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The quest for blood pressure
markers in photoplethysmography
and its applications in digital health

Josep Sola*, Andreu Arderiu, Tiago P. Almeida, Sibylle Fallet,

Sasan Yazdani, Serj Haddad, David Perruchoud,

Olivier Grossenbacher and Jay Shah

Aktiia SA, Neuchâtel, Switzerland

Introduction: Photoplethysmography (PPG) sensors, capturing optical signals

from arterial pulses, are debated for their potential in blood pressure (BP)

measurement. This study employed the largest dataset to date of paired PPG

and cuff BP readings to explore PPG signals for BP estimation.

Methods: 32,152 European residents (age 55.9% ± 11.8, 24% female, BMI

27.7 ± 4.6) voluntarily acquired and used a cuffless BP monitor (Aktiia SA,

Switzerland) between March/2,021-March/2023. Systolic and diastolic BP (SBP,

DBP) from an upper arm oscillometric cuff were collected simultaneously with

wrist PPG (668,080 paired measurements). Six different machine learning

models were developed to predict BP using cuff BP readings as reference

(75%|15%|15% training|validation|testing): four baseline models [heart rate (HR),

Age, Demography (DEM: Age +Gender + BMI), DEM+HR], and two models

relying on the analysis of the PPG waveforms (PPG, PPG+DEM). Performance

of each model was evaluated on the 4,823 subjects from the testing set using

as metrics the Pearson’s correlation (r) when comparing the estimated and the

reference BP values, and the area under the receiver operating characteristic

(AUROC) curves, and true positive and true negative rates (TPR, TNR) for the

detection of high BP (reference SBP≥ 140 or DBP≥ 90 mmHg, applying

a ± 8 mmHg exclusion zone to account for cuff measurement uncertainty).

Results: Baseline models showed low correlation with cuff data and poor high

BP detection (r < 0.35; AUROC < 0.65, TPR < 0.65, TNR < 0.58). PPG-based

models excelled in correlating with cuff BP (SBP: r= 0.53 for PPG, r= 0.63 for

PPG+DEM; DBP: r= 0.58 for PPG, r= 0.67 for PPG+DEM) and high BP

detection (SBP: AUROC= 0.84, TPR = TNR= 0.75; DBP: AUROC=0.89,

TPR = TNR= 0.81 for PPG; SBP: AUROC= 0.89, TPR = TNR= 0.80; DBP:

AUROC= 0.93, TPR = TNR= 0.86 for PPG+DEM).

Discussion: This study demonstrated that PPG signals contain reliable markers of

BP, and that BP values can be estimated using only markers found within PPG’s

optical pulsatility signals, outperforming models based solely on demographic

data. These findings hold the potential to radically transform hypertension

screening and global healthcare delivery, paving the way for innovative

approaches in patient diagnosis, monitoring and treatment methodologies.
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Introduction

Photoplethysmography (PPG) has become a prevalent optical

technique for monitoring both patients in clinical settings and

individuals in their daily lives. PPG data have been successfully

used in measuring hemodynamic and cardiovascular parameters,

such as blood oxygen saturation and heart rate (HR), now

commonly used and widely accepted in healthcare (1, 2). There

is growing interest in utilizing PPG for novel approaches to

blood pressure (BP) measurements. However, recent solutions

rely on complementary data, like electrocardiograms (ECG) or

phonocardiograms (PCG) (3–9), or require regular calibration

with standard cuff devices (10–13). These practical limitations

hinder the widespread adoption of cuffless BP technology.

Additionally, there is intense debate on whether PPG signals

truly contain markers that can serve as indirect surrogates for BP

measurements (14). Moreover, the feasibility of using PPG data

alone to detect high BP or monitor hypertension without any a

priori calibration—or complementary data—has been

demonstrated in few works and need further investigation

(15–22). Finally, a crucial aspect missing from this discussion is

a direct comparison between BP estimates derived purely from

physiological data—e.g., age, height, and weight—against those

derived from PPG inputs (21). Successfully addressing these

challenges could pave the way to a meaningful and scalable

change in global BP and hypertension screening, diagnosis

and management.

