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Introduction: A readily available outcome measure that reflects the success of a
patient’s treatment is needed to demonstrate the value of orthopaedic interventions.
Patient-reported outcome measures (PROMs) are survey-based instruments that
collect joint-specific and general health perceptions on symptoms, functioning, and
health-related quality of life. PROMs are considered the gold standard outcome
measure in orthopaedic medicine, but their use is limited in real-world practice due
to challenges with technology integration, the pace of clinic workflows, and patient
compliance. Clinical notes generated during each encounter patients have with their
physician contain rich information on current disease symptoms, rehabilitation
progress, and unexpected complications. Artificial intelligence (AI) methods can be
used to identify phrases of treatment success or failure captured in clinical notes and
discern an indicator of treatment success for orthopaedic patients.
Methods: This was a cross-sectional analysis of clinical notes from a sample of
patients with an acute shoulder injury. The study included adult patients
presenting to a Level-1 Trauma Center and regional health system for an acute
Proximal Humerus Fracture (PHF) between January 1, 2019 and December 31,
2021. We used the progress note from the office visit for PHF-related care
(ICD10: S42.2XXX) or shoulder pain (ICD10: M45.2XXX) closest to 1-year after
the injury date. Clinical notes were reviewed by an orthopaedic resident and
labeled as treatment success or failure. A structured comparative analysis of
classifiers including both machine and deep learning algorithms was performed.
Results: The final sample included 868 clinical notes from patients treated by
123 physicians across 35 departments within one regional health system. The
study sample was stratified into 465 notes labeled as treatment success and
403 labeled as treatment failure. The Bio-ClinicalBERT model had the highest
performance of 87% accuracy (AUC= 0.87 ± 0.04) in correctly distinguishing
between treatment success and failure notes.
Discussion: Our results suggest that text classifiers applied to clinical notes are
capable of differentiating patients with successful treatment outcomes with high
levels of accuracy. This finding is encouraging, signaling that routinely collected
clinical note content may serve as a data source to develop an outcome
measure for orthopaedic patients.
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Introduction

A readily available outcome measure that reflects the success of a

patients’ treatment is needed to demonstrate the value of orthopaedic

interventions (1–4). PROMs are viewed as the gold standard outcome

measure in orthopaedics (5, 6), and could be used to track

improvements in patient status over time to assess whether a

patient achieved their treatment goals (1, 7, 8). However, PROM

collection in real-world practice has proven difficult due to

challenges with technology integration, data collection disruptions

to clinic workflows, and low patient compliance completing PROM

questionnaires (9, 10). Most orthopaedic practices in the United

States view the collection of PROMs as time consuming,

cumbersome, and costly (4, 11), and it is estimated that only half

of orthopaedic practices collect PROMs (9, 12). Without

widespread availability of PROMs, evaluating the success of

orthopaedic treatments has been limited to process-based measures

and end points such as survival and surgical complications, which

can readily be found in structured fields in administrative data (4).

Unfortunately, these data points paint an incomplete picture of a

patient’s medical experience and whether treatment was successful

in achieving a patient’s prioritized outcome goals (e.g., reduced

pain, improved range of motion, return to sports or work, etc.)

(13–16). A crucial step to demonstrating if orthopaedic care

achieves meaningful patient-specific improvement is to have

outcome data available that measure if treatment was successful in

achieving the outcome goals prioritized by patients.

Unstructured clinical notes represent untapped potential for

evaluating the success of orthopaedic treatments for individual

patients (17–24). Clinical notes are generated for each encounter

patients have with their physician. These notes contain rich

information on current disease symptoms, rehabilitation progress,

and unexpected complications, and captures an essence of the

patient state that is not stored elsewhere in the Electronic Health

Record (EHR) (19, 25–30). However, because these notes are in an

unstructured format, they have not historically been thought of as

a useful data source to develop consistent measures of patient

treatment success. Applications of artificial intelligence (AI) and

natural language processing (NLP) methods in healthcare are

rapidly expanding, and have been used to identify similar patient

groups with a defined set of clinical markers and symptoms,

automate patient cohort selection, and develop predictive models

(17, 25, 31–33). In orthopaedic medicine, NLP applications are

been being deployed to solve a range of orthopaedic-related

problems (34–36). We proposed that NLP methods can be

employed to identify phrases denoting treatment success or failure

recorded in clinical notes, thereby discerning indicators of

treatment success for orthopaedic patients.

