and an ICC greater than 0.92. Subject-wise classification models

generally excel at distinguishing severe sleep apnea but struggle

with lower severity cut-offs (12, 33). For instance, Levy et al. (11)

reported a high misclassification rate for healthy subjects as mild

apnea, particularly in the MrOS dataset (44% misclassified).

Similarly, Liang (12) achieved better performance with a 30/h

cut-off than 5/h, but still faced issues with misclassification. The

model by Gutiérrez-Tobal et al. (33) had high sensitivity but

lower specificity, indicating a tendency to overestimate severity.

Performance issues may arise from imbalanced data and binary

cut-off thresholds. Ganglberger et al. (19) suggested adjusting the

AHI threshold could better reflect severity, particularly near the

borderline. Studies adjusting the cut-off to 10/h showed more

balanced performance (7, 18, 43).

Few studies address post-processing, which is important for

identifying and correcting issues not evident during initial model

development. Papini et al. (58) proposed a post-processing step

to reassess results based on severity discrepancies, considering

factors like cardiac comorbidity and medication.
4 Discussion

Our analysis examined key aspects of AI-driven SpO2-based

sleep apnea screening, including commonly used datasets, signal

preprocessing methods, feature extraction and selection, and

model performance. Although the results are promising, the

variability in devices, algorithms, and study designs makes it

difficult to draw definitive conclusions about which devices and

algorithms represent the state-of-the-art. Based on our findings,

we discuss the research gaps and opportunities associated with

sleep apnea screening at home using SpO2 measurements.
4.1 Research gaps

Our analysis identified twomajor research gaps in AI-empowered

sleep apnea screening using SpO2 measurements. The first gap

pertains to the limitations in the quantity and diversity of datasets.

Specifically, there is a scarcity of large-scale, open-access datasets.

Large volumes of training data are essential for developing robust

AI models, and sharing open datasets is increasingly crucial for

advancing research. However, we found that most studies used

proprietary datasets that are not publicly available. Despite our

focus on wearable deceives for apnea detection, we identified only

four datasets collected with such devices (19, 36, 53, 56), none of

which are openly accessible. In addition, most of the open sleep

datasets were collected in Western countries and predominantly

included data from Caucasian individuals. The lack of data from

diverse populations, especially Black, Hispanic, and Asian groups,

poses a challenge to developing generalizable AI models across

different demographic groups (11, 39).

Furthermore, in the context of home-based or self-tracking, the

user range has expanded beyond patients to include healthy, young
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TABLE 1 A summary of the dataset used, the signal sampling rate, preprocessing methods, applied models, and result reported in included studies.

Reference Classification
type

Dataset
(recordings)

Signal and
sampling

rate

ML model
applied

Pre-
processing
method

Feature
engineering
method

Evaluation
matrix

(result: best)
Alvarez et al. (7) Apnea/healthy, cut off

10
Proprietary
(n ¼ 74)

SpO2 - 0.2 Hz KNNa,
hierachical, fuzzy
c-mean

Apprioximate
Entropy, Central
Tendency Measure,
Lempel-Ziv
complexity

Acc Sp Se (0.955
0.905 0.833)

Alvarez et al. (18) Apnea/healthy, cut off
10

Proprietary
(n ¼ 219)

SpO2 - 1 Hz Logistic
regression

Extract and select
features using forward
stepwise logistic
regression

Acc Sp Se (0.870
0.840 0.952)

Xie and Minn (9) Epoch-wise
classification, 1-min-
segment

UCD (n ¼ 25) SpO2 - 1 Hz
ECG - 128 Hz

SVM, KNN,
MLP,C4.5
Decision Tree,
REPTree,FT
Tree,AdaBoost,
Decision Stump,
Bagging with
REPTreea
Bagging with
Alternative,
Decision Tree

Remove criteria:
SpO2 < 50%

Extract 111 features
from ECG and 39
features from SpO2

Acc Sp Se (0.844
0.859 0.870)

Zhang et al. (17) Epoch-wise
classification, 5s
window

Proprietary (40
records)

SpO2 - 1 Hz SVM Remove criteria:
SpO2 < 50%,
variation > 10%

Extract 7 features
from a window of
150s from the starting
point of the SpO2

desaturation

Acc Sp Se
Effectivity (0.935
0.894 0.957 0.944)

Sánchez-Morillo et al.
(40)

4 OSA severity Proprietary
(n ¼ 115)

SpO2 - 8 Hz Binary
hierarchical
classifier

Extract 28 features
from SpO2

Sp, Se (0.967
0.917)

Hang et al. (20) ODI detection, AHI
regression, 4 OSA
severity

Proprietary
(n ¼ 616)