Recent advancements in machine learning (ML), particularly in

deep learning techniques, have catalysed the development of novel

models that, once trained on large-scale datasets, excel at extracting

features and recognizing patterns from intricate data,

outperforming classical methods (23). In this study, we evaluated

the potential of using markers embedded in PPG signals to

directly estimate BP values, eliminating the need for external

calibration or additional data sources. Using the largest dataset to

date of PPG and cuff BP readings collected simultaneously, we

developed ML models incorporating diverse physiological inputs—

including age, gender, and PPG—to predict BP values. The

effectiveness of these models was assessed by comparing the

resulting BP estimation against reference cuff BP measurements.

Methods

Study population

This retrospective study included data from 32,152 European

residents (Table 1, 55.9 ± 11.8 years old, 24% female, BMI

27.7 ± 4.6 kg/m²). All users voluntarily purchased and wore a

validated, CE-marked, over-the-counter cuffless wrist BP monitor

(Aktiia SA, Neuchâtel, Switzerland) between March/2021 and

March/2023 were included in the investigation (12, 13). All

methods were carried out in accordance with relevant guidelines

and regulations. The present work used retrospective anonymized

data collected on users of a commercial CE-marked BP monitor

with no associated experimental protocol, therefore no evaluation

from an ethic committee was required. Informed consent was

obtained from all subjects through the commercial agreement of

usage for the Aktiia monitor. Prior diagnoses of hypertension

and medications taken were unknown. During installation and

setup of the Aktiia smartphone application, the user is asked to

provide personal information, including age, gender, height

and weight.

Data collection

The Aktiia monitor is comprised of a bracelet that collects

green reflective PPG signals from the wrist, and an oscillometric

brachial cuff used for initializations (i.e., calibrations) performed

TABLE 1 Characteristics of the users included in this study.

Training Testing All data

Training Validation All training

Users’ characteristics

Count 22,506 4,823 27,329 4,823 32,152

Vs. all data, % 70.0% 15.0% 85.0% 15.0% 100.0%

Age, years 55.8 ± 11.9 56.1 ± 11.6 55.9 ± 11.9 55.8 ± 11.7 55.9 ± 11.8

Height, cm 176.0 ± 9.0 176.3 ± 8.9 176.1 ± 9.0 176.1 ± 8.8 176.1 ± 9.0

Weight, kg 86.1 ± 16.4 86.1 ± 16.4 86.1 ± 16.4 86.3 ± 16.2 86.1 ± 16.4

BMI, kg/m² 27.7 ± 4.6 27.6 ± 4.6 27.7 ± 4.6 27.8 ± 4.6 27.7 ± 4.6

Gender, female % 25% 24% 24% 24% 24%

Simultaneous PPG and cuff recordings

Count 468,698 100,010 568,708 99,372 668,080

Vs. all data, % 70.2% 15.0% 85.1% 14.9% 100.0%

p user, median [IQR] 11 [5–26] 11 [5–26] 11 [5–26] 11 [4–26] 11 [5–26]

Cuff-based BP profile during first day

Systolic BP (mmHg) 134.6 ± 16.9 134.6 ± 16.9 134.6 ± 16.9 134.5 ± 17.0 134.5 ± 16.9

Diastolic BP (mmHg) 83.4 ± 11.5 83.6 ± 11.5 83.5 ± 11.5 83.3 ± 11.5 83.4 ± 11.5

All data represented as mean ± SD, unless stated otherwise. BMI, body mass index; PPG, photoplethysmography; BP, blood pressure.
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at least once a month (24). Initialization consists of cuff BP

measurements performed by the Aktiia upper-arm cuff collected

simultaneously to 30 s of PPG data performed by the Aktiia

bracelet. Therefore, during initializations, each PPG segment is

associated with a cuff BP reading. During this process, users are

required to sit still while measurements are performed. The

procedure is fully automated and controlled by the Aktiia

smartphone application, with a series of signal quality tests (25).