Clinical notes are typically documented using a subjective,

objective, assessment and plan (SOAP) format, where the

subjective section of the progress note reflects the patient’s story

(the interim history since the last visit), told to and interpreted by

the physician (28). The rest of the unstructured SOAP notes

include physical findings (objective findings), medical reasoning

(assessment), and patient care (the plan) and (37–39) reveal

distinct trajectories of patient outcomes after treatment (38, 40). In
Frontiers in Digital Health 02
successful cases the progress note documents the degree of

improvement or relief experienced and reported by patients to

their clinicians (30). Conversely when symptoms have not

resolved, or when subsequent complications arise, these ongoing

patient complaints and persistent treatment utilization are

documented in the notes. Note content highlights symptoms and

outcome dimensions, which are valued by patients and contribute

to a patient’s individual definition of success (41).

A patient-specific outcome measure is needed in orthopaedic

medicine to assess if a patient’s treatment goals were met and help

demonstrate the value of orthopaedic treatments. The objective of

this study was to develop a clinical text classifier, using different

AI approaches, including traditional machine learning and deep

learning, capable of identifying whether a patient achieved

treatment success for a sample of patients receiving follow-up care

for an acute proximal humerus fracture. Proximal humerus

fracture (PHF) was chosen as a use case for testing this method of

outcome generation because many different treatment options can

be used for this injury and better outcome data are needed to

guide future clinical decision-making for this condition (42–45).

To that end, we began by exploring the feasibility of generating an

outcome measure from clinical notes by evaluating various AI-

based text classifiers for patients treated for a PHF.
Materials and methods

Study sample

This was a cross-sectional analysis of clinical notes from a sample

of patients with an acute PHF. The study included adult patients

presenting to a Level-1 Trauma Center regional health system for

an acute PHF between January 1, 2019 and December 31, 2021.

The first visit for a patient for PHF during the study period was

defined as the index visit. We then identified all health system

encounters (hospital encounters, office visits, etc.) with a diagnosis

of PHF or shoulder pain from the index PHF visit to 365 days

after the index PHF visit and extracted the clinical note from the

office visit for PHF-related care (ICD10: S42.2XXX) or shoulder

pain (ICD10: M45.2XXX) closest to 1-year after the injury date.

This resulted in one representative note per person. Patients were

excluded from the study if they were less than 18 years of age, did

not have at least one office visit with a diagnosis of PHF or

shoulder pain that occurred 45 days or more days after the index

visit, or if their last office visit was less than 500 characters, since

smaller notes did not have the necessary sections for outcome

information. We found that less than 1% of the eligible sample had

a note length less than 500 characters. A minimum of 45 days after

index was used as this is the minimal time needed for healing of a

PHF, prior to which, treatment success cannot be assessed. We

randomly sampled 1,000 patients meeting these inclusion criteria,

and after physician review of the sample, a total of 868 notes were

used for this study. Additional exclusions after physician review

included notes from patients receiving care for bilateral PHFs or

notes that did not reflect care for PHF. This study was approved by

the Prisma Health Institutional Review Board.
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Data labeling process

The University of South Carolina Patient Engagement Studio brings

together patients and caregivers, community groups, health system

innovators, clinicians, and academic researchers to produce meaningful

research that advances health research outcomes. The PES membership

includes over 100 patients with diverse backgrounds and clinical

experiences from across the United States trained to provide feedback

and collaborate with research teams (46, 47). The first author (S.F.) led

three Patient Engagement Studio (PES) sessions to involve patients in

the development of the definitions of treatment success. There is no

one standard acceptable definition of treatment success, as it varies

based upon patient lifestyle and desired goals (4, 48). However,

generally, the goal of orthopaedic treatment is to restore the function of

the joint, minimize pain and maximize quality of life for patients after

the injury. Together, the PES members and research team defined four

outcome states and associated labels that described the range of positive

and negative outcomes that could follow care for PHF. The outcome

states, definitions, and note text indicators can be found in Table 1.

