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Introduction: Blood pressure (BP) serves as a crucial parameter in the
management of three prevalent chronic diseases, hypertension, cardiovascular
diseases, and cerebrovascular diseases. However, the conventional
sphygmomanometer, utilizing a cuff, is unsuitable for the approach of mobile
health (mHealth).
Methods: Cuffless blood pressure measurement, which eliminates the need for a
cuff, is considered a promising avenue. This method is based on the relationship
between pulse arrival time (PAT) parameters and BP. In this study, pulse transit
time (PTT) was derived from ballistocardiograms (BCG) and impedance
plethysmograms (IPG) obtained from a weight-fat scale. This study aims to
address two challenges using deep learning and machine learning
technologies: first, identifying BCG and IPG signals with good quality, and
then extracting PTT parameters from them to estimate BP. A stacked model
comprising a one-dimensional convolutional neural network (1D CNN) and
gated recurrent unit (GRU) was proposed to classify the quality of BCG and
IPG signals. Seven parameters, including calibration-based and calibration-free
PTT parameters and heart rate (HR), were examined to estimate BP using
random forest (RF) and XGBoost models. Seventeen healthy subjects
participated in the study, with their BP elevated through exercise. A digital
sphygmomanometer was employed to measure BP as reference values. Our
methodology was validated using data collected from our custom-made device.
Results: The results demonstrated a signal quality classification accuracy of
0.989. Furthermore, in the five-fold cross-validation, Pearson correlation
coefficients of 0.953 ± 0.007 and 0.935 ± 0.007 were achieved for systolic BP
(SBP) and diastolic BP (DBP) estimations, respectively. The mean absolute
differences (MADs) of XGBoost model were calculated as 3.54 ± 0.34 and
2.57 ± 0.17 mmHg for SBP and DBP, respectively.
Discussion: The proposed method significantly improved the accuracy of cuffless
BP measurement, indicating its potential integration into weight-fat scales as an
unconstrained device for effective utilization in mHealth applications.
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1 Introduction

The World Health Organization’s Global Observatory defines

mobile health (mHealth) as “medical and public health practices

supported by mobile devices, such as mobile phones, patient

monitoring devices, personal digital assistants, and other wireless

devices” (1). mHealth addresses various challenges in healthcare

services, including monitoring chronic conditions, reducing costs,

empowering patients and families to manage daily healthcare,

and providing direct access to health services regardless of time

and location (2). mHealth systems have the potential to

significantly impact healthcare by enhancing monitoring

and alerting systems, facilitating clinical data collection, and

maintaining records (3). Over the past decade, numerous studies

have focused on developing innovative wearable devices to

monitor the physiological parameters of patients with chronic

diseases such as hypertension, hyperglycemia, and hyperlipidemia.

These parameters generally include blood pressure (BP) and

weight, and they should ideally be measured daily. Additionally,

dietary services can play a role in controlling weight and BP (4–7).

Previous research has shown that managing body weight can

effectively lower blood pressure in hypertensive patients (8, 9).

While companies like Texas Instruments and Analog Devices

have developed chips to support weight-fat scales (10, 11),

traditional sphygmomanometers cannot be developed as a system-

on-chip (SoC) integration due to their reliance on cuffs and

mechanical components. Consequently, cuffless BP measurement

holds the benefit for SoC development. Some prototypes of

earphones and watches have already incorporated blood pressure

measurement functionalities (12, 13).

Sharwood-Smith et al. utilized electrocardiogram (ECG) and

photoplethysmogram (PPG) to continuously estimate systolic

blood pressure (BP) during anesthesia (14). This method relies

on the pulse arrival time (PAT) measured from the R wave of

ECG (proximal reference) and the peak wave of PPG (distal

reference), which correlates with BP according to the Moens-

Korteweg equation (15). Ballistocardiogram (BCG) waves are

generated by gradients in ascending and descending aortic BP

(16). The head-foot BCG can be measured using a strain gauge

placed at the footplate or an accelerometer placed on the

extremities (17). Kim et al. used BCG as the proximal timing

reference for pulse transit time (PTT) (18). BCGs, reflecting the

variations of aortic BP, can influence PTT through the

amplitudes and intervals of BCGs (19). Seok et al. utilized two-

channel BCGs measured from a chair and applied deep learning

techniques to estimate BP (20). Martin et al. employed BCG

measured from a bathroom weight scale along with PPG to

estimate BP (21). Shin et al. employed BCG and PPG measured

from a wrist and a finger sensor, respectively, and incorporated

ECG for BP assessment (22). Liu et al. also put a bathroom

weight scale and PPG sensor on the toes to measure PTT for the

cuffless BP measurement (23).

Impedance plethysmography (IPG) is a technique that

measures the ionic conduction of a specific body segment

according to Ohm’s law during cardiac contractions and

relaxations (24, 25). Transient and static electrical conductivities
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are influenced by the dynamic and balanced conditions of

arteriovenous blood volume within the body segment. In PTT

measurements, wrist IPG and finger PPG were used as proximal

and distal references (26), while arm IPG was also a distal

reference for PAT measurement (27). Liu et al. measured BCG

and IPG signals from a weight-fat scale to estimate blood

pressure while individuals stood on it (28).