In case the signals collected during initialization fail quality tests,

the measurements are discarded, and the user is requested to

repeat the initialization. The data from the bracelet and cuff are

transferred via Bluetooth to the smartphone application, and

forwarded to Aktiia’s cloud server, where they are stored (26).

In the present work, 668,080 cuff SBP and DBP readings

[approximately 11 (5–26) measurements/user, median (IQR)]

recorded simultaneously with PPG signals during initializations

performed from March 2021 to March 2023 were included in the

analysis (Table 1).

ML models for BP estimation

Six ML regression models were developed to estimate SBP and

DBP, utilizing cuff BP readings as the training reference.

A framework of the study is illustrated in Figure 1 and detailed

in the Supplementary Materials. The data distribution was set at

85% for training (n = 27,329 users), split into 70% for actual

training (n = 22,506) and 15% for validation (n = 4,823), as

detailed in Table 1. The remaining 15% (n = 4,823) were used for

testing. This resulted in a dataset of 468,698 cuff readings for

training, 100,010 for validation, and 99,372 for testing. To ensure

data integrity, users used in the testing phase were not used

during training and validation stages, assuring that only new and

independent data from distinct users were employed for

model testing.

In this study, the XGBoost algorithm was the ML method

chosen for all models (27). In each case, different XGBoost

models were developed with different input setups aimed to

predict BP using cuff BP readings as reference. XGBoost excels at

identifying nonlinear relationships and handling large datasets

efficiently. It is a convenient tool for constructing models based

on tabular data like the one present in this study, allowing to

assess how physiological data (demographic or PPG) impacts the

accuracy of BP estimation. Details about the parameter

configuration used can be found in Supplementary Materials.

Baseline models

Four baseline XGBoost models were created using a variety of

physiological data as predictors, excluding PPG, to assess the

influence of such data on BP estimation. These models serve as

baseline benchmarks that enable assessing whether incorporating

PPG signals enhances BP estimation accuracy beyond what is

FIGURE 1

Framework of the study. A total of 668,080 systolic and diastolic BP (SBP, DBP) from an upper arm oscillometric cuff were collected simultaneously

with wrist PPG from 32,152 European residents. Six XGBoost models with different input setups were created to predict BP, using cuff readings for

training. Four baseline models incorporated inputs like heart rate (HR), age, and Demography (DEM) data (age, gender, BMI), either individually or

combined, while two PPG models utilized PPG signals, with and without Demography data. Model training was performed on 85% of users

(27,329 users with 568,708 cuff recordings), and testing was conducted on the remaining 15% of users (4,823 individuals with 99,372 cuff

readings). The performance analyses were conducted using only readings from the first day of each user’s monitoring period on the testing

dataset (14,939 cuff readings).
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achievable with models relying solely on physiological data.

Predictors for these models included cuff HR, Age, a composite

termed ‘Demography’ (DEM, encompassing age, gender, height

and weight), and a combination of DEM +HR. Except for HR,

physiological data were treated as static for each user throughout

the study. The physiological data was adjusted to the last update

provided by the users at the moment of data collection.

PPG-based models

Two XGBoost models were specifically designed to use PPG

signals as predictors: one using only PPG data and another

combining PPG with DEM data. For these models, each 30-s PPG

segment corresponded with its respective cuff BP reading in both

the training and testing datasets. Similar to the baseline models,

DEM data were considered fixed for each user and replicated across

all cuff BP readings for consistency in analysis, considering the last

update provided by the users at the moment of data collection. As

the XGBoost model is best suited to work with tabular data, PPG

signals underwent a pre-processing step to eliminate noise, and key

features were extracted and presented as inputs to the XGBoost

model to predict cuff BP values (28–31). Additionally, for the

PPG +DEM model, demographic data is concatenated with these

PPG features to improve the model’s predictive accuracy.