Four orthopaedic residents, each with a minimum of 2 years of

experience in orthopaedic medicine participated in the labeling of

the clinical notes. Each orthopaedic resident received a 1-h training

session on the note labels and definitions. Residents were instructed

to label each note based on the outcome state reflected in the

current visit and documented in the note. In addition to the

outcome labels, orthopaedic residents had the option to select

“Indeterminant—not enough content to label” or flag a note for

expert review. We assigned overlap in note review subsets, so that

agreement could be assessed across residents. An attending

orthopaedic surgeon, the Chair of Department of Orthopaedic

Surgery, served as the final arbitrator when discordance occurred

between residents’ labels or when expert review was requested. Each

label provided by the Chair was viewed as the final label for that note.
TABLE 1 Outcome labels and corresponding definition and indicators.

Outcome
state

Definition

Treatment success Treatment success occurs when a patient is able to resume desire
sufficient range of motion, and is in minimal/mild or no pain. Afte
for there to be some lingering motion limitations (patient may ne
or minimal pain, but these issues should not require ongoing trea
prohibitive to their desired lifestyle or daily activities.

Improvement of
condition

Improvement occurs when there is a record of some levels of pai
problems that are somewhat prohibitive to the patient’s desired a
improvement is occurring. In these situations, physicians may con
patients, but do not alter care or treatment courses.

Deterioration of
condition

Deterioration occurs when there is a record of some levels of pain or
that are becomingmore prohibitive to the patient’s desired activities. N
are occurring, and physicians may escalate or alter care or treatment

Treatment Failure Treatment failure occurs when the patient is experiencing signific
limitations and requires subsequent fracture-related care. Failing i
patients are unable to resume desired activities and may include
complications, or nonunion.
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REDCap (49) was used to organize and store notes and labels.

Notes were truncated to 10,000 words and HTML tags were added

for formatting to aid in the review process. The final labeled dataset

produced by the orthopaedic residents represented the gold

standard dataset used for model development and validation. The

four outcome labels were aggregated into a binary outcome

representing treatment success or failure. Treatment success was

represented by notes labeled as success. Failure was comprised of all

remaining labels (improvement, deterioration and failure) as each of

those notes had documentation of lingering, symptomatic problems

requiring ongoing care. This was done to avoid class imbalance

between the treatment success and failure classes, since our data set

had many more cases in the treatment success category compared

to the remaining three unfavorable outcome categories.
Stratified data segmentation protocol

We maintained a consistent data division strategy to ensure a

fair and unbiased comparison across all models, so 90% of the

data was allocated for model training, while the remaining

unseen 10% was reserved for testing. Within these partitions, we

preserved the proportion of outcome labels observed in the full

labeled data set. We used a five-fold cross-validation strategy to

robustly measure the generalizability of all models. Moreover,

due to the relatively small number of cases, we repeated the

testing cycle 10 times through train and test data partitioning

(Figure 1). A critical aspect of our experimental design was

ensuring fair model comparison by using identical data splits

across all models within each run. For each of the ten

experimental iterations, we created a single stratified train-test

split that was subsequently used for all models being evaluated.

This approach eliminates potential confounding effects from data
Indicators of outcome state found in
clinical notes

d activities, has a
r PHF it is possible
ver return to 100%)
tment or be

• Radiographic healing
• Making good progress/improvements with current

treatment or stopping treatment
• Patient returns to work or play.
• No major complaints documented.
• Only follow-up as needed

n or functional
ctivities, but
tinue to monitor

• Radiographic healing or signs of healing occurring.
• Moderate loss of function or pain which interferes with

desired activities, but no change in treatment.
• Ongoing treatment and monitoring progress
• Return in 2–6 weeks for repeat x-rays and re-check

functional problems
o real improvements
courses.

• Negative radiographic changes observed.
• Moderate loss of function or pain which interferes with

desired activities requiring a change in treatment.
• Initiating or continuing treatment and monitoring progress.
• Return in 2–6 weeks for repeat x-rays and re-check.

ant pain or
s occurring when
fracture sequelae,

• Ongoing, persistent treatment (injections, surgeries) for
symptoms related to PHF.