However, a drawback of using BCG and IPG signals from

weight-fat scales is the potential signal quality issue. Inan et al.

analyzed the signal-to-noise ratios (SNRs) of ECG, BCG, and

IPG signals, finding SNRs of 15.8, 7.6, and 10.7 dB, respectively

(29). This study showed a potential problem, how to get good

quality signals when using BCG and IPG for the cuffless blood

pressure measurement. The traditional method for determining

physiological signal quality relies on manual markings by experts

(30). However, the spatial and temporal characteristics of

physiological signals can vary with factors such as age (31),

mental condition (32), and sensor positions (33). Liu et al.

employed two-dimensional convolutional neural networks (2D

CNNs) to classify the quality of PPG signals for measuring left

ventricular ejection time (34). However, PPG signals should be

transformed into an image. Shin utilized 1D CNN to evaluate

the signal quality of PPG (35). The advantage of CNN is that

handcrafted features from signals are unnecessary but its

disadvantage is the larger number of model parameters. When

using machine learning (ML) for the classification of signal

quality, PPG signals should be processed to extract the

handcrafted features (35, 36). Prasun et al. used seven time-

frequency features extracted from PPG to perform the signal

quality assessment (37). Roh and Shin converted PPG to a two-

dimensional phase space trajectory image using a recurrence plot

and classified the signal quality (38). Because PTT is determined

from BCG and IPG, the signal quality of both signals should be

good for accurate measurement. Therefore, how to confirm the

signal quality of synchronous BCG and IPG has the potential

requirement for the cuffless BP measurement.

Pandit et al. reviewed the promise and challenge of cuffless BP

measurement and proposed ML technologies to improve the

accuracy (39, 40). ML has gained widespread popularity for

addressing the cuffless BP measurement (37, 41–44). Feature

engineering is a crucial aspect directly impacting both model

performance and size. The accuracy of features significantly

influences performance, with more precise features leading to

improved performance and smaller model sizes. Liu et al. used

ECG and PPG recorded by smartwatches to perform the cuffless

BP measurement (43). They found that the calibration-based

model had better performance than that of a calibration-free

model. Huang et al. utilized the mixer multilayer perceptron neural

network for the BP estimation with ECG and PPG signals (44).

Therefore, PTT parameters extracted from BCG and IPG signals

could be used with ML to improve the accuracy of BP measurement.

As previously mentioned, cuffless blood pressure measurement

using BCG and IPG encounters two main obstacles. Firstly,

obtaining signals of high quality is essential. Secondly, the

accuracy of linear regression models is limited. This study aims

to address these issues using the stacking CNN to classify the
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signal qualities of BCG and IPG obtained from a weight-fat scale

and ensemble ML models to enhance the accuracy of cuffless BP

measurement. To tackle the signal quality problem, we extracted

PAT from ECG, and PPG and differential PPG (DPPG)

measured at the finger as the reference. Signal quality was

categorized based on the differential ratios of PAT estimated by

the reference method and PTT proposed method. A stacked

CNN + gated recurrent unit (GRU) was developed for signal

quality classification, utilizing time series data from BCG, IPG,

and differential IPG (DIPG) as input. Then, BCG is generated by

heart contraction as the proximal reference, and IPG of lower

limbs was the distal reference. In this study, we defined PTT as

the delay time between J-wave of BCG and foot of IPG.

Subsequently, six calibration-based and calibration-free PTT

parameters and heart rate (HR) were extracted from these high-

quality signals. We used random forest (RF) and XGBoost

models to estimate BP, respectively. Seventeen subjects

participated in the study, with BP measured by a digital

sphygmomanometer as a reference. The results demonstrated

that the performance of the proposed method significantly

surpassed those of previous studies, such as the work conducted

by Liu et al. (28).
2 Method and material

Figure 1 illustrates the flowchart of the proposed method,

comprising four main components: data labeling, signal quality

classification, extraction of calibration-based and calibration-free
FIGURE 1

In the flowchart of the proposed method, the blue block is the data labe
CNN+GRU model, red block is the extraction of calibration-based and cal
by RF and XGBoost models.
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PTT parameters, and BP estimation. BCG and IPG signal are

measured from a bodily weight-fat scale, and the reference BP is

measured by a digital sphygmomanometer. During the data

labeling phase, segment data were annotated with both quality

levels and corresponding BP values. Within each segment, PAT

parameters were measured from ECG, PPG and DPPG signals as

the references, while PTT parameters were measured from BCG,

IPG and DIPG signals. The discrepancy between the reference

PAT and proposed PTT serves as the criterion for labeling signal

quality. The reference BP is measured at one-minute intervals,

with BP values between consecutive measurements estimated via

linear interpolation. In the signal quality classification stage, a

stacked model comprising a 1D CNN and gated recurrent unit

(GRU) was employed. This input of the model is the time series

data of BCG, IPG, and DIPG. Segments deemed to be of high

quality undergo feature engineering. The seven calibration-based

and calibration-free PTT parameters are extracted. Subsequently,

RF and XGBoost algorithms were separately utilized for

BP estimation.
2.1 Experiment protocol

Seventeen subjects (11 males and 6 females) were recruited in

this study. Their ages, weights, and heights were 20.2 ± 1.1 years

(19–22 years) old, 62.8 ± 16.1 kg (43–115 kg), and

h166.1 ± 8.0 cm (152–186 cm), respectively. This experiment was

approved by the Research Ethics Committee of Chung Shan

University Hospital (No. CS2-21194), in Taichung City, Taiwan.
ls, the green block is the signal quality classification by a stacking 1D
ibration-free PTT parameters and the orange block is the BP estimation
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When subjects had rested for about 5 min, they filled out an

informed consent form to confirm their participation in this

experiment. All subjects had no cardiac disease. Their BPs were

measured by a digital sphygmomanometer (HEM-7320, Omron,

Osaka, Japan), which served as the reference BP. The cuff was

wrapped on the left upper arm. The probe of PPG was placed on

the middle finger of the right hand. Two electrodes of ECG were

placed on the right and left arms to measure ECG and PPG

signals by the self-made circuits (23). A commercial body

weight-fat scale (HBF-371, Omron, Osaka, Japan) modified by

adding self-made circuits was used to measure the BCG and IPG

signals (28). The experiment procedure is described as follows.

1. Subjects stood on the body weight-fat scale for five minutes to

measure ECG, PPG, IPG, and BCG signals, with blood pressure

measured once.