Statistical analysis

The effectiveness of the models was evaluated using data from the

testing phase. The estimated SBP and DBP by each model were

compared to actual cuff BP readings through Pearson’s correlation

coefficient (r). Correlation analysed across different demographic

groups was included in the Supplementary Materials: gender (male

and female), age categories (adult and elderly, the latter defined as

age over 65 years), and BMI classifications (normal weight for

BMI < 25, overweight for 25≤BMI < 30, and obese for BMI≥ 30).

The samples were bootstrapped (10,000 replications) to estimate the

95% confidence interval (CI) of the mean correlation.

Receiver operating characteristic (ROC) curves were created to

test the performance of the model to correctly distinguish high BP.

High BP was investigated separately for SBP and DBP. Different

criteria for high BP were investigated for both cuff SBP

(thresholds varying from ≥120 mmHg to ≥180 mmHg) and DBP

(thresholds varying from ≥80 mmHg to ≥110 mmHg). An

exclusion zone of ±8 mmHg was applied around the detection

thresholds (i.e., reference BP readings within the exclusion zone

were not accounted in the performance calculations) to account

for cuff measurement uncertainty (32). The true positive rate

(TPR) and true negative rate (TNR) were determined at the

optimal operating point on each ROC curve—defined as

the closest point to the graph’s top left corner. The area under

the ROC curve (AUC) was calculated to further assess high BP

estimation performance. The performances without the ±8

mmHg exclusion zone are provided in the Supplementary

Materials.

The analyses for the testing included only readings from the

first day of each user’s monitoring period (14,939 cuff readings).

P-values less than 0.05 were considered statistically significant.

Results

There were approximately 11 readings per user across the entire

dataset [median (IQR), 11 (5–26)]. The training and validation

dataset had each 11 [5–26] readings per user. The entire testing

dataset had 11 [4–26] readings per user, while the first day of the

testing dataset (used on the performance analyses) had 3 [2–3]

readings per user. The overall average SBP was 134.5 ± 16.9 mmHg

and DBP was 83.4 ± 11.5 mmHg. These findings are summarized

in Table 1. The distribution of study duration per participant can

be found in the Supplementary Materials.

Correlation of BP estimates: models vs. cuff
measurements

BPs estimated with baseline models showed poor correlation

vs. the reference cuff BP, as illustrated in Figures 2A,B.

Specifically, for SBP, the HR model resulted in correlation of

r = 0.03, the Age model r = 0.13, and both DEM and DEM+HR

models r = 0.23 (P < 0.0001 in all cases). Similarly, DBP

estimation correlations were r = 0.14 for the HR model, r = 0.25

for the Age model, r = 0.28 for the DEM model, and r = 0.31 for

the DEM +HR model (P < 0.0001 in all cases).

In contrast, the correlation between PPG-based models vs. the

reference cuff BP outperformed all baselines. The PPG model

achieved an SBP correlation of r = 0.53, and the PPG + DEM

model reached r = 0.63 (P < 0.0001 for both). For DBP, the

correlations were even higher: r = 0.58 for the PPG model and

r = 0.67 for the PPG +DEM model (P < 0.0001 for both).

High BP estimation

A visual representation of the ROC curves and the metrics used to

assess the performance of high BP estimation for each model is shown

in Figure 3, considering only one criterion for high SBP

(≥140 mmHg) and DBP (≥90 mmHg), with a ± 8 mmHg exclusion

zone adopted to account for cuff measurement uncertainty.

The estimation performance for different criteria for high SBP

and high DBP are detailed on Tables 2,3, respectively. PPG-based

models demonstrated superior BP estimation capabilities

compared to baseline models for all metrics and all criteria,

particularly when DEM data were incorporated.