SpO2 - 1 Hz SVM Remove criteria:
_ SpO2 < 50%,
_ DSpO2 > 4%

ODI, neck
circumference, BMI,
Epworth scalling
score

Acc, Sp, Se, AUC
(0.901 0.934 0.861
0.952), Bland-
altman plot

Mostafa et al. (43) Apnea/non-apnea, cut
off 10

AED, UCD
(n ¼ 33)

SpO2 - 1 Hz Deep Belief Net Raw signal Acc Sp Se (0.976
0.959 0.788)

Jayawardhana and de
Chazal (3)

Epoch-wise
classification, 1 min
segment

Proprietary
(n ¼ 52)

SpO2 - 0.2 Hz LDA Exclusion criteria:
_ SpO2 < 65%,
_ DSpO2 > 4%
Moving average
filter

32 features from PPG
signal
7 features from SpO2

Acc Sp Se K (0.85
0.90 0.72 0.61)

Pathinarupothi et al.
(8)

Epoch-wise
classification, 1 min
segment

AED (n ¼ 8) SpO2 - 1 Hz LSTM - RNN RNN-based features Acc Pre Se (0.955
0.992 0.929)

Deviaene et al. (51) Epoch-wise
classification, 1 min
segment AHI
regression

SHHS, AED, UZ
Leuven
(n ¼ 8,552)

SpO2 - 1 Hz SVM, KNN,
LDA, RFa

Remove SpO2 <
50% linear
interpolation
Moving average
filter Re-annotate
label

143 features (Time
domain, desaturation
severity, statistical,
Quasi-periodicity
features)

Acc Sp Se PPV
AUC K (0.828
0.886 0.643 0.642
0.854 0.527)

Hwang et al. (52) Epoch-wise
classification, 1 min
segment AHI
regression Subject-wise
classification, cut off 5,
10, 15

Proprietary
(n ¼ 230)

SpO2 - 1 Hz CurveExpert
Professional
software

raw signal Acc Sp Se PPV
NPV K (0.906
0.872 0.829 0.863
0.886 0.72)

Gutiérrez-Tobal et al.
(36)

Subject-wise
classification, cut off 5,
10, 15

Proprietary
(n ¼ 320)

SpO2 - 1 Hz LDA, logistic
regression,
Bayesian MLP,
AdaBoost, AB-
LDAa

Statistical, spectral,
non-linear, and
clinical OSA-related
features

Acc Sp Se (0.787
0.655 0.889)

Rolón et al. (50) Normal breathing/
Apnea/Hypopnea

SHHS (n ¼ 995) SpO2 - 1 Hz DAS-KSVD Linear
interpolation
Wavelet filters

Discriminant
structure dictionaries

Acc Sp Se AUC
(0.879 0.883 0.876
0.957)

Ma et al. (32) Epoch-wise
classification, 1 min
segment

UCD (n ¼ 25) SpO2 - 8 Hz SVM Exclusion criteria:
_ SpO2 < 50%

10 statistic features Acc Sp Se (0.902
0.941 0.876)

(Continued)
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TABLE 1 Continued

Reference Classification
type

Dataset
(recordings)

Signal and
sampling

rate

ML model
applied

Pre-
processing
method

Feature
engineering
method

Evaluation
matrix

(result: best)
Mostafa et al. (13) Epoch-wise

classification, 1 min
segment

AED, UCD,
HuGDN2008
(n ¼ 103)

SpO2 - 50 Hz CNN CNN-based features Acc Sp Se (0.927
0.963 0.874)

Mostafa et al. (47) Epoch-wise
classification, 1 min
segment

AED, UCD,
HuGDN2008
(n ¼ 103)

SpO2 - 50 Hz CNN CNN-based features Acc Sp Se (0.942
0.958 0.920)

Rahman and Morshed
(38)

Normal/Moderate-
severe, cut off 15, AHI
regression

SHHS (n ¼ 1,000) SpO2, EEG -
125 Hz, ECG -
125 Hz, Sleep
stage

logistic
regression,
random forest,
Ada-Boosta,
SVM, Multi-layer
Perceptron

Exclude subjects
with central apnea

Percentage of sleep
time with SpO2 level
below 90%, 85%, 80%,
75% HRV features
EEG features Feature
selection, Min-max
scaling

Acc Sp Se (0.934
0.934 0.920),
RMSE ¼ 4.6 and
R-squared value ¼
0.71

Li et al. (39) Apnea/healthy cut-off
5/h

Proprietary
(n ¼ 181)

SpO2 - 1 Hz
ECG - 200 Hz

Linear classifier,
linear SVM,
Complex Tree,
RUSBoosted
Trees, Logistics
Regression, Feed-
forward neural
networka

Mean SpO2, Min
SpO2, ODI

Acc Sp Se AUC
(0.978 0.939 0.986
0.97)