• Unrelenting pain
• Surgical complications
• Loss of significant motion
• Extreme pain
• Fracture related sequelae (e.g., avascular necrosis)
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FIGURE 1

AI model training and evaluation pipeline for treatment success measure assessment.

Floyd et al. 10.3389/fdgth.2025.1523953
partitioning and ensures that any observed performance differences

can be attributed to the models themselves rather than to variations

in training or testing data.
Bag-of-words based models

We tested the performance of several baseline classifiers that utilize a

bag-of-words approach, primarily to provide a reference point for

comparing more advanced modeling techniques. For these traditional

machine learning models, we employed GridSearchCV with 5-fold

cross-validation to systematically search for optimal hyperparameters.

The text data were vectorized using term frequency-inverse document

frequency (TF-IDF) (50) with parameters set to ignore terms

appearing in more than 90% of documents (max_df = 0.9), include

terms appearing in at least 5 documents (min_df = 5), and incorporate

both unigrams and bigrams [ngram_range = (1,2)]. Text preprocessing

was consistent across all models, involving lowercase conversion,

special character removal (except for periods, numbers, and

alphabets), whitespace normalization, and lemmatization for words

longer than three characters. This approach preserved medical

abbreviations that might be clinically significant while reducing

vocabulary size and standardizing word forms.

After applying TF-IDF vectorization, we tested five distinct

machine learning classifiers: Logistic Regression, with an inverse

regularization strength (C) equal to 0.1; Support Vector Machine

with Linear Kernel (51); Random Forest model with 200 trees,

with each tree having a maximum depth of 10 and using

“entropy” as the criterion for measuring the quality of splits (52);

Gradient Boosting Classifier with 200 boosting stages and a

learning rate of 0.01, implying effectiveness in gradual learning

over numerous iterations (53); and XGBClassifier with 100

estimators, a learning rate of 0.01, a maximum tree depth of 4,

and a subsample ratio of 0.9, indicating a preference for

moderate complexity and high sample coverage in training (54).
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Transformer-based classifiers

In this study, we adopted a family of transformer-based language

models to analyze clinical note content, primarily because

transformers utilize a multi-head self-attention mechanism that

pinpoints how different words in a sequence relate to each other, even

when they are far apart. This mechanism effectively captures non-

linear contextual dependencies by allowing multiple “heads” to attend

to different segments of the input in parallel, thereby highlighting

important clinical cues that might not be locally adjacent. Of the

transformer-based models (55), we used BERT (56), BioBERT (57),

and Bio-ClinicalBERT (58), and to analyze note content. We selected

BERT as our base architecture model due to its bidirectional training

paradigm, which uses both preceding and succeeding words for

context. Building upon BERT, BioBERT further refines the model

with additional pre-training on domain-specific biomedical corpora,

effectively incorporating specialized terminology. Similarly, Bio-

ClinicalBERT further refines BioBERT by fine-tuning on the Medical

Information Mart for Intensive Care (MIMIC-III) (59) clinical notes

dataset to augment its capability in deciphering medical terminology

and understanding complex clinical semantics. Each of our

transformer-based models accepted a maximum of 512 tokens. We

selected the last 512 tokens instead of the first 512 tokens based on

our observation that later parts of the note typically contained the

most-clinically relevant information about ongoing symptoms and

necessary treatment or discharge from care.

For these transformer-based models, we employed a consistent

training approach. Each model was trained for 8 epochs with a

batch size of 8, using the AdamW optimizer (71) with a learning

rate of 3 × 10−5 and epsilon of 1 × 10−8. To optimize the learning

rate schedule, we implemented a cosine annealing learning rate

scheduler that gradually reduced the learning rate from the initial

value to zero throughout the training process. We applied

gradient clipping with a maximum norm of 1.0 to prevent

exploding gradients during backpropagation. This technique
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helped stabilize the training process, particularly important for the

fine-tuning of pre-trained language models on domain-specific

data. The transformer-based models processed our common data

splits through their respective tokenization pipelines, ensuring

consistent evaluation across experimental runs.
Convolutional neural network classifier

We also tested the performance of Convolutional Neural

Network (CNN)-based classifiers for textual data, primarily

because CNNs excel at extracting localized patterns from

sequences—such as n-gram features—by sliding convolutional

filters over the embedded text (60). We first converted the text

into integer sequences and right padded these to a fixed

sequence length (61, 62). Our CNN architecture was specifically

designed for text classification, featuring an embedding layer

followed by multiple parallel convolutional layers with varying

filter sizes (3–12) to capture different n-gram patterns in the text.