Discussion

In the present work, we provide direct evidence that green

reflective PPG signals contain markers that allow for BP

estimation without the need for external calibration nor additional
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inputs, such as ECG or PCG. To the best of our knowledge, this is

the first large-scale study to present direct comparison of BP

estimates obtained solely from physiological data—e.g., age and

gender—against those obtained with PPG inputs. Our findings

reveal that, using the same model topology based on XGBoost

with different input settings, the intrinsic characteristics of PPG

signals enable effective BP estimation, far exceeding the predictive

value of basic physiological descriptors. These physiological

descriptors, when isolated, lack the depth needed for robust BP

estimation. Specifically, the fiducial points in the PPG waveform—

that can be extracted through the proprietary signal processing

algorithm—carry BP-related features. These features were used as

input variables of the two PPG-based models that resulted in

effective BP estimation. Conversely, the basic physiological

descriptors (i.e., variables such as age, gender, height, weight, and

HR) are insufficient for accurate BP estimation when used

isolated. The models using PPG outperformed these descriptors,

and performance improves further when combined with them.

The results reported reflect model performance using off-the-shelf

XGBoost technologies and do not represent the performance of

any medical device by the study sponsor.

From markers within PPG signal to BP
estimation

The PPG signal is composed of reflective waves from the

central arterial system that can be detected at peripheral arteries

by optical sensors—i.e., the microvascular bed in the upper layers

of the skin (33). They originate from the aorta shortly after

mechanical contraction of the left ventricle as the arterial wave

propagates through the central arterial tree. Reflections of the

waves occur at points of arterial division or where branches of

different diameters merge, such as at the juncture of the

subclavian artery and thoracic aorta or the iliac bifurcation.

These sites create an impedance mismatch, causing the

reflections that, when superimposed on the primary ventricular

ejection pulse, form the characteristic waveform seen in PPG

signals collected at peripheral sites (33).

The PPG waveform carries thus distinct markers influenced by

hemodynamic and cardiovascular factors, particularly arterial

stiffness, indicating the PPG signals contain markers that could

provide insights into arterial circulation, thereby informing about

BP levels (34–42).

Within the PPG waveform, fiducial points—such as the systolic

peak, dicrotic notch, and diastolic peak—represent relevant

physiological events in the cardiac cycle. These features are

shaped by vascular resistance, pulse wave velocity, and arterial

elasticity, all of which directly correlate with BP dynamics (33).

Variations in the timing, amplitude, and morphology of these

waveform components can indicate underlying hemodynamic

changes, offering valuable insights into arterial circulation.

Machine learning models can leverage these patterns to predict

SBP and DBP with greater precision, provided that they have

been trained with large and representative enough datasets.

Furthermore, derived indices such as the augmentation index

and reflection index, embedded within the PPG signal, provide

additional cardiovascular metrics relevant to BP estimation.

This physiological foundation underscores the potential of PPG

for BP estimation without the need of a cuff—it encapsulates both

arterial mechanics and the dynamic interplay between the heart

and vascular system, making it a promising tool for non-invasive

BP monitoring.

Our results support the conclusion that PPG signals harbour

markers that are effective for estimating BP. Furthermore, our

analysis demonstrated that BP estimates derived from PPG signals

successfully discriminate between users with high and normal BP

(considering a ± 8 mmHg exclusion zone to account for cuff

measurement uncertainty; results without exclusion zone can be

found in the Supplementary Materials, and corroborate the results

FIGURE 2

Pearson’s correlation between BP estimates from each model vs. cuff BP values. (A) Correlation for SBP. (B) Correlation for DBP. Error bars represent

95% confidence interval (CI) of the mean correlation calculated from bootstrapping the samples (10,000 replications).
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for effective high and normal BP detection). In contrast, estimates

based only on HR, age or on detailed demographic descriptors,

including BMI and gender, were ineffective in this discrimination.

Therefore, caution is needed when employing BP estimation

methods that consider only combinations of demographic data,

without including information derived from PPG data.

