
TYPE Original Research
PUBLISHED 21 January 2025| DOI 10.3389/fdgth.2025.1535168
EDITED BY

Adnan Haider,

Dongguk University Seoul, Republic of Korea

REVIEWED BY

Francisco Maria Calisto,

University of Lisbon, Portugal

Atif Latif,

Utah State University, United States

*CORRESPONDENCE

Sudhakar Singh

sudhakarsingh86@gmail.com

RECEIVED 27 November 2024

ACCEPTED 06 January 2025

PUBLISHED 21 January 2025

CITATION

Singh P and Singh S (2025) ChestX-Transcribe:

a multimodal transformer for automated

radiology report generation from chest x-rays.

Front. Digit. Health 7:1535168.

doi: 10.3389/fdgth.2025.1535168

COPYRIGHT

© 2025 Singh and Singh. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Digital Health
ChestX-Transcribe: a multimodal
transformer for automated
radiology report generation from
chest x-rays
Prateek Singh and Sudhakar Singh*

Biomedical Engineering Department, School of Bioengineering and Biosciences, Lovely Professional
University, Punjab, India
Radiology departments are under increasing pressure to meet the demand for
timely and accurate diagnostics, especially with chest x-rays, a key modality
for pulmonary condition assessment. Producing comprehensive and accurate
radiological reports is a time-consuming process prone to errors, particularly
in high-volume clinical environments. Automated report generation plays a
crucial role in alleviating radiologists’ workload, improving diagnostic accuracy,
and ensuring consistency. This paper introduces ChestX-Transcribe, a
multimodal transformer model that combines the Swin Transformer for
extracting high-resolution visual features with DistilGPT for generating
clinically relevant, semantically rich medical reports. Trained on the Indiana
University Chest x-ray dataset, ChestX-Transcribe demonstrates state-of-the-
art performance across BLEU, ROUGE, and METEOR metrics, outperforming
prior models in producing clinically meaningful reports. However, the reliance
on the Indiana University dataset introduces potential limitations, including
selection bias, as the dataset is collected from specific hospitals within the
Indiana Network for Patient Care. This may result in underrepresentation of
certain demographics or conditions not prevalent in those healthcare settings,
potentially skewing model predictions when applied to more diverse
populations or different clinical environments. Additionally, the ethical
implications of handling sensitive medical data, including patient privacy and
data security, are considered. Despite these challenges, ChestX-Transcribe
shows promising potential for enhancing real-world radiology workflows by
automating the creation of medical reports, reducing diagnostic errors, and
improving efficiency. The findings highlight the transformative potential of
multimodal transformers in healthcare, with future work focusing on
improving model generalizability and optimizing clinical integration.

KEYWORDS

medical report generation, multimodal transformers, swin transformer, DistilGPT,
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Introduction

Chest x-rays remain one of the most widely used diagnostic tools in healthcare for

assessing pulmonary disorders. However, interpreting these images and generating

accurate, detailed reports is a time-consuming and subjective task, particularly in high-

volume clinical environments. Automating this process with deep learning holds the

potential to streamline diagnostic workflows and reduce the burden on radiologists.

A significant challenge in healthcare is the prevalence of diagnostic errors, with studies
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2025.1535168&domain=pdf&date_stamp=2020-03-12
mailto:sudhakarsingh86@gmail.com
https://doi.org/10.3389/fdgth.2025.1535168
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1535168/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1535168/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1535168/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1535168/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2025.1535168
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Singh and Singh 10.3389/fdgth.2025.1535168
(1) indicating that nearly everyone will experience a diagnostic

error at least once in their lifetime. Automating the report

generation process can mitigate these errors, enhancing

diagnostic accuracy and consistency. By relying on automated

systems for report preparation, healthcare professionals can

ensure more reliable interpretations of chest x-rays. Recent

advancements in artificial intelligence (AI) have been driven by

transformer architectures, which have revolutionized natural

language processing (NLP) and computer vision. Vision

transformers, such as Swin Transformer (2), excel at capturing

intricate spatial patterns in medical images, while language

models like GPT have shown remarkable ability in generating

coherent, contextually accurate text.