Each convolutional layer utilized 200 filters and was connected to

an adaptive max pooling layer. The architecture incorporated a

three-layer fully connected network (200 units→ 100 units→ 1

unit) with ReLU activations and dropout (rate = 0.5) for

regularization. The CNN model was trained for up to 50 epochs

with early stopping (patience = 5) using the Adam optimizer with

an initial learning rate of 0.001 and a step learning rate scheduler

(step size = 5, gamma = 0.1). Unlike the transformer models, the

CNN implementation used a custom tokenizer and a batch size

of 16, which resulted in a different processing pipeline for the

same underlying data splits.
Statistical analysis and model evaluation

Fleiss’ kappa statistics were used to assess the degree of

agreement in note labels between orthopaedic residents. We used

the benchmarks for agreement measures for categorical data as

described by Landis and Koch, where 0.00–0.20, 0.21–0.40, 0.41–

0.60, 0.61–0.80, and 0.81–1.00 indicate poor, fair, moderate,

substantial, and almost perfect agreement, respectively (63).

Patient characteristics including patient age, sex, race, insurance

status, fracture diagnosis, and visit characteristics were extracted

from the EHR and used to asses differences in patient and visit

characteristics associated with note labels. Analyses were

performed with SAS (Cary, NC) version 15.2, R studio, and excel.

To evaluate the performance of each model on the binary

outcome measure we evaluated the F1 score, sensitivity, specificity,

positive and negative predictive value, and Area Under the

Receiver Operating Characteristic Curve (AUC-ROC) metric. The

AUC-ROC metric provides a single value that encapsulates the

trade-off between the true positive rate and the false positive rate

at various decision threshold levels. Model comparisons are

displayed using ordered Box and Whisker plots where each box

represents the interquartile range (IQR) for a specific model’s

AUC scores and data points represent outliers. To assess statistical

significance between model performance, we conducted paired
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t-tests between models that shared identical data splits and

unpaired t-tests (Welch’s t-test) for comparisons involving the

CNN model. Since the transformer-based and traditional machine

learning models used identical data splits in each run, paired

t-tests were appropriate for these comparisons. In contrast, due to

the CNN model’s different tokenization and processing pipeline,

unpaired t-tests were necessary for comparing CNN with other

models. A significance level of p < 0.05 was set.
Results

Progress note characteristics

The sample of 868 clinical notes came from patients treated by 123

physicians across 35 departments within one regional health system.

The average age of the patient was 67.5 years of age and 80% of the

sample were female patients. Patients were primarily white (91%)

and enrolled in the Medicare system (64%). The notes came from

fracture-related encounters ranging from the 2nd to the 22nd

encounter after the index PHF visit, with a mean of 4, representing

the 4th PHF-related encounter. The note lengths ranged from 981 to

15,297 characters with a mean length of 4,961 characters.

The sample was stratified into 465 notes labeled as treatment

success and 403 notes labeled as treatment failure. Patients

experiencing treatment success did not differ from those labeled

as treatment failure in age, sex, or race. Additionally, treatment

success notes did not differ in time since index visit, or the

number of PHF-related encounters. However, notes labeled as

treatment success had a higher proportion of Medicare (65.8%

vs. 62.3%) and commercially insured patients (23.4% vs. 22.1%),

compared to notes labeled as treatment failure. Additionally,

treatment success notes had a lower proportion of surgically

treated patients (16.3% vs. 24.3%) than notes labeled as

treatment failure. Treatment success notes were also significantly

shorter in length (4,673 vs. 5,291 characters). Table 2 contains

sample characteristics by note label status.
Orthopaedic resident agreement in note
labeling

Each orthopaedic resident was assigned and labeled 268 notes

with overlap in note assignment across orthopaedic residents.