Cuffless BP technologies

Current cuffless BP technologies effectively employ PPG to

identify BP fluctuations around an offset that is defined during

initialization usually conducted with cuff-based devices (10–13),

or combine PPG with external references (e.g., ECG, PCG) to

describe the velocity of pressure pulse propagation (3–9). Either

way, the need of cuff for initializations or external references

restricts the wider acceptance and adoption of cuffless BP

monitors by both healthcare providers and the general public.

Recent works have implemented PPG-based solutions without

the need of initializations or external references (15–22). While

previous studies have significantly advanced our understanding,

many of them suffer from common caveats, including using

curated datasets with specific characteristics or data distribution,

small datasets, train/test data leakage and misleading

performance metrics (3–13, 15–22). In the present work, we

harness the largest dataset to date of PPG signals collected with a

FIGURE 3

Performance for high BP estimation for each model considering the criterion for high BP set at cuff SBP≥ 140 mmHg (left-hand side), and cuff

DBP ≥ 90 mmHg (right-hand side). (A) ROC curves for high SBP estimation. (B) ROC curves for high DBP estimation. C. Estimation performance

metrics as true positive rate (TPR), true negative rate (TNR) and area under the curve (AUC) for high SBP. (C) Estimation performance metrics for

high DBP. An exclusion zone of ±8 mmHg was adopted for the creation of the ROC curves to account for cuff measurement uncertainty. N.u., no unit.
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commercialized cuffless monitor for estimating absolute BP values

without relying on a calibration-dependent offset. Additionally,

PPG-based models resulted in superior BP assessment

capabilities compared to baseline models irrespective of the

definition of high BP (and with and without a ± 8 mmHg

exclusion zone to account for cuff measurement uncertainty).

Importantly, the different thresholds adopted in the present

study to characterize high BP reflect current guidelines for

diagnosis of hypertension, demonstrating its potential for

hypertension management programs.

This breakthrough paves the way for a calibration-free solution

applicable across a wide range of wearables. Such an innovation

offers the promise of continuous BP monitoring without the

discomfort of cuffs or reliance on external references, fulfilling a

longstanding aspiration in healthcare technology. Our demonstration

that PPG signals can estimate BP without the need for cuff-based

calibration sets the stage for a shift in global BP care. It supports

large-scale, long-term continuous BP assessments and sets the stage

for a transformational change of BP and HTN management.

Deep learning frameworks for BP
estimation

In this study, XGBoost was selected due to its robustness in

handling structured data and its efficiency with tabular features

in large datasets. XGBoost is an ensemble learning method based

on gradient-boosted decision trees, which iteratively improves

TABLE 2 Estimation performance of high SBP for each model considering different criteria of high SBP.

Metric Model Threshold for high SBP, mmHg

≥120 ≥130 ≥140 ≥160 ≥180

TPR

HR 0.491 0.514 0.506 0.530 0.500

Age 0.472 0.500 0.515 0.536 0.654

DEM 0.595 0.624 0.660 0.569 0.615

DEM +HR 0.598 0.614 0.648 0.558 0.577

PPG 0.716 0.738 0.753 0.801 0.769

PPG + DEM 0.808 0.801 0.804 0.812 0.808

TNR

HR 0.494 0.505 0.510 0.532 0.514

Age 0.555 0.588 0.584 0.561 0.551

DEM 0.661 0.597 0.538 0.623 0.608

DEM +HR 0.658 0.612 0.551 0.618 0.603

PPG 0.716 0.738 0.753 0.801 0.780

PPG + DEM 0.807 0.801 0.804 0.813 0.814

AUC

HR 0.492 0.511 0.511 0.549 0.515

Age 0.545 0.567 0.572 0.574 0.643

DEM 0.678 0.653 0.633 0.627 0.626

DEM +HR 0.677 0.658 0.635 0.630 0.623

PPG 0.801 0.815 0.842 0.885 0.894

PPG + DEM 0.887 0.886 0.890 0.903 0.891

True positive rate (TPR) and true negative rate (TNR) were calculated considering the optimum operating point from the ROC curves of each model, while the area under the curves (AUC)

were extracted directly from the ROC curves. The bold values referring to threshold SBP≥ 140 mmHg are illustrated in Figure 3. A ±8 mmHg exclusion zone was adopted to account for cuff

measurement uncertainty.