However, these technologies have only recently begun to be

explored in the context of automated clinical workflows, especially

for medical image captioning. In this study, we introduce ChestX-

Transcribe, a multimodal sequence-to-sequence transformer

model that combines the strengths of DistilGPT (3) for generating

precise radiology reports with the Swin Transformer (4) for

extracting high-resolution visual features from chest x-rays. By

seamlessly integrating both vision and language transformers,

ChestX-Transcribe offers an innovative approach to automating

medical report generation. This model enhances diagnostic

workflows by producing reliable, contextually appropriate

medical reports, reducing the cognitive load on radiologists, and

supporting faster diagnosis.

Key contributions of this study include:

• Multimodal Transformer Architecture: ChestX-Transcribe

integrates a pre-trained Swin Transformer for high-resolution

visual feature extraction from chest x-rays with DistilGPT, a

distilled version of GPT-2, for language generation. This

combination enables the model to effectively handle both local

and global dependencies in visual data while generating

coherent text, offering a robust solution for medical report

generation in healthcare.

• Efficient and Scalable Model Design: By leveraging DistilGPT,

a smaller and faster variant of GPT-2, we achieve notable

improvements in model efficiency without sacrificing the

quality of the generated reports. The reduced computational

complexity makes the model more scalable for clinical

applications where real-time processing and resource efficiency

are essential.

• Dataset Utilization and Performance Evaluation: We evaluate

the model using the widely recognized Indiana University Chest

x-ray dataset (5), facilitating performance comparisons with

existing state-of-the-art methods. Preliminary results

demonstrate a marked improvement in BLEU and ROUGE

scores, highlighting ChestX-Transcribe’s ability to generate

clinically relevant text, indicating its potential in real-world

medical settings.

• Projection Layer for Cross-Modality Fusion: A key innovation

in this work is the introduction of a projection layer that bridges

the gap between the high-dimensional visual features from the

Swin Transformer and the language model, ensuring smooth

integration of image embeddings into the text generation
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pipeline. This layer significantly enhances the model’s ability

to correlate image features with accurate medical descriptions,

setting our approach apart from existing methods.

This work contributes novel insights by combining advanced

visual and language transformers in a cohesive model for

automated medical report generation, showing the potential to

improve both the efficiency and accuracy of radiology workflows.
Literature review

Automated Radiological Report Generation is one of the

techniques used to characterize the clinical aspects of chest x-ray

images. It is a powerfully influential field that combines natural

language processing with computer vision. Earlier approaches to

report writing included retrieval of descriptions, filling of

templates, and manually developed NLP techniques. Later on,

automated medical report creation saw several developments,

but the fundamental idea behind all of them was to use an

image encoder to transform CXR images into a latent space,

which was then used by a decoder to produce medical reports.

The issue was classified as an image-to-sequence issue in

general. The reviewed literature encompasses a wide spectrum

of methodologies utilized in Automated Radiological Report

Generation. This includes CNN-based models, attention-driven

mechanisms, and hybrid approaches combining reinforcement

learning and encoder-decoder architectures. Such diversity

highlights the progression and innovation in this domain,

reflecting current research trends and addressing complex

challenges effectively. The idea was introduced by Allaouzi et al.

(6), of using a CNN-RNN architecture to automatically produce

medical reports from images. As research in the field progressed,

the attention layer (2) was added in several tests, and models like

(7) began fusing the standard CNN-RNN architecture with the

attention mechanism to project multi-view visual features which

is based on a sentence-level in a late fusion fashion. A dynamic

graph paired with contrastive learning in transformers was

proposed by Li et al. (8). This enhanced textual and visual

representation in the work of creating medical reports. Jing et al.

(9) presented a technique that combines multi-task learning and

co-attention mechanism to identify aberrant patches in medical

images. The author then overcame the challenge of creating long

paragraph-level reports by using an LSTM-based hierarchical

decoder to generate comprehensive clinical imaging reports with

visual attention and labels. In the proposed model for automatic

report generation from chest x-ray images, Hou et al. (10)

designed an architecture consisting of three key components: an

encoder, decoder, and reward module. Two branches are featured

by an encoder: a CNN that extracts visual features from the

input images and a multi-label classification (MLC) branch that

predicts common medical notions and findings. These

predictions are embedded as vectors and passed to the decoder.