Interrater agreement for classification of clinical notes was

moderate [pairwise percent agreement = 75.31%, Fleiss’ κ = 0.49

(95% CI: 0.30–0.68)].
Model performance metrics

Table 3 shows results for both machine and deep learning

models explored in our analysis. The XGB Classifier model

achieved the highest AUC score (0.84 ± 0.03) among the bag-of-

words models and the Bio-ClinicalBERT model had the highest

AUC (0.87 ± 0.04) among the deep learning models. Overall, the
frontiersin.org
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TABLE 2 Sample characteristics by note label Status.

Patient and note characteristics Total sample Treatment success notes Treatment failure notes P-value

N (%) N (%) N (%)

N= 868 (100) N= 465 (53.4) N = 403 (46.4)
Patient Age, Mean (SD) 67.5 (14.9) 68.1 (15.1) 66.8 (14.7) 0.19

Patient Sex, N (%) 0.18
Male 175 (20.2) 86 (18.5) 89 (22.1)

Female 693 (79.8) 379 (81.5) 314 (77.9)

Patient Race, N (%) 0.68
White 791 (91.1) 427 (91.8) 364 (90.3)

Black 46 (5.3) 23 (4.9) 23 (5.7)

American Indian, Alaskan, or Hawaiian 4 (1.0) 3 (0.6) 1 (0.2)

Hispanic 13 (1.5) 6 (1.3) 7 (1.7)

Asian 4 (0.5) 2 (0.4) 2 (0.5)

Other 10 (1.0) 4 (1.0) 6 (1.5)

Insurance Provider 0.04
Medicare 557 (64) 306 (65.8) 251 (62.3)

Medicaid 37 (4.2) 16 (3.4) 21 (5.2)

Private 198 (23) 109 (23.4) 89 (22.1)

Other 70 (8.1) 34 (7.3) 36 (8.9)

Note Characteristics
Days from Index, Mean (SD) 135 (79.9) 131.2 (72.0) 140.8 (87.8) 0.08

PHF-related encounter, Mean (SD) 4.4 (1.8) 4.4 (1.6) 4.5 (2.01) 0.26

Patient treated surgically, N (%) 174 (20) 76 (16.3) 98 (24.3) <0.01

Note character length, Mean (SD) 4,961 (2,725) 4,673.4 (2,511.9) 5,294.1 (2,921.3) <0.001

TABLE 3 Performance metrics for Bag-of-word and deep learning models.

Model name F1 score Specificity Sensitivity Precision NPV AUC

Bag-of-words models
Logistic regression 0.70 (±0.03) 0.64 (±0.03) 0.82 (±0.04) 0.72 (±0.02) 0.73 (±0.04) 0.80 (±0.03)

SVC 0.72 (±0.03) 0.60 (±0.03) 0.81 (±0.03) 0.71 (±0.02) 0.74 (±0.03) 0.79 (±0.03)

Random forest 0.72 (±0.03) 0.68 (±0.03) 0.80 (±0.02) 0.73 (±0.02) 0.73 (±0.03) 0.80 (±0.01)

Gradient boosting classifier 0.75 (±0.02) 0.70 (±0.02) 0.81 (±0.02) 0.75 (±0.02) 0.75 (±0.02) 0.82 (±0.01)

XGBClassifier 0.75 (±0.02) 0.70 (±0.06) 0.78 (±0.03) 0.75 (±0.03) 0.74 (±0.03) 0.84 (±0.03)

Deep learning models
BERT 0.76 (±0.08) 0.76 (±0.04) 0.75 (±0.06) 0.79 (±0.05) 0.72 (±0.08) 0.83 (±0.05)

BioBERT 0.75 (±0.03) 0.71 (±0.07) 0.77 (±0.04) 0.77 (±0.05) 0.73 (±0.03) 0.81 (±0.03)