2. Subjects ran on a treadmill at a fixed speed for at least six

minutes to elevate systolic blood pressure (SBP) by 20 mmHg

from the resting SBP. When the increase was less than

20 mmHg, subjects were instructed to continue running.

3. After treadmill exercise, subjects stood on the commercial body

weight-fat scale for six minutes to measure ECG, PPG, IPG,
FIGURE 2

The synchronous ECG (blue), PPG (red), DPPG (pink), BCG (black), IPG (gree
interval between the J wave of BCG and the foot point of IPG, and the peak
the R wave of ECG and the foot point of PPG, and the peak point of DPPG
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and BCG signals. Blood pressure was concurrently measured

every minute.

4. Each experiment lasted approximately 18 min, and subjects

underwent four sessions with an interval of at least one week.
2.2 Data processing

The ECG, PPG, BCG, and IPG were measured by self-made

system with a sampling rate of 500 Hz (28). Then, all measured

signals were filtered to remove baseline wandering and high-

frequency noise with the 4th-order Butterworth bandpass filter

with 0.5–10 Hz 3 dB frequency bandwidth and passed an 8th-

order all-pass filter for equalizing the group delay within the

passband. Figure 2 shows synchronous ECG (blue), PPG (red),

DPPG (pink), BCG (black), IPG (green), and DIPG (purple)

signals. The PTT1BCG + IPG is the interval between the J wave of

BCG and the foot point of IPG, and the PTT2BCG + IPG is the

interval between the J wave of BCG and the peak point of DIPG,

as shown in Figure 2. PAT1ECG + PPG is the interval between the

R wave of ECG and the foot point of PPG, and PAT2ECG + PPG is
n), and DIPG (purple) signals. The PTT1BCG + IPG and PTT2BCG + IPG are the
point of DIPG. PAT1ECG + PPG and PAT2ECG + PPG are the interval between
.
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the interval between the R wave of ECG and the peak point of

DPPG. The R waves of ECG were detected by the Pan-Tompkins

method (45). The first zero-crossing points of DIPG and DPPG

after an R wave were defined as the foot-point time of IPG and

PPG. The J wave of BCG was the first peak after an R wave.

Then the first peaks of DIPG and DPPG were detected following

their first zero-crossing points. Figure 3 shows the trends of

PAT2ECG + PPG (green), PTT2BCG + IPG (black), SBP (red), and

DBP (orange) for one measurement of subject 1. The SBP and

DBP decrease from 139 mm Hg and 74 mm Hg to 113 mm Hg

and 69 mmHg, respectively. The PTT2BCG + IPG and

PAT2ECG + PPG increase from 292 ms and 228 ms to 330 ms and

262 ms, respectively. Moreover, the variation of PTT2BCG + IPG is

larger than PAT2ECG + PPG. In next sector, we used the

percentage error between PAT2ECG + PPG and PTT2BCG + IPG to

determine the quality of each pulse. Then, the PTT parameters

of pulses with the good quality would be used to estimate the BP.
2.3 Labeling signal quality and blood
pressure

Equation 1 is the percentage error (E) to define the signal

quality for each beat, which is the difference between the

reference PAT2ECG + PPG and proposed PTT2BCG + IPG, and is

normalized by the reference PAT2ECG + PPG. According to the

study of Liu et al. (28), the ECG and BCG have a delay time, as

well as PPG and IPG. Thus, the percentage error is defined as,

E ¼ PAT2ECGþPPG � PTT2BCGþIPG þ Bias
PAT2ECGþPPG

� 100% (1)
FIGURE 3

The trends of PAT2ECG + PPG (green), PTT2BCG + IPG (black), SBP (red), and DB
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where Bias is the average of five delay times between

PAT2ECG + PPG and PTT2BCG + IPG measured during rest in each

experiment. By the trial and error method, 30% was selected as

the threshold. If the E is larger than 30%, this pulse is labeled as

poor quality. Figure 4 shows the labels of pulses in red. When

the pulse is of good quality, the label is 1. Otherwise, the label is

0. The second pulse is labeled as poor quality because the foot of

its IPG is in the wrong place.

During the experiment, the subjects’ BP was measured by the

digital sphygmomanometer every minute, serving as the reference.

We hypothesized that the subjects’ BP tended to decrease after

exercise while standing on the weight-fat scale. Thus, we employed

the linear interpolation method to estimate the BP for each pulse.
2.4 Data segment

Figure 5 shows the method of data segmentation. The window

is of 1024 points with an overlap of 512 points. The segments were

labeled as good or poor quality depending on all pulses belonging

to good or poor quality. If the quality of one pulse is different from

the other pulses, this segment is deleted. The BPs of segments were

the average BP of all pulses. The time of a segment is about 2 s, and

the overlapping time is about 1 s. Thus, the numbers of good and

poor quality samples were 2,262 and 20,358, a total of 22,620

samples. The BCG, IPG, and DIPG signals in the segment were

normalized by Equation (2).

Z ¼ x � �x
s

(2)
P (orange) for one measurement of subject 1.
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FIGURE 4

The BCG (black), IPG (green), and DIPG (purple). The label of signal quality for each pulse is the red line. When the pulse belongs to the good quality,
the label is 1 (higher horizontal line). Otherwise, the label is 0 (lower horizontal line).

FIGURE 5

BCG, IPG, and dIPG signals are segmented with 1024 points as a sample, and the overlap is 512 points.
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where Z is the normalized signal, x is the original signal, and its

mean and standard deviation are �x and s, respectively.

The samples with good quality were used to estimate the BP.