Bernardini et al. (16) Epoch-wise
classification, 1s
segment, ) AHI
evaluation ) 4 OSA
severity

OSASUD
(n ¼ 30)

SpO2 - 1 Hz
ECG - 80 Hz

CNN-LSTM
model

Discard segment
with 50% null
values

CNN-based features Acc Sp Se F1 AUC
(0.943 0.937 0.951
0.927 0.987)

Piorecky et al. (21) Epoch-wise
classification, 1s
segment

Proprietary
(n ¼ 477)

SpO2 - 50 Hz
Airflow - 50
Hz

CNN IIR Butterworth
low-pass filter,
order 2, cut-off
frequency of 0.02
Hz. Shifting SpO2

signal by 25s

Apprioximate
Entropy, Central
Tendency Measure,
Lempel-Ziv
complexity

Acc Sp Se AUC
(0.829 0.842 0.816
0.903)

Gutiérrez-Tobal et al.
(33)

AHI regression ) 4
OSA severity

SHHS (n ¼ 8762)
Proprietary
(n ¼ 322)

SpO2 - 1 Hz LSBoost (Least
Square Boost)

Clinical features,
Time domain
features, Frequency
domain features

ICC 0.924, ) Acc
Se Sp PPV NPV
(0.919 0.865 0.966
0.956 0.894)

Ganglberger et al. (19) Epoch-wise
classification, 1s
segment, ) AHI
evaluation ) 4 OSA
severity

Proprietary
(n ¼ 412)

Respiratory
signal SpO2

Random forest 10 selected features
from respiratory
signal 1 feature from
SpO2

Acc Se Pre
F1-score ROC-
AUC PRC-AUC
(0.95 0.85 0.49
0.59 0.83 0.52) )
r-square (0.92) )
Acc 0.8

Sharma et al. (4) Epoch-wise
classification, 1 min
segment

AED, UCD
(n ¼ 33)

SpO2 - 100 Hz RUSBoost
Decision Treesa
Logistic
regression
KNN
SVM

Butter-worth filters
order 6 Wavelet-
filter to remove
motion artifacts

Wavelet-based
Shannon entropy
features

Acc Sp Se AUC
(0.960 0.958 0.961
0.98)

Albuhayri (46) Epoch-wise
classification, 1 min
segment

AED, UCD
(n ¼ 33)

SpO2 - 100 Hz CNN CNN-base features Acc Sp Se Pre
F1-score (0.955
0.957 0.936 0.956
0.946)

Singtothong and
Siriborvornratanakul
(31)

Epoch-wise
classification, 30s
segment OSA, CSA,
MSA, H-desat,
H-arousal

SHHS (n ¼ 8,068) SpO2 - 1 Hz
PR - 1 Hz

CNN Exclusion criteria:
_ SpO2 < 70%
Linear
interpolation SpO2

mean is subtracted

CNN-based features Acc Se Sp F1-score
PPV PR-AUC
ROC-AUC (0.822
0.828 0.822 0.478
0.336 0.589 0.904)

Lyden et al. (48) Epoch-wise
classification, 1 min
segment

AED (n ¼ 8) SpO2 - 100 Hz random forest,
SVM, Logistic
regession, KNN,
Naive Bayesa

CNN and LSTM-
based features

Acc Pre Se (0.970
0.972 0.969)

(Continued)
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TABLE 1 Continued

Reference Classification
type

Dataset
(recordings)

Signal and
sampling

rate

ML model
applied

Pre-
processing
method

Feature
engineering
method

Evaluation
matrix

(result: best)
Chen et al. (54) 4 OSA severity MESA, SHHS,

MrOS
(n ¼ 14,433)

SpO2 - 1 Hz DNN-based
model

All sleep records
were processed to
have the same
length (8 h)

DNN-based features Acc Sp Se Pre
(0.805 0.931 0.800
0.818)

Levy et al. (11) AHI regression 4 OSA
severity

SHHS, UHV, CFS,
MrOS, MESA
(n ¼ 12,923)

SpO2 - 1 Hz OxiNet Exclusion criteria:
_ TST < 4 h
_ Subjects < 18yrs
Delta filter noise
removal

CNN-based long,
short-range features

ICC F1-score (0.96
0.84)

Bark et al. (10) Apnea and RERA
(respiratory effort
related arousals), 30s
segment

PhysioNet You
snooze you win
(n ¼ 1,983)

SpO2 - 1 Hz,
ECG - 200 Hz

1D-CNN-LSTM
(SeIANet)

Outlier removal,
interpolation,
Minmax
normalization,
Segmentation 30s,
overlap 5s

CNN-based features Acc Sp Se F1-score
(0.903 0.892 0.913
0.905)

Liang (12) Apnea/healthy, Severe/
others

SHHS (n ¼ 5,786) SpO2 - 1 Hz Logistic
Regression, SVM.
Light Gradient
Boosting
Machine
(LGBM)a

Exclusion criteria:
_ TST < 4 h
_ SpO2 < 50%,
_ DSpO2 > 4%

Feature construction
based on multiscale
attention entropy
analysis and feature
transformation using
ICA.