Bio-ClinicalBERT 0.77 (±0.04) 0.74 (±0.09) 0.80 (±0.04) 0.78 (±0.07) 0.76 (±0.02) 0.87 (±0.04)

CNN 0.73 (±0.09) 0.65 (±0.14) 0.77 (±0.07) 0.71 (±0.10) 0.69 (±0.11) 0.80 (±0.05)
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Bio-ClinicalBERT model had the highest performance

(AUC = 0.87 ± 0.04) in correctly distinguishing between treatment

success and failure notes. Table 3 shows complete performance

metrics for machine and deep learning models and Figure 2

displays comparative model performance for all models.
Discussion

This study is the first to develop a clinical text classifier capable

of identifying whether a patient achieved treatment success

following care for an acute PHF. Our results suggest that AI,

more specifically, text classification models in combination with

clinical note text can be used to differentiate patients with good
Frontiers in Digital Health 06
and bad treatment outcomes. This finding is encouraging, and it

suggests that routine clinical note content may offer a solution to

the much-needed problem of outcome data availability in

orthopaedic medicine. This AI approach could translate to

producing a widely available treatment outcome measure, which

could be used for comparative effectiveness research studies and

for the development of clinical quality metrics (64) to improve

the quality of orthopaedic care.

A crucial step in demonstrating that orthopaedic care achieves

meaningful patient-specific improvement is to have outcome data

available that closely measures if treatment was successful in

achieving the outcome goals prioritized by patients. However, a

leading challenge in outcome measurement remains that

orthopaedic outcomes are highly individualized and patient
frontiersin.org
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FIGURE 2

AUC scores across deep learning and machine learning models.
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specific. This fact undermines the value of even the industry-wide

standard PROMs, as PROM overall scores often assume equal

weighting of outcome dimensions for all patients. Yet, as an

example, patients may more heavily value pain reduction over

range of motion, which would not be accurately reflected in

summary PROM scores. In contrast, our approach and resulting

measure is highly flexible and responsive to each individual

patient’s treatment goals. Orthopaedic-related encounters are

highly focused on each patient and how musculoskeletal

conditions and treatment affect outcome dimensions and a

patient’s quality of life. Each encounter is naturally tailored to the

patient and their unique musculoskeletal needs, and physicians

record goal achievements or challenges that are revealed through

the encounter discussion, exam and treatment planning.

The applications of AI and NLP are rapidly expanding in

medicine (17, 32, 65, 66) and orthopaedic medicine (23, 34).

Yet, our work is the first to use a text classifier to develop a

binary measure of treatment success following care for an

acute shoulder fracture. Recent studies have used similar

methods to achieve related tasks. For example, Humbert-Droz

et al., developed a NLP pipeline to extract documented

PROMs from the EHR for patients with rheumatoid arthritis

(24), and Zanotto et al., used NLP models to identify patient

characteristics and health status PROMs (21). However, these

studies differ from our approach in that they are still

dependent upon the collection of PROM data during clinical

care. Our approach offers advantages in that it does not
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require any additional data collection efforts on behalf of

physicians, staff, or practice managers, as we know there are a

myriad of challenges in collecting PROMs that may never be

eliminated (10). Our approach is flexible and responsive with

respect to the natural language typically recorded during the

clinical encounter.

Our sample contained clinical notes from office visits for PHF-

related care ranging from over 123 physicians across 35

departments within a regional health system. This finding signals

that patients are receiving follow-up care for their PHFs from

many different providers. While many of these visits were with

an orthopaedic provider, this is an elderly patient population that

regularly seeks care from primary care. Therefore, the diversity in

providers and departments in our sample spans clinical notes

authored by both orthopaedic and primary care physicians. This

might signal that our approach is robust to notes beyond those

authored just by orthopaedic physicians, to also include a variety

of physicians that may discuss healing following orthopaedic

treatment. Although there were not many differences observed

between the characteristics of success and failure notes, we did

find that treatment success notes were significantly shorter in

length (4,673 vs. 5,291 characters) compared to treatment failure

notes. This is not surprising, as good outcomes can be discussed

and recorded more quickly and typically don’t require ongoing

treatment and related discussion and documentation. However,

clinical documentation can be highly varied and more robust

patient and visit characteristics should be assessed in future work
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to explore their relationship with clinical documentation and

patient outcomes.