There were 2262 samples. According to the IEEE Standard for

Wearable, Cuffless Blood Pressure Measuring Devices (46), the BP

classification has four categories, normal (SBP < 120 mmHg

and DBP < 80 mmHg), pre-hypertension (120 mmHg≤ SBP <

140 mmHg or 80 mmHg≤DBP < 90 mmHg), stage-1 hypertension

(140 mmHg≤ SBP < 160 mmHg or 90 mmHg≤DBP < 100 mmHg),

and stage-2 hypertension (160 mmHg≤ SBP or 100 mmHg≤DBP).

In the 2,262 samples, the numbers of four BP categories are 597, 766,

785, and 114, respectively.
2.5 Model of signal quality classification

We proposed a stacked 1D CNN +GRU model for the signal

quality classification as shown in Figure 6. The input sample was

a time series data of three channels, BCG, IPG, and DIPG.

A time-distributed layer comprising two 1D CNNs (i.e., two

pairs of CNNs with three layers, a maximal pool layer, and a

flattened layer) is stacked on the top of GRU. A sample was

separated into two segments, each containing 512 points. In the

convolutional layer, the number of filters is 32, the kernel sizes

are 3, 5, and 13, respectively, and the stride is 2. In the maximal

pooling layer, the kernel size is 2, and the stride is 2. The

activation function employed is ReLU. The unit number of GRU

is set to 1,024. The batch size is 512, with the control reset gate

and update gate using a sigmoid function and the hidden state

using a tanh function. The numbers of full connection layers are

1024, 256, and 1, respectively, with ReLU as the activation
FIGURE 6

The structure of the proposed stacking 1D CNN+GRU model for
the signal quality classification. Three input channels, BCG, IPG,
and DIPG come through a time-distributed layer comprising a
stacking 1D CNN+GRU. Then, weights between GRU layer and
full connection layer are dropout 50%. The activation function in
output layer is sigmoid function.
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function in convolutional layers and hidden layers and the

sigmoid function in the output layer. The threshold of output is

0.5. The dropout in the hidden layer is 0.5. The loss function

is the binary Cross-Entropy function, and the Adam optimizer is

used, with a learning rate of 0.0001.
2.6 Parameters of blood pressure
estimation

The parameters of BP estimation were extracted from the

pulses with good quality. Because the size of samples was

1024 points, there were at least two pulses in a sample. Thus, a

sample has at last two PTT parameters. In a sample, mPTT1,

mPTT2, and mHR denote the averages of all PTT1BCG + IPG

values, all PTT2BCG + IPG values, and all heart rates, respectively.

SBPrest and DBPrest are the BP in the resting phase. Table 1

shows the definition of eight parameters in a sample. The

calibration-based PTT parameters are the ratios between PTT

parameters and SBPrest and DBPrest, respectively, including

PTT1SYS, PTT1DIA, PTT2SYS, and PTT2DIA. The calibration-free

PTT parameters include mPTT1, mPTT2, and Ratio. Table 1

shows the definition of eight parameters. Then, we evaluated the

important degrees of eight parameters. Permutation feature

importance is a model inspection technique, and a useful method

for nonlinear estimation (47). When a single parameter is

shuffled randomly, the model score is decreasing. This drop

represents how much the model depends on this parameter. This

procedure will break the relation between the parameter and

the target. This method will be calculated many times with the

different permutations of parameters. The higher score, the

higher significance. Figure 7 shows the significant scores of eight

parameters with this method based on XGBoost. The scores of

mPTT2, PTT2SYS, PTT2DIA, mPTT1, PTT1SYS, PTT1DIA, HR,

and Ratio are 1.44, 0.92, 0.83, 0.21, 0.10, 0.08, 0.06, and 0,

respectively. Since the score for Ratio is 0, the other seven

parameters, excluding Ratio, were used to explore the model with

the best performance.
2.7 Regression models of blood pressure

This study employed two prevalent nonlinear regression

models, RF and XGBoost, both developed by Python.
TABLE 1 The definition of parameters in a sample.

Parameter Formula Description
mPTT1 Average of PTT1

mPTT2 Average of PTT2

Ratio mPTT1
mPTT2 Ratio between mPTT1 and mPTT2

PTT1SYS mPTT1
SBPrest

Ratio between mPTT1 and SBPrest

PTT1DIA mPTT1
DBPrest

Ratio between mPTT1 and DBPrest

PTT2SYS mPTT2
SBPrest

Ratio between mPTT2 and SBPrest

PTT2DIA mPTT2
DBPrest

Ratio between mPTT2 and DBPrest

mHR Average of heart rates
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FIGURE 7

The significant scores of mPTT2, PTT2SYS, PTT2DIA, mPTT1, PTT1SYS, PTT1DIA, mHR, and ratio with the permutation feature importance.
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2.7.1 Random forest
The RF model represents an advanced extension of the decision

tree model, wherein random trees are constructed across multiple

subspaces to reduce inter-correlation among them (40). For this

study, the minimum number of leaves, the minimum number of

splits, and the number of trees were set to 4, 2, and 300, respectively.
2.7.2 XGBoost
XGBoost (eXtreme Gradient Boosting) represents an enhanced

version of the Gradient Boosting technique, combining numerous

weak decision trees to construct a powerful predictive model

(48). Compared to conventional classification and regression

techniques, XGBoost typically demonstrates a superior accuracy

due to its robustness and adaptive learning capability. For this

study, the learning rate, maximum depth, and the number of

trees were set to 0.1, 3, and 300, respectively.
2.8 Statistical analysis

The quantitative data is expressed as the mean ± standard

deviation. In the classification of signal quality, the sensitivity,

specificity, and accuracy are used to evaluate the performance

of model.

Sensitivity(%) ¼ TP
(TP þ FN)

� 100% (3)

Specificity(%) ¼ FP
(FP þ TN)

� 100% (4)

Accuracy(%) ¼ TP þ TN
(TP þ TN þ FP þ FN)

� 100% (5)
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TP, FN, FP, and TN are true positive, false negative, false positive,

and true negative, respectively.