Acc Sp Se PPV
NPV F1-score
MCC AUC (0.881
0.972 0.460 0.800
0.893 0.579 0.539
0.716)

Bilge et al. (53) Apnea/healthy Severe/
others Severe/mild-
moderate

Proprietary
(n ¼ 115)

SpO2 - 40 Hz ANN (5 layers) Features extracted at
different window
lengths

Sp Se PPV NPV
AUC (0.90 0.84
0.97 0.76 0.93)

Acc, accuracy; Sp, specitivity; Se, sensitivity; Pre, precision; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; K, Cohen’s Kappa; F1, F1-score; ICC,
intraclass correlation coefficient; ROC-AUC, area under the receiver-operating characteristic curve; PR-AUC, precision-recall area under the curve. a:bestMLmodelreported.

Hoang and Liang 10.3389/fdgth.2025.1510166
individuals in everyday life. The innovation of portable and

wearable sensors has highlighted the urgent need for datasets

derived from smartwatches, smart rings, and similar devices. The

closer these datasets reflect real-world conditions, the more

effectively machine learning algorithms can be applied in

practice. Another promising trend is the use of longitudinal data,

which provides a more detailed and stable representation of

health status over time. In the near future, sleep apnea data from

healthy young individuals, collected through consumer devices

over extended periods, will be essential for advancing research

and improving screening models.

The second major gap is the need for standardization in data

collection, signal preprocessing, and model benchmarking. This

lack of standardization creates challenges for reproducibility,

comparability and generalizability. Data collected across different

studies vary significantly due to differences in the type of devices

used, the protocols followed (e.g., timing, duration, sensor

placement), and the environmental conditions under which data

are gathered. Signal preprocessing is another area where

standardization is absent. Steps such as noise filtering and

artifact removal are often performed differently across studies,

leading to inconsistencies in the data quality. In addition,

variations in datasets used for model training and testing,

coupled with differences in evaluation metrics, hinder direct

comparisons between models (19). Many studies focus solely on

accuracy (e.g., (11, 31, 47)), which can be misleading, especially

in the presence of unbalanced data. The generalizability of

models is frequently overlooked; only one study extensively

investigated model performance on different datasets other than
Frontiers in Digital Health 08
the training set (37). In contrast, several studies reported

decreased model performance when applied to new datasets (21,

31, 46, 47). To facilitate meaningful cross-model comparisons,

sharing source code is recommended; however, only a few studies

have done so (21, 37, 45).
4.2 Opportunities and future directions

To address the identified research gaps in AI-powered sleep

apnea screening using SpO2 measurements, future research

should focus on enhancing dataset quality and standardization.

Developing and sharing large-scale, open-access datasets that

include diverse populations is crucial for training robust and

generalizable AI models. Collaborative data initiatives involving

academia, industry, and healthcare organizations can facilitate the

creation of comprehensive datasets. Additionally, establishing

standardized protocols for data collection and signal

preprocessing will improve reproducibility and comparability

across studies. Formulating and disseminating guidelines for data

collection and preprocessing, along with creating benchmarking

frameworks, can help ensure consistency and facilitate

meaningful cross-study comparisons.

Moreover, advancing model evaluation and generalizability is

essential for improving AI performance in sleep apnea screening.

Future research should emphasize evaluating models on diverse

datasets and adopting robust evaluation metrics that account for

data imbalance and biases. Encouraging transparency by sharing

methodologies, preprocessing scripts, and source code can
frontiersin.org
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enhance reproducibility and foster a more reliable research

environment. Exploring multi-modal data approaches and

innovative sensor technologies could also improve the accuracy

and robustness of models. By addressing these areas, the field

can make significant strides toward developing more effective

and generalizable AI solutions for sleep apnea detection.

Finally, research on AI-based sleep apnea research has been

lacking a user-centered perspective, and this needs to be

addressed in future studies. In addition to improving model

performance, future research must also prioritize clinical

applicability and user adoption (59). Keeping experts involved

by collecting their feedback to continuously retrain the models

can help better align the inner workings of the models with

expert decision-making processes. Engaging with both patients

and clinicians through pilot studies, usability testing, and

observational trials can provide valuable insights into

model interpretability, user trust, and practical deployment.

Last but not the least, designing user-friendly interfaces that

visualize model predictions in an easy-to-understand manner

is important for fostering user acceptance and real-

world applicability.
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