The decoder is constructed employing a multi-level attention

hierarchical LSTM, and generates reports in two stages—first, a

sentence LSTM produces topic vectors to outline the content of
frontiersin.org
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each sentence, followed by a word LSTM that generates the specific

words for each sentence based on the topic vectors. To enhance the

report quality, a reward module with two discriminators provides

feedback by evaluating the generated report’s quality, and this

feedback is employed to train the generator using reinforcement

learning. The reward and the decoder module are trained

adversarial in alternating iterations. An iterative decoder with

visual attention was developed by Xue et al. (11) to ensure the

coherence between texts. Jianbo et al. (12) utilized the multi-view

information of the IU-Xray dataset by using a Resnet152 model

trained on the Chexpert dataset (13) to extract the visual features

and tags’ prediction from the patient’s front and side images.

Hierarchical LSTMs were then used to generate the report.

A transformer-based neural machine translation model was put

forth by Lovelace and Mortazavi (14) that made use of a fine-

tuning technique to extract clinical data from the reports

produced and enhance clinical consistency. To create reports

from the IU-Xray dataset, a customized transformer, and an

additional relational memory unit were also utilized by Chen

et al. (15). A visual extractor uses trained models like VGG and

Resnet to extract a set of visual attributes from the front and side

chest images. These features are then sent to an encoder and

decoder to produce reports. A framework for generating medical

reports from chest x-rays was presented by Pino et al. (16). It

primarily relies on a Template-based Report Generation (CNN-

TRG) model. This model states abnormalities found in the x-ray

images using preset templates and fixed words. By using

templates, CNN-TRG takes a more straightforward and

systematic approach than many other deep learning-based

Natural Language Generation (NLG) techniques, which makes it

easier to guarantee clinical accuracy in the produced reports.

Variational Topic Inference (VTI), which is a novel method for

automating the creation of medical image reports—a crucial task

in clinical practice—was presented by Najdenkoska et al. (17).

VTI successfully handles the issue of different report formats

written by radiologists with differing degrees of expertise. This

method makes use of conditional variational inference and

deep learning techniques, with a primary emphasis on latent

topics that inform sentence construction. These latent subjects

help to align the visual and verbal modalities into a single latent

area. The visual prior net, which encodes local visual signals

from input images, the language posterior net, which records

the associations between word embeddings in the generated

sentences, and the sentence generator net are the three key

components of VTI. Akbar et al. (18) used DenseNet121 to

extract image features and in the training phase applied

regularization using a dropout of 20%. For medical report

generation, they used the default embedding layer of Keras,

they gave both the image vector and text embedding layer

for training. Lee et al. (19) presented a model that included

a Cross Encoder-Decoder Transformer and a Global-Local

Visual Extractor (GLVE and CEDT).The language for global

characteristics such as organ size and bone shape was written

using the GLVE. They employed multi-level encoding features

using CEDT. Chen et al. (20) have improved the generation

process through the integration of cross-modal memory
Frontiers in Digital Health 03
networks, allowing interactions between text and visuals, among

other modalities. Han et al. (21) provides a framework for

combining reinforcement learning (RL) with diffusion probabilistic

models to generate chest x-rays (CXRs) conditioned on diagnostic

reports. Using Reinforcement Learning with Comparative Feedback

(RLCF), the model refines image generation through comparative

rewards, ensuring accurate posture alignment, diagnostic detail,

and report-image consistency. Additionally, learnable adaptive

condition embeddings (ACE) enhance the generator’s ability to

capture subtle medical features, leading to pathologically realistic

CXRs. Parres et al. (22) introduced a two-stage vision encoder-

decoder (VED) architecture for radiology report generation

(RRG), combining negative log-likelihood (NLL) training and

reinforcement learning (RL) optimization. Text augmentation

(TA) is proposed to enhance data diversity by reorganizing

phrases in reference reports, addressing data scarcity and

improving report quality and variability. Pan et al. (23) proposed a

chest radiology report generation method using cross-modal multi-

scale feature fusion. It incorporates an auxiliary labeling module to

focus on lesion regions, a channel attention network to enhance

disease and location feature representation, and a cross-modal

feature fusion module that aligns multi-scale visual features

with textual features through memory matrices for fine-

grained integration.