Moreover, the Pearson correlation coefficient (PCC), ρ, is used

to analyze the relationship between the estimated and target BPs.

Equation (6) shows the calculation of correlation coefficient,

r(X, Y) ¼
Pn

i¼1 (xi � �x)(yi � �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (xi � �x)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (yi � �y)2

q (6)

where X and Y are the estimated and target BPs, and n is the

number of testing samples. The mean absolute difference (MAD)

is also used to confirm the accuracy of the proposed model,

MAD ¼ S2 þ �D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S2 þ �D2

p , (7)

where S is the standard deviation of errors, and �D2 is the mean of

error. Furthermore, the precision and agreement between the

standard and estimated BP by the reference and proposed

methods are compared using a Bland–Altman plot.
3 Results

The hardware utilized in this study consisted of an Intel Core

i7-8700 CPU and an NVIDIA GeForce GTX3070 GPU. The

results include two parts, signal quality classification and BP

estimation. In the signal quality classification, there were 22,620

samples, with 15,834 and 6,786 samples allocated for training

and testing, respectively. For BP estimation, only samples with

good quality were used, resulting in 2,262 samples, with 1,809
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and 453 samples for training and testing, respectively. The training

samples were divided into training and validation sets in an

8:2 ratio.
3.1 Signal quality classification

Figure 8a shows the accuracy curves of the stacking 1D

CNN +GRU model in the training and validation phases, and

Figure 8b illustrates the loss curves. The blue and orange lines

are the training and validation results of each epoch. When the

number of epochs is 14, the accuracy approaches 0.97, and

the loss value approaches 0.12. Figure 9 shows the fusion matrix,

the numbers of TP, TN, FN, FP are 1174, 5534, 7, and 71,

respectively. The accuracy, sensitivity, and specificity are 0.989,

0.994, and 0.987, respectively.
FIGURE 9

The fusion matrix in the testing phase. The numbers of TP, TN, FN,
FP are 1174, 5534, 7, and 71, respectively.
3.2 Blood pressure estimation

In the testing phase, the numbers of samples in the categories

of normal, pre-hypertension, stage-1 hypertension, and stage-2

hypertension were 122, 146, 155, and 30, respectively. Figure 10a

illustrates the BP estimation using the RF model, with PCCs of

0.94 for both SBP (blue circle) and DBP (green circle). The

MAD were 3.54 mmHg for SBP and 2.57 mmHg for DBP.

Bland–Altman plots for SBP are depicted in Figure 11a,

indicating a bias of 0.13 mmHg, with upper and lower bounds of

agreement at 10.35 and −10.10 mmHg, respectively. Similarly,
FIGURE 8

The results of the stacking 1D CNN+GRU model in the training (blue) and va
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Bland–Altman plots for DBP, shown in Figure 11b, display a

bias of −0.19 mmHg, with upper and lower bounds of agreement

at 7.29 and −7.67 mmHg, respectively. The percentages of

samples falling outside the limits of agreement for SBP and DBP

were 5.74% and 6.18%, respectively. Figure 12 shows the

distributions of absolute difference between reference and BP

estimation. SBP estimated by RF, in Figure 12a, are 83.2%,

93.8%, and 97.4% differences no more than 5 mmHg, 10 mmHg,
lidation (orange) phases, (a) the accuracy curves, and (b) the loss curves.
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FIGURE 10

The Pearson correlation coefficients of SBP (blue circle) and DBP (green circle) estimations (a) RF model are both 0.94. (b) XGBoost model are 0.95
and 0.94, respectively.

FIGURE 11

Bland–Altman plots for SBP and DBP estimations using the RF model are depicted. (a) For SBP estimation, a bias of 0.13 mmHg is observed, with the
upper and lower bounds of agreement at 10.35 and −10.10 mmHg, respectively. (b) For DBP estimation, a bias of −0.19 mmHg is noted, with the upper
and lower bounds of agreement at 7.29 and −7.67 mmHg, respectively.
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and 15 mmHg, respectively. DBP estimated by RF, in Figure 12b,

are 89.4%, 96.0%, and 98.5% differences less than 5 mmHg,

10 mmHg, and 15 mmHg, respectively.

Figure 10b illustrates the BP estimation using the XGBoost

model, with Pearson correlation coefficients (PCCs) of 0.95 for

SBP (blue circle) and 0.94 for DBP (green circle). The MAD for

SBP and DBP were 3.35 and 2.67 mmHg, respectively. Bland–

Altman plots for SBP are presented in Figure 13a, indicating a

bias of 0.26 mmHg, with upper and lower bounds of agreement

at 9.80 and −9.28 mmHg, respectively. Similarly, Bland–Altman

plots for DBP, shown in Figure 13b, exhibit a bias of

−0.20 mmHg, with upper and lower bounds of agreement at 7.28

and −7.68 mmHg, respectively. The percentages of samples

falling outside the limits of agreement for SBP and DBP were
Frontiers in Digital Health 10
5.74% and 6.62%, respectively. Figure 14 shows the distributions

of absolute difference between reference and BP estimation by

XGBoost. SBP estimation, in Figure 14a, are 81.9%, 95.6%, and

98.7% differences no more than 5 mmHg, 10 mmHg, and

15 mmHg, respectively. DBP estimation, in Figure 14b, are

83.9%, 96.9%, and 99.1% differences less than 5 mmHg,

10 mmHg, and 15 mmHg, respectively. Figure 15. Shows the

illustrations of the reference BP and BP estimated by XGboost

with testing samples, (a) SBP, (b) DBP.