TABLE 3 Estimation performance of high DBP for each model considering
different criteria of high DBP.

Metric Model Threshold for high DBP, mmHg

≥80 ≥85 ≥90 ≥100 ≥110

TPR

HR 0.586 0.579 0.579 0.588 0.697

Age 0.674 0.692 0.685 0.695 0.727

DEM 0.644 0.651 0.654 0.626 0.576

DEM +HR 0.672 0.663 0.659 0.542 0.515

PPG 0.812 0.804 0.814 0.824 0.818

PPG + DEM 0.854 0.857 0.862 0.863 0.848

TNR

HR 0.584 0.579 0.578 0.588 0.697

Age 0.581 0.539 0.495 0.443 0.422

DEM 0.692 0.629 0.573 0.506 0.483

DEM +HR 0.690 0.649 0.586 0.624 0.599

PPG 0.812 0.804 0.815 0.824 0.818

PPG + DEM 0.854 0.856 0.862 0.863 0.848

AUC

HR 0.605 0.595 0.598 0.622 0.727

Age 0.673 0.653 0.619 0.585 0.594

DEM 0.723 0.692 0.659 0.616 0.563

DEM +HR 0.743 0.714 0.683 0.641 0.628

PPG 0.887 0.887 0.891 0.916 0.922

PPG + DEM 0.932 0.932 0.929 0.942 0.939

True positive rate (TPR) and true negative rate (TNR) were calculated considering the

optimum operating point from the ROC curves of each model, while the area under the

curves (AUC) were extracted directly from the ROC curves. The bold values referring to

threshold DBP≥ 90 mmHg are illustrated in Figure 3. A ±8 mmHg exclusion zone was

adopted to account for cuff measurement uncertainty.
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model performance by minimizing errors from previous iterations.

It is particularly effective for tabular data, handling missing values,

capturing non-linear relationships, and providing high predictive

accuracy with relatively low computational cost (28–31). This

choice aligns with the study’s focus on physiological data

combined with extracted PPG features, where structured variables

and complex interactions are key. Importantly, XGBoost

demonstrated improved BP estimation when incorporating PPG

data compared to baseline models, effectively showcasing the

added value of PPG signals in BP prediction.

While deep learning models such as Convolutional Neural

Networks (CNNs) and Long Short-Term Memory (LSTM) may

further improve BP estimation, this study aimed to assess

whether PPG signals contain BP-related markers and if a model

leveraging them could outperform those based on demographics

or heart rate, rather than comparing deep learning architectures.

This objective was successfully achieved using XGBoost.

Future work will explore deep learning models to investigate

their potential for capturing more complex temporal and non-

linear features from PPG data, which may further enhance BP

estimation accuracy. CNNs are particularly effective at learning

spatial hierarchies from data, making them suitable for extracting

features from raw PPG waveforms. For instance, Cho et al.

developed a calibration-free BP estimation model using a 3-layer

CNN with time-series ECG and PPG signals, achieving root

mean square errors of 5.80 mmHg for SBP and 2.78 mmHg for

DBP (43). Similarly, Sun et al. predicted BP risk levels

(normotensive, prehypertensive, and hypertensive) using a

combination of CNNs with the Hilbert-Huang Transform,

achieving F1 scores as high as 98.90% (44). LSTM networks excel

in modeling temporal dependencies, capturing the sequential

nature of physiological signals. Zhao et al. applied an LSTM

model to predict SBP and DBP using raw PPG signals from an

animal model (45). Additionally, Kamanditya et al. developed a

BP prediction system that integrates CNN and LSTM layers to

merge extracted features from PPG and ECG signals, achieving

accuracies of 5.31 ± 7.25 mmHg for SBP and 3.30 ± 4.76 mmHg

for DBP (46). A hybrid CNN-LSTM architecture could

theoretically leverage both spatial and temporal dynamics for

more comprehensive BP estimation.