Also Iqra et al. (24) introduced a Conditional Self-Attention

Memory-Driven Transformer model for radiology report

generation. The process involved two phases: first, a ResNet152

v2-based multi-label classification model was used for feature

extraction and multi-disease diagnosis. Next, the Conditional

Self-Attention Memory-Driven Transformer acts as a decoder,

leveraging memory-driven self-attention mechanisms to

generate textual reports. Sharma et al. (25) introduced the

MAIRA-Seg framework, a segmentation-aware multimodal

large language model (MLLM) for radiology report generation.

They trained expert segmentation models to obtain

pseudolabels for radiology-specific structures in chest x-rays

(CXRs). Building upon the MAIRA architecture, they integrated

a trainable segmentation tokens extractor that leverages these

segmentation masks and employed mask-aware prompting to

generate radiology reports.

Tanno et al. (26) developed the Flamingo-CXR system for

automated chest radiograph report generation, which was

evaluated by board-certified radiologists. Their study found that

AI-generated reports were deemed preferable or equivalent to

clinician reports in 56.1% of intensive care unit cases and 77.7%

for in/outpatient x-rays. Despite errors in both AI and human

reports, the research highlights the potential for clinician-AI

collaboration to improve radiology report quality.

In the clinical environment, the integration of explainable AI

(XAI) systems has become increasingly important for fostering

trust and ensuring that clinicians understand the rationale

behind AI-driven decisions. XAI allows for transparent

reporting, providing meaningful explanations for the

recommendations made by AI systems, which is crucial for

enhancing clinical decision-making and improving patient care.

The use of a modality-specific lexicon plays a key role in
frontiersin.org
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ensuring that AI-generated reports are detailed, contextually

relevant, and interpretable. In the context of breast cancer

diagnosis, Bastos et al. (27) developed a system that

incorporates semantic annotation into medical image analysis

to generate clearer, more comprehensive explanations of

findings, allowing clinicians to better understand AI

predictions. This approach not only enhances the transparency

of AI models but also ensures they are aligned with clinicians’

needs, ultimately facilitating the adoption of AI systems in real-

world clinical settings. Bluethgen et al. (28) developed a

domain-adaptation strategy for large vision-language models to

overcome distributional shifts when generating medical images.

By leveraging publicly available chest x-ray datasets and

corresponding radiology reports, they adapted a latent diffusion

model to generate diverse, visually plausible synthetic chest x-

ray images, controlled by free-form medical text prompts. This

approach offers a viable alternative to using real medical

images for training and fine-tuning AI models.
Methodology

The model architecture consists of a language model, a

projection layer, and a vision model, as illustrated in Figure 1.

Because of its architecture, the model can produce

comprehensive medical reports that are shaped by the visual

features that are taken out of the medical images.
FIGURE 1

ChestX-Transcribe architecture.

Frontiers in Digital Health 04
Visual model (swin transformer)

A Swin transformer model is used as the initial processing step

to extract visual features from the input chest x-rays. The image is

partitioned into patches and passed through the transformer

blocks, which operate hierarchically to capture both local and

global image information. The extracted visual features are then

transformed into a high-dimensional embedding vector.
Working
1. Patch Partitioning and Linear Embedding: The input image I is

split into non-overlapping patches of size M �M. The patches

are then flattened and passed to a linear embedding layer.

A linear embedding layer projects each flattened patch into a

feature space of dimension of C. Each patch now becomes a

“token” with a feature vector. The number of tokens N

(Equation 1) is then calculated as:

N ¼ H � W
M2

(1)

2. Window-based Multi-head Self-Attention (W-MSA):

Swin transformers use window-based multi-head self-

attention where self-attention is computed with non-

overlapping windows. The computational complexity for

global multi-head self-attention (MSA) (Equation 2) and
frontiersin.org
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window-based self-attention (W-MSA) (Equation 3) can be

described as:

V(MSA) ¼ 4hwc2 þ 2(hw)2C (2)

V(W �MSA) ¼ 4hwc2 þ 2M2hwC (3)

where h and w are the dimensions of the input feature map,

and M is the window size. The first term represents the cost

of computing the queries, keys, and values, while the second

term captures the attention computation.

3. Shifted Window-based Multi-head Self-Attention (SW-MSA):

SW-MSA is a feature introduced by Swin Transformer that

enables token interactions across windows. The windows are

shifted by M
2 pixels between successive layers. This enables

information exchange across windows.