For the 5-fold cross-validation results of the RF and XGBoost

models, in Table 2, PCCs for SBP estimation are 0.947 ± 0.010 and

0.953 ± 0.007, respectively. PCCs in DBP estimation are

0.940 ± 0.007 and 0.935 ± 0.007 for RF and XGBoost models,

respectively. In Table 3, the MADs of SBP estimation for RF and
frontiersin.org
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FIGURE 13

Bland–Altman plots for SBP and DBP estimations using the XGBoost model are depicted. (a) For SBP estimation, a bias of 0.26 mmHg is observed, with
the upper and lower bounds of agreement at 9.80 and −9.28 mmHg, respectively. (b) For DBP estimation, a bias of −0.20 mmHg is noted, with the
upper and lower bounds of agreement at 7.28 and −7.68 mmHg, respectively.

FIGURE 12

The distributions of absolute difference between reference and BP estimation by RF model. (a) SBP estimated with 83.2%, 93.8%, and 97.4%
differences no more than 5 mmHg, 10 mmHg, and 15 mmHg, respectively. (b) DBP estimated with 89.4%, 96.0%, and 98.5% differences less than
5 mmHg, 10 mmHg, and 15 mmHg, respectively.
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XGBoost models are 3.54 ± 0.34 and 3.35 ± 0.28 mmHg, respectively.

Moreover, the MADs of DBP estimation for RF and XGBoost

models are 2.57 ± 0.17 and 2.67 ± 0.15 mmHg, respectively. The

training and testing times for a single sample in the RF model are

758 µs and 40 µs, respectively, whereas, for the XGBoost model,

they are 111 and 7 µs, respectively. The model sizes for the RF

and XGBoost models are 5.04 and 0.31 Mbytes, respectively.
4 Discussion

The bathroom weight-fat scale has become a popular

healthcare device, utilizing strain gauges and bioimpedance
Frontiers in Digital Health 11
analysis to measure body weight and body fat ratio (49). BCG

and IPG signals are embedded in the weight and body

impedance measurements. Inan et al. utilized a weight-fat scale

to measure ECG, BCG, and IPG signals using custom-designed

circuits, and analyzed the signal-to-noise ratios (SNRs) of these

signals (29). They identified the main disadvantage of this

method as the interference caused by electromyogram (EMG).

To address this, Inan et al. used BCG and seismocardiogram

signals measured by an accelerometer placed on the hand (17) to

mitigate interference with EMG. Liu et al. suggested that the

SNR of IPG could be affected by the permutation of electrodes

(27). Therefore, during the measurement of PTT using BCG

(proximal reference) and IPG (distal reference), signal quality is
frontiersin.org
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FIGURE 14

The distributions of absolute difference between reference and BP estimation by XGBoost model. (a) SBP estimated with 81.9%, 95.6%, and 98.7%
differences no more than 5 mmHg, 10 mmHg, and 15 mmHg, respectively. (b) DBP estimated with 83.9%, 96.9%, and 99.1% differences less than
5 mmHg, 10 mmHg, and 15 mmHg, respectively.

FIGURE 15

The illustrations of the reference BP and BP estimated by xGboost, (a) SBP, (b) DBP.

TABLE 2 PCCs and MAD of each fold in 5-fold cross-validation.

PCC First fold Second fold Third fold Fourth fold Fifth Fold Total
RF_SBP 0.9381 0.9392 0.9386 0.9592 0.9591 0.947 ± 0.010

RF_DBP 0.9357 0.9363 0.9445 0.9519 0.9322 0.940 ± 0.007

XGBoost_SBP 0.9478 0.9470 0.9468 0.9611 0.9606 0.953 ± 0.007

XGBoost_DBP 0.9367 0.9327 0.9384 0.9440 0.9606 0.935 ± 0.007

MAD
RF_SBP (mmHg) 3.6861 3.8243 3.8531 3.1792 3.1652 3.54 ± 0.34

RF_DBP (mmHg) 2.7045 2.6671 2.4550 2.3341 2.7136 2.57 ± 0.17

XGBoost_SBP (mmHg) 3.3960 3.5830 3.5974 3.084 3.0863 3.35 ± 0.28

XGBoost_DBP (mmHg) 2.6735 2.7439 2.5802 2.4987 2.8775 2.67 ± 0.15

Liu et al. 10.3389/fdgth.2025.1511667
a significant challenge. In this study, the reference PAT was

measured by ECG and PPG, which was the classical method of

cuffless BP measurement (14). In Figure 3, we also find that the

variation of PAT2ECG + PPG is lower than PTT2BCG + IPG. We
Frontiers in Digital Health 12
defined the percentage error of 30% to tag the label of signal

quality. This method could decrease the human subjective

influence. Moreover, the lower percentage error, the higher the

accuracy of BP measurement. The number of samples would also
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TABLE 3 The comparison with the previous studies for signal quality
assessment of PPG.

Reference Model Data Results
(34) ResNet-50 2D image Accuracy: 0.925

(35) SVM 1D features Accuracy: 0.899

(36) RF 1D features Accuracy: 0.968

(37) Lightweight CNN 2D image Accuracy: 0.975

(38) 6-layer CNN 1D signal Accuracy: 0.978
Specificity: 0.948
Sensitivity: 0.993

Proposed method Stacked CNN +GRU 1D signals Accuracy: 0.989
Specificity: 0.987
Sensitivity: 0.994
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decrease. Figure 16 shows the Bland–Altman plot for

PAT2ECG + PPG and PTT2BCG + IPG to exhibit a bias of −61.94 ms,

with upper and lower bounds of agreement at 78.39 ms and

−202.28 ms, respectively.