We found that of the models we tested, the Bio-ClinicalBERT

model had the highest performance (AUC = 0.87 ± 0.04) in

correctly distinguishing between treatment success and failure

notes. This finding was consistent with prior research, which has

illustrated Bio-ClinicalBERT’s enhanced capability in

comprehending intricate medical terminologies and thematic

elements inherent to clinical documentation compared to other

models. In a similar study, Lee et al. also found that Bio-

ClinicalBERT models performed well when identifying

documented goals-of-care discussions within the EHR (22).

This work was the first study to develop a clinical text classifier

capable of identifying whether a patient achieved treatment success

following care for an acute PHF. Our ongoing work will continue

to refine our approach to how to use clinical progress note

content to form assessments of patient outcomes following

orthopaedic treatment. Beyond validation and moving toward use

in clinical practice, we envision the next step would be to

consider integrating this measure with the EHR to support

clinical decision support (CDS) use and quality reporting at the

health system level. Development of this measure provides

science at scale which enables unlimited comparative

effectiveness studies across orthopaedic treatments and future

tailored treatment decision making through CDS use to improve

individual and population health.

This work is not without limitations. This was a relatively

small feasibility study to assess if text classifiers could be

applied to clinical notes to generate a measure of orthopaedic

treatment success. Although we were successful in achieving an

outcome measure with a high level of accuracy, we used a

relatively small sample of patients with one shoulder condition.

The patient sample we used lacked diversity, being primary

female and white, and model performance should be assessed in

more diverse patient samples to ensure unbiased model

performance among patient subsets. Additionally, clinical note

structure can vary significantly across physicians, medical

specialties, and health systems. To inform the generalizability of

our work, we must test our approach using multi-institutional

data across a range of orthopaedic providers with variable

documentation practices. Although we expect our approach

would be generalizable to other orthopaedic conditions, we have

not explored our methods in orthopaedic conditions beyond

PHF. Future work will focus on applying our approach to acute

and chronic orthopaedic conditions across adult and pediatric

populations. Furthermore, the transformer-based models we

adopted including BERT, BioBERT, and ClinicalBioBERT, are

relatively limited in their parameter scope and the breadth of

training data compared to more recent advancements in large

language models (LLMs). These newer models, which boast

significantly more parameters and have been trained on

substantially larger datasets, may offer improved accuracy and

better generalizability across diverse medical texts and clinical

conditions. Exploring the application of LLMs in future studies

could address some of the current limitations and provide a

more robust tool for clinical text analysis.
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As a next step for this work, we plan to assess the validity of

our newly developed measure using PROMs or prospective

patient follow-up. There are mixed reports of the accuracy of

clinical note content, therefore we must evaluate if our measure

accurately reflects a state of patient improvement or decline our

new measure is reporting. However, multiple studies have found

that healthcare professionals produce accurate documentation for

concrete and overt symptoms, such as range of motion and

impaired physical functioning (67–70). Therefore, because of the

highly focused nature of orthopaedic encounters and symptoms,

we believe that clinical note content remains a valuable and valid

source of data from which to develop an indicator of treatment

success for patients (17, 19, 38). Lastly, although we engaged

patients in the development of outcome labels and the definition

of treatment success, we ultimately used the physician

perspective to develop the gold standard dataset labels of

treatment success or failure. It is recognized that patients and

physicians may differ in their definition of treatment success,

therefore future work will explore incorporating patient

perspectives into the definition of treatment success.
Conclusions

We believe the development of an AI-based measure of

treatment success using clinical notes may represent a paradigm

shift in how outcomes are collected in orthopaedic medicine.

Orthopaedic-related healthcare encounters are highly focused on

the ways in which musculoskeletal treatments affect outcome

priorities such as pain, range of motion, and patient’s quality of

life. This method, if widely adopted and implemented on clinical

note content stored in the EHR could translate to widely

available success measures which could be used to for

comparative effectiveness research studies and for the

development of clinical quality metrics (64) to improve the

quality of orthopaedic care.
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