4. Patch Merging: After every stage, patch merging is used to

downsample the resolution of the feature map while

increasing the feature dimension.
Projection layer

After extraction of the image embedding (Figure 1) from the vision

model happens, a projection layer is used to align these embeddings to

match the input dimension expected from the language model. This

layer helps to ensure that the image representations can be

effectively combined with token embeddings from the language

model for joint processing. The projection layer applies a linear

transformation (Equation 4) to map the image embeddings from the

dimensionality dimage to dlang . This can be expressed as:

z proj ¼ zimageWproj þ bproj (4)

Where:

• Wproj [ Rdimage�dlang is the weight matrix of the projection layer.

• bproj [ Rdlang is the bias vector.

Language model (DistilGPT)

The language model is based on DistilGPT, which consists of

12 transformer layers. It takes token embeddings as input and

predicts the next token in the sequence to generate a coherent

medical report. The token embeddings are generated from the

medical report text and processed through the model’s

transformer layers, which include masked multi-head self-

attention, layer normalization, and feed-forward layers. The

model also integrates the transformed image embeddings with

the token embeddings at the beginning of the input sequence to

condition the report generation on both the visual and textual

information. The output dimension of the vision model (Swin

Transformer) is set to 768 which matches the dimensionality

required for the input to the language model.
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We selected DistilGPT for its ability to balance performance,

computational efficiency, and adaptability to domain-specific text.

While larger language models (e.g., GPT-3) offer superior

generalization capabilities, their computational cost makes them

less feasible for clinical deployment. DistilGPT retains 97% of

GPT’s performance while being significantly faster and

lightweight, making it ideal for generating radiology reports in

real-world, high-volume settings.
Training details

The dataset used in this study is the Indiana University Chest

x-ray Dataset, which consists of 7,430 images of frontal and lateral

chest x-rays belonging to 3,825 patients. Each image is paired with

corresponding radiology reports that provide detailed findings

regarding the patients’ conditions. This dataset serves as the

foundation for training the model to generate textual descriptions

based on visual inputs.
Image preprocessing
Each x-ray image undergoes a series of transformations as

included in the Swin Transformer model preprocessing pipeline.

First, the image is resized to the standard dimensions which are

suitable for the model’s input, ensuring uniformity across all the

input samples. Next, pixel values are normalized in a range

between 0 and 1.
Text preprocessing
The textual findings from the radiology reports are tokenized

using the GPT-2 tokenizer. This process involves encoding the

findings into a sequence of token IDs representing the words or

subwords in the text. These token IDs allow the model to interpret

and process the textual information effectively. To ensure

compatibility with the model’s input requirements, tokenized

sequences are constrained to a specified maximum length.

If a sequence exceeds this length, it is truncated to fit the required

size, preventing overflow during processing. Additionally, an end-of-

sequence token ID is appended to mark the conclusion of the text

sequence, signaling the model when to stop generating output. In

this study, the dataset consists of a total of 155,837 tokens. This

token count reflects the cumulative number of tokens across all

text sequences in the dataset. To maintain consistency and

optimize the performance of the model, the output is restricted to

a maximum of 100 newly generated tokens. This limit includes

both the input prompt and the generated text. Therefore, the total

length of the output is carefully controlled, ensuring that the

generated sequence is neither too short nor too long, and can be

evaluated consistently across experiments.
Training and validation loss
The model was trained over 5 epochs with both training and

validation losses being tracked to monitor the model’s

performance and prevent overfitting. Figure 2 below shows the

Training Loss vs. Validation Loss over 5 epochs.
frontiersin.org
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The model is learning from the data as seen by the training

loss, which gradually drops throughout the epochs. Initially, the

validation loss decreases along with the training loss, showing

that the model is improving its generalization to unseen data.

However, after approximately 2 epochs, the validation loss

plateaus, suggesting that further training may lead to overfitting.

The adaptive learning rate method of the Adam optimizer,

which works well for tasks involving huge datasets and parameters,

was used to train the model. To maximize performance, two

different learning rates were applied to various model components

in this configuration. To ensure that fine-tuning happens gradually

without causing significant changes, the language model’s

parameters were updated using a learning rate of 2e-4.