The PTT information is embedded in the time-sequence data

of BCG, IPG, and DIPG. In instances where these signals are of

poor quality, temporal features exhibit significant variation. The

stacked 1D CNN + GRU model includes two parts: feature

extraction using 1D CNN layers and temporal sequence

recognition using the GRU layer. This model has previously been

employed for human activity recognition using inertial sensors

(50). In this study, the BCG, IPG, and DIPG signals were

directly used to train the proposed model, the stacked 1D

CNN +GRU. The accuracy, sensitivity, and specificity
FIGURE 16

Bland–Altman plot for PAT2ECG + PPG and PTT2BCG + IPG. A bias of −61.94 ms
−202.28 ms, respectively.
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approached 0.989, 0.994, and 0.987, respectively. We did not find

any study to classify the signal quality of synchronous BCG and

IPG signals. Thus, Table 5 shows the previous studies for signal

quality assessment of PPG with ML or deep learning techniques.

We find that the accuracies of these studies (36–38) are very

close. However, they only assessed one signal, PPG. We proposed

a model involving two signals, BCG and IPG with better

performance than those of other methods listed in Table 3.

Liu et al. introduced a cuffless BP measurement method

utilizing a commercial weight-fat scale (23, 28). They devised two

measurement techniques to extract PTT: BCG plus PPG, and

BCG plus IPG. The PCCs for SBP and DBP estimations using

BCG and PPG signals were 0.778 and 0.533, respectively.

However, the PCCs for SBP and DBP estimations using BCG

and IPG signals were lower at 0.754 and 0.532, respectively. The

performance of the BCG plus PPG method surpassed that of the

BCG plus IPG method, primarily due to the superior stability of

PPG compared to IPG, a challenging issue to address.

Additionally, in these studies, the quality of BCG, PPG, and IPG

signals was determined manually, making it difficult to assess the

quantitative and qualitative performance of the two methods. In

this study, we introduced a novel approach to define the quality

of BCG and IPG pulses based on the percentage error of

PAT2ECG + PPG and PTT2BCG + IPG for each beat. All BCG and

IPG pulses within a segment had to exhibit good quality to be

considered for analysis. Moreover, we used ML technique to

improve the accuracy. Subsequently, the calibration-based and

calibration-free PTT parameters, and mHR in this segment were
is observed with upper and lower bounds of agreement at 78.39 ms and
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TABLE 4 SBP and DBP estimations use the calibration-based parameters,
calibration-free parameters, and all parameters, respectively.

Parameter Model PCC MAE
(mm Hg)

Calibration-
based

PTT1SYS PTT1DIA
PTT2SYS PTT2DIA

XGBoost SBP 0.757 7.381

DBP 0.736 5.190

RF SBP 0.753 7.081

DBP 0.739 5.078

Calibration-
free

mPTT1 mPTT2 mHR XGBoost SBP 0.834 6.008

DBP 0.822 4.350

RF SBP 0.826 5.814

DBP 0.833 4.173

All mPTT1 mPTT2 mHR
PTT1SYS PTT1DIA
PTT2SYS PTT2DIA

XGBoost SBP 0.959 3.377

DBP 0.936 2.661

RF SBP 0.947 3.542

DBP 0.940 2.575
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utilized to estimate BP. Consequently, the PCCs and MADs for

SBP and DBP estimated by XGBoost reached 0.95 and 0.94, and

3.35 and 2.67 mmHg, respectively, representing a significant

improvement over previous method (28).

Previous studies have employed ML techniques to directly

utilize PPG and ECG signals for BP estimation, demonstrating

superior performance compared to linear regression methods (42,

51). In some instances, only temporal and spatial parameters of

PPG pulses were utilized for BP estimation (42). This approach

was feasible due to the high quality of PPG and ECG signals.

However, in our study, the quality of BCG and IPG signals was

lower than those of ECG and PPG signals. Traditionally PAT

and HR parameters could be employed for BP estimation, but

PTT parameters of BCG and IPG signals are more unstable than

PAT of ECG and PPG signals. As a result, we should not only

use the calibration-free PTT parameters, mPTT1 and mPTT2,

but also the calibration-based PTT parameters, mPTT1SYS,

mPTT1DIA, mPTT2SYS, and mPTT2DIA. The calibration-based

PTT parameters were normalized by the resting BP of subjects.

Newman and Greenwald elucidated the relationship between BP

and pulse wave velocity based on the Moens-Korteweg equation

(15). Thus, PAT can be regarded as a relative variable rather

than an absolute one. This implies that calibration is unnecessary
TABLE 5 Comparative result of various methods using the ECG or BCG as the
blood pressure measurement.

Reference PAT/PTT Signals (sensor placement)
(18) BCG (foot) and BPW (finger) SBP: 0.

(19) BCG (foot) and PPG (foot) plus interval and amplitude of
BCG

SBP: 0.

(20) BCG (Chair) SBP: 0.

(21) BCG (foot) and PPG (foot) NA

(22) BCG (hand) and ECG SBP: 0.

(26) IPG (wrist) and PPG (finger) SBP: 0.

(27) ECG and IPG (arm) SBP: 0.

(23) BCG (foot) and PPG (foot) SBP: 0.

(28) BCG (foot) and IPG (foot) SBP: 0.

Proposed BCG (foot) and IPG (foot) SBP: 0.
0.935 ±
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when using PAT to monitor BP change. But the calibration is

necessary to monitor the absolute BP. Mukkamala et al.

proposed an absolute blood pressure estimation, where PAT

should be calibrated using appropriate means (52). In this study,

we used the method of permutation feature importance to

evaluate the significance of all PTT parameters for BP estimation.

PTT2SYS and PTT2DIA have the highest scores of 1.44 and 0.92,

respectively. This result aligned well with the principles of

cuffless BP measurement. Table 4 shows the performances of BP

estimation with calibration-based parameters, calibration-free

parameters, and all parameters, respectively. When only

calibration-based parameters are used to estimate SBP, PCC and

MAE by XGBoost model are 0.757 and 7.4 mm Hg, and 0.753

and 7.1 mm Hg by RF model. For DBP estimation, PCC and

MAE by XGBoost model are 0.736 and 5.2 mm Hg, and 0.739

and 5.1 mm Hg by RF model. When calibration-free parameters

are used to estimate BP, PCC and MAE by XGBoost model are

0.834 and 6.0 mm Hg, and 0.826 and 5.8 mm Hg by RF model.