Limitations

This study allocated the data across the training, validation, and

testing sets in proportions of 75%, 15%, and 15%, respectively. This

approach resulted in 99,372 data points from 4,823 users for the

testing phase. The dataset reflects a wide variety of user

behaviours, retention rates, and compliance levels. To ensure

consistency and reduce temporal variations in BP, only data from

the first day of collection for each of the 4,823 users was

included in the results. This limitation was applied only to the

testing dataset, while the training and validation datasets utilized

all available data. By focusing on the first day, bias from more

compliant users who may have calibrated their devices more

frequently was avoided (e.g., some users may have only

performed a single calibration, while others may have calibrated

their Aktiia bracelet every week for 2 years). Additionally, this

approach provided a standardized snapshot of BP profiles at a

single point in time, although it did not account for temporal

changes over longer periods. The first day was chosen for

consistency, as subsequent use might alter behaviour (e.g.,

receiving a diagnosis and medication treatment).

The demographic data, provided by the users, are susceptible to

entry errors, including typos. Moreover, these parameters, such as

weight, could vary over time due to changes like weight gain or

loss. It is worth noting that users might not have consistently

updated their profiles to reflect such changes. Nevertheless, we

believe the data is representative of the population and was used

to train the models adequately.

The present work adopted an exclusion zone of ±8 mmHg

to account for cuff measurement uncertainty (32). Exclusion

zones are a well-established and essential component of

standard practice, especially in cuff-based BP studies (47–49).

Incorporating an exclusion zone based on the known

uncertainty of the reference device is a disseminated approach,

which can be extended to ROC analysis for sensitivity and

specificity when the reference measurements are subject to a

known variability.

When the reference device has a known level of measurement

uncertainty, certain samples may fall within a gray zone where the

classification as true positive or false negative becomes arbitrary.

Including these uncertain samples can introduce misclassification

bias, distorting the ROC curve and potentially leading to

incorrect interpretations of model performance. The exclusion

zone helps mitigate this issue by reducing the impact of

measurement noise, thereby enhancing the robustness and

reliability of the performance metrics.

In this study, the ±8 mmHg exclusion zone was defined based

on the known standard deviation associated with cuff-based BP

measurements (32). This approach aligns with practices in

medical device validation, where biological variability and

instrument imprecision are acknowledged as factors that can

influence diagnostic performance. Regulatory bodies such as the

FDA and international standards such as ISO recognize the

importance of accounting for variability and measurement

uncertainty in process validation. The use of exclusion zones,

particularly in the context of diagnostic accuracy studies, is well

aligned with this practice (32, 50).

Moreover, it is important to emphasize that the exclusion zone

was applied consistently across all models in the present work,

including both baseline and PPG-based models. This ensures that

the influence of the exclusion zone is balanced and does not

introduce bias favoring one model over another. As such, we

believe the reported results accurately represent the underlying

phenomena and offer a robust assessment of model performance,

mitigating the inherent measurement noise from the cuff-

based reference.

For full transparency, both sets of results are reported—with

and without the exclusion zone. The results without the

exclusion zone, as well as analyses with alternative thresholds for

high BP, are provided in the Supplementary Materials.
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Conclusions

This study represents a significant advancement in the search

for BP markers in PPG signals and their applications in digital

health. Our results demonstrate that PPG signals contain

information that can be used to estimate BP values and

distinguish between high and normal BP levels, eliminating the

need for any external calibration adjustments (with and without

a ±8 mmHg exclusion zone to account for cuff measurement

uncertainty). This pivotal finding represents the advent of a new

era in BP monitoring, utilizing the optical sensors already

present in a wide range of clinical and wearable devices. By

unlocking this capability, our research lays the groundwork for

the widespread adoption of non-invasive, continuous BP

measurement technologies, promising to significantly enhance

hypertension management and healthcare delivery on a

global scale.
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