This allowed the model to preserve its pre-trained knowledge

while responding to the task-specific data. On the other hand,

because these layers are more task-specific and call for more

substantial updates, the projection model’s parameters were

changed using a higher learning rate of 5e-5. By keeping a balance

throughout training, this differential learning rate technique helps

keep the model from underperforming or overfitting too soon.
Evaluation metrics

1. BLEU Score: Bilingual Evaluation Understudy (BLEU) (29)

(Equation 5) is a widely used metric in natural language

processing used for evaluating the quality of text generated by

the model. It measures the overlap between the generated text

and the reference text by comparing n-grams (contiguous

sequences of words). A higher BLEU score indicates better

alignment with the ground truth captions, demonstrating the
Frontiers in Digital Health 06
model’s ability to generate coherent and relevant descriptions.

BLEU ¼ BP:exp
XN
n¼1

wn logpn

 !
(5)

Where;

• BP is the brevity penalty, which penalizes shorter sentences to

encourage longer, more complete outputs.

• pn is the precision for n-grams of order n.

• wn is the weight assigned to the precision of each n-gram level.

• N is the maximum length of the n-grams.

2. ROUGE-L: The ROUGE-L (Recall-Oriented Understudy for

Gisting Evaluation - Longest Common Subsequence) (30) metric

measures the Longest Common Subsequence (LCS) between a

generated text and a reference text. It focuses on capturing the

sequence similarity while maintaining word order. ROUGE-L

computes precision (Equation 6), recall (Equation 7), and

F1-score based on the length of the LCS between the generated

sequence C and the reference sequence R.

LCS(C, R) ¼ Length of the Longest Common Subsequence

between C and R

P ¼ LCS(C, R)
jCj (6)

R ¼ LCS(C, R)
jRj (7)
frontiersin.org
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• P is the Precision.

• R is the Recall.

• jCj is the length of the generated text.

• jRj is the length of the reference text.

3. ROUGE-1: The ROUGE-1 metric evaluates the unigram

overlap between the generated text and the reference text. It

captures the presence of individual words from the reference

in the generated sequence, measuring precision, recall, and

F1-score.

4. ROUGE-2: The ROUGE-2 metric evaluates the bigram overlap,

focusing on the accuracy of consecutive word pairs in the

generated text compared to the reference. It calculates

precision, recall, and F1-score based on bigram matches.

5. METEOR: Metric for Evaluation of Translation with Explicit

Ordering (METEOR) (31) is a metric used for evaluating the

quality of machine-generated translations by comparing them

with human-generated reference translations. Unlike

precision-focused metrics like BLEU, METEOR places more

emphasis on recall and incorporates additional linguistic

features such as stemming synonym matching, and

paraphrase matching.
Results

In this section, we present the results of evaluating our

proposed model on the Indiana University Chest x-ray Dataset

using various evaluation metrics, including BLEU, ROUGE, and

METEOR. These metrics offer a thorough evaluation of the

quality of the generated text in terms of recall and precision.

A comparison of our model’s output to many cutting-edge

methods for producing medical reports from chest x-ray pictures

is shown in Table 1. All evaluation criteria, such as ROUGE-L,

METEOR, and BLEU scores, show that our model performs

better. We succeeded in capturing unigrams pertinent to the

medical context with a BLEU-1 score of 0.675, which is

noteworthy and outperforms previous models like Alqahtani

et al. (35) and Singh et al. (36). In longer generated sequences,

our BLEU-2, BLEU-3, and BLEU-4 scores, which are 0.585,

0.523, and 0.472, respectively, demonstrate great coherence and
TABLE 1 Performance metrics of state-of-the-Art models across BLEU, METE

S. no Works BL-1 BL
1. Niksaz et al. (32) (ResNeXt + BioBert) 0.178 0.1

2. Junior et al. (33) 0.377 0.2

3. Yelure et al. (34) (Encoder-Decoder) 0.11 0.2

4. Yelure et al. (34) (Encoder-Decoder with Attention) 0.11 0.3

5. Alqahtani et al. (35) 0.479 0.3

6. Singh et al. (36) (ResNet-101,CNN + Transformer) 0.311 0.1

7. Shaikh et al. (37) 0.465 0.3

8. Alfarghaly et al. (38) (CDGPT2) 0.387 0.2

9. Akbar et al. (18) 0.558 0.4

10. Raminedi et al. (39) (ViGPT2) 0.571 0.3

11. Ours 0.675 0.5
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relevance. With a METEOR score of 0.382, our model

outperforms many other models in producing linguistically

diverse text, highlighting its efficacy in capturing semantic

nuances. Additionally, a high degree of structural similarity

between the generated reports and the reference texts is indicated

by our ROUGE-L score of 0.698, indicating that our approach

performs exceptionally well in preserving sentence-level

organization. Overall, Table 1’s results confirm that our model

performs noticeably better than current approaches, highlighting

its efficiency in automatically generating high-quality

medical reports.