For DBP estimation, PCC and MAE by XGBoost model are

0.822 and 4.4 mm Hg, and 0.833 and 4.2 mm Hg by RF model.

These results are all lower than them with calibration-based and

calibration-free parameters.

Both RF and XGBoost models are decision-tree based methods,

resulting in very similar PCCs and MAD values. For five-fold cross-

validation, PCCs for SBP and DBP were 0.947 ± 0.010 and

0.940 ± 0.007 for RF model, and 0.953 ± 0.007 and 0.935 ± 0.007

for XGBoost model. MADs for SBP and DBP were 3.54 ± 0.34 and

2.57 ± 0.17 mmHg for RF model, and 3.35 ± 0.28 and

2.67 ± 0.15 mmHg for XGBoost model. RF is an ensemble learning

method that employs bagging, or bootstrap aggregating, with

decision tree algorithms. It creates multiple decision trees during

training, each generated from a random subset of the data. On the

other hand, XGBoost is also an ensemble technique, but it builds

trees sequentially, with each new tree aiming to correct the errors

made by the previous ones. One advantage of XGBoost is its

smaller model size, but its drawback lies in longer training times.

In our study, the sizes of RF and XGBoost were 5.04 and

0.31 Mbytes, respectively, with training times of 111 and 7 µs.

Therefore, if the proposed method is to be embedded in a

microcontroller, the XGBoost model would be a preferable choice.
proximal reference, and IPG or PPG as the distal reference for the cuffless

PCC
70 DBP: 0.66 NA

8 DBP:0.78 RMSE SBP: 7.3 ± 0.6 mmHg DBP: 5.7 ± 0.4 mmHg

755 DBP: 0.532 MAD SBP: 4.48 mmHg DBP: 3.84 mmHg

RMSE SBP: 11.8 ± 1.6 mmHg DBP: 7.6 ± 0.5 mmHg,

81 DBP: 0.80 NA

88 ± 0.07 DBP: 0.88 ± 0.06 RMSE SBP: 8.47 ± 0.91 mmHg DBP:
5.02 ± 0.73 mmHg

700 DBP: 0.450 NA

775 DBP: 0.532 RMSE SBP: 6.7 ± 1.6 mmHg DBP: 4.8 ± 1.47 mmHg

754 DBP: 0.533 RMSE SBP: 7.3 ± 2.1 mmHg DBP: 4.5 ± 1.8 mmHg

953 ± 0.007 DBP:
0.007

MAD SBP: 3.54 ± 0.34 mmHg DBP:
2.57 ± 0.17 mmHg
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Table 5 presents a comparative analysis of our method with

other studies that utilized either ECG or BCG as the proximal

reference, and IPG or PPG as the distal reference for cuffless

blood pressure measurement. The root mean square error

(RMSE), MAD, PCC are the metrics. Notably, the proposed

method exclusively relied on BCG and IPG data obtained from

the weight-fat scale and demonstrated superior performance

compared to previous studies. Our proposed method has the best

accuracy, 0.953 ± 0.007 and 0.935 ± 0.007 of PCCs, and 3.54 ± 0.34

and 2.57 ± 0.17 mmHg of MADs for SBP and DBP estimations. In

this study, there are some limitations. First, reference BPs were not

directly measured by the invasive continuous BP monitor. The

reference BP was measured only once per minute using a digital

sphygmomanometer. Subsequently, the BPs of beats within that

minute were estimated through linear interpolation, as we

hypothesized that BP would change linearly over time. Second,

only 17 young health subjects participated in this experiment. The

number of subjects is smaller than the requirement of the

standard, 85 subjects. Third, the samples of hypertension

categories were produced by the exercise stress, did not collect the

BP from hypertension patients. Forth, the accuracy of the

proposed method may be compromised for individuals with

conditions such as sarcopenia or Parkinson’s disease, because both

BCG and IPG measurements are sensitive to body movements.

Furthermore, our proposed BP measurement requires users to

stand on a commercial weight-fat scale. Therefore, individuals

unable to stand for at least 30 s may find this method unsuitable.

Nonetheless, a significant advancement of this study lies in using

artificial intelligence techniques for cuffless BP estimation.
5 Conclusions

Liu et al. proposed a cuffless BP measurement using BCG and

IPG signals obtained while a user stood on a commercial weight-fat

scale (28). However, BCG and IPG signals are highly susceptible to

motion artifacts. In this study, 17 young health subjects

participated the experiment, whose BP were stressed by the

exercise. The reference BP for each beat was made by the linear

interpolation. The total samples included the good quality

samples of 2,262 and poor quality samples of 20,358. The we

employed a stacking 1D CNN + GRU model to identify the

quality of synchronous BCG and IPG, achieving an accuracy of

98.9%. Furthermore, we replaced the linear regression method

with ML models. We examined the calibration-based and

calibration-free parameters—mPTT2, PTT2SYS, PTT2DIA,

mPTT1, PTT1SYS, PTT1DIA, and mHR—for XGBoost model

under a five-fold cross-validation, which demonstrated excellent

performance with PCCs for SBP and DBP 0.953 ± 0.007 and

0.935 ± 0.007, and MADs for SBP and DBP 3.35 ± 0.28 and

2.67 ± 0.15 mmHg, respectively. Thus, our study has enhanced

the performance of cuffless BP measurement using BCG and IPG

signals. In the future validation, a more diverse and represented

population should be addressed. Finally, the advancement of this

study holds promise for convenient BP monitoring in daily life,

facilitating mobile health (mHealth) management in the future.
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