The failure cases outlined in the (Table 2) highlights key

limitations in the dataset and model, particularly the

underrepresentation of rare or subtle conditions. For instance,

the omission of calcified granulomas and degenerative changes

underscores the challenge of detecting less common or subtle

abnormalities that may not be adequately represented in the

training data. Similarly, the model’s failure to capture the

nuanced description of acute bony findings points to

difficulties in handling ambiguous or borderline cases. While

the general findings were correctly identified, minor stylistic

differences in phrasing reflect inconsistencies in reporting,

though not affecting clinical accuracy. These failures emphasize

the need for a more diverse dataset, with a better balance

between common and rare conditions, to ensure the model can

generalize effectively. Future improvements, such as data

augmentation, synthetic data generation, and class balancing,

will help address these gaps and enhance the model’s ability to

accurately detect a wider range of clinical findings, ultimately

improving its robustness and applicability in real-world

clinical settings.
Discussion

This work demonstrates promising results using the ChestX-

Transcribe model, but several limitations related to both the

dataset and the model itself must be considered. The Indiana

University Chest x-ray (IU CXR) dataset, while valuable, may

introduce selection bias due to its specific origins within the

Indiana Network for Patient Care. This can affect the model’s
OR, and ROUGE scores.

-2 BL-3 BL-4 MTR RG-1 RG-2 RG-L
46 0.135 0.102 – –

39 0.168 0.124 0.322 0.300

3 0.32 0.38 – –

2 0.46 0.56 – –

63 0.261 0.173 0.188 0.354

96 0.131 0.091 0.136 0.264

00 0.220 0.172 0.185 0.361

45 0.166 0.111 0.164 0.289

63 0.311 0.097 – 0.448

85 0.291 0.226 – 0.433

85 0.523 0.472 0.382 0.72 0.55 0.698
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TABLE 2 Limitations and failure cases.

S. no Case Sample report findings Generated report
findings

Issue

1. Calcified
granuloma

Large calcified granuloma within the medial right
lung base

Granuloma not mentioned Omission of rare finding (calcified granuloma)

2. Degenerative
changes

Mild degenerative changes at the lower thoracic
spine

No mention of degenerative
changes

Omission of subtle abnormality (degenerative changes)

3. Bony
abnormalities

Convincing acute bony findings No acute bony abnormality Ambiguous terminology; failed to capture nuanced
description of bony findings

4. General findings Clear lungs, normal heart size, no pleural effusion
or pneumothorax

Similar findings Minor phrasing differences, no false analysis; just style
variance

TABLE 3 Example predictions of ChestX-transcribe.

Input image Ground truth Predicted
There is a subtle left medial base opacity.
Cardiomediastinal silhouette is normal. Pulmonary
vasculature and XXXX are normal. No pneumothorax or
large pleural effusion. Osseous structures and soft tissues
are normal.

XXXX are unchanged. No focal airspace consolidation.
No pleural effusion or pneumothorax. Heart size and
mediastinal contour are within normal limits.

Cardiomediastinal silhouette and pulmonary vasculature
are within normal limits. Lungs are clear. No
pneumothorax or pleural effusion. No acute osseous
findings.

C and lateral views of the chest. The cardiomediastinal
silhouette is normal in size and contour. No focal
consolidation, pneumothorax or large pleural effusion.
No acute bony abnormality.

The cardiac contours are normal. The lungs are clear.
Thoracic spondylosis.

Heart size and mediastinal contours. The lungs are clear.
Thoracic spondylosis.

The heart size is normal. The mediastinal contour is
within normal limits. The lungs are free of any focal
infiltrates. There are no nodules or masses. No visible
pneumothorax. No visible pleural fluid. The XXXX are
grossly normal. There is no visible free intraperitoneal air
under the diaphragm. Surgical clips are seen the right
upper quadrant.

Heart size is normal. Lungs are clear.

(Continued)
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TABLE 3 Continued

Input image Ground truth Predicted
The cardiac silhouette and mediastinal contours are
within normal limits. There are low lung volumes with
bronchovascular crowding. Otherwise the lungs are clear.
There is no pneumothorax. No large pleural effusion.

Low lung volumes. Heart size within normal limits. No
pneumothorax or pleural effusion.

The heart and lungs have XXXX XXXX in the interval.
Both lungs are clear and expanded. Heart and
mediastinum normal.

XXXX opacities XXXX representing chronic lung disease.
Lungs are clear. No pleural effusions or pneumothoraces.
Heart and mediastinum of normal size and contour.
Degenerative changes in the spine.

Right lower lobe XXXX calcified granuloma. Heart size
within normal limits. No pleural effusions. No evidence of
pneumothorax. Degenerative changes thoracic spine.

Right lower lobe XXXX calcified granuloma. Heart size
and pulmonary vascularity within normal limits. No focal
consolidation, pneumothorax or pleural effusion.
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generalizability if certain patient demographics or less common

medical conditions are underrepresented, limiting its

applicability to a wider, more diverse population, including

rural or international healthcare settings. Additionally, the

dataset may not capture the full spectrum of conditions, such

as rare findings like calcified granulomas or degenerative

changes, which could result in omissions or misclassifications

in model output. Regarding the model, DistilGPT was chosen

for its balance between computational efficiency and coherence,

but more advanced models such as GPT-4 or T5, fine-tuned

for medical data, could provide more accurate and context-

sensitive reports. However, these models come with higher

computational costs, which could hinder scalability in real-

world clinical applications, where timely report generation is

crucial. Furthermore, since the model was trained on a single

dataset, its performance on other datasets with differing

characteristics—such as those containing rare conditions or

subtle findings like bony abnormalities—remains uncertain.

This underscores the need for further validation on diverse

datasets to assess the model’s robustness and generalizability.

These limitations highlight the need for data diversity,

improved model efficiency, and cross-dataset validation to

enhance the model’s practicality in real-world clinical settings.
Frontiers in Digital Health 09
Conclusion

In this study, we aimed to develop a multimodal sequence-to-

sequence transformer model for generating accurate medical

reports from chest x-ray images, which addresses the critical

need for automated systems in radiology. Our proposed model

demonstrated superior performance across various evaluation

metrics, achieving BLEU, ROUGE, and METEOR scores that

outperformed several state-of-the-art models. The integration of

a Swin Transformer for visual feature extraction and DistilGPT

for text generation proved effective in producing coherent and

contextually relevant medical narratives. The findings (Table 3)

suggest that our method can markedly improve the efficiency of

medical reporting, potentially assisting healthcare practitioners in

delivering prompt and precise diagnoses. This automation could

alleviate the workload on radiologists, allowing them to focus

more on patient care.

While our model performs well on the evaluated dataset, it is

essential to recognize that the results may vary with different

datasets or imaging modalities. Further exploration is needed to

generalize the model’s performance across various clinical

contexts. As noted by Pan et al. (40), integrating large AI models

into radiology workflows presents challenges, including data
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privacy concerns, ethical considerations, and compatibility with

existing hospital infrastructure. Future work should focus on

refining the model by incorporating larger and more diverse

datasets to enhance its robustness. Additionally, exploring hybrid

architectures or integrating attention mechanisms may yield

further performance improvements.

To transition this model into real-world clinical systems,

several steps should be considered. One key recommendation is

to address data privacy concerns, ensuring the protection of

patient information in compliance with healthcare regulations.

Moreover, integration into existing hospital infrastructure,

including compatibility with radiology workstations and

electronic health records, would be essential for seamless

deployment. Implementing real-time processing capabilities to

enable timely report generation is another practical challenge.

Ethical considerations surrounding the use of AI in healthcare,

such as transparency, accountability, and bias mitigation, must

also be discussed to ensure responsible adoption. Ultimately, this

research lays the groundwork for the development of intelligent

systems that not only improve the accuracy of medical reporting

but also pave the way for innovative applications in automated

healthcare diagnostics.
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