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Integrated portable ECG
monitoring system with CNN
classification for early
arrhythmia detection
Aayush Panwar1, Modigari Narendra2*, Arnav Arya1, Rohan Raj1
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Introduction: Electrocardiograms (ECGs) play a crucial role in diagnosing heart
diseases by capturing the electrical activity of the heart. With the rising need for
real-time cardiac monitoring, portable solutions have gained significance for
timely detection and intervention. This study presents a portable ECG
monitoring system incorporating Convolutional Neural Networks (CNNs) for
accurate classification of cardiac abnormalities, including arrhythmias.
Methods: The proposed system consists of an Arduino Nano microcontroller
interfaced with an AD8232 ECG sensor for real-time ECG signal acquisition.
The collected ECG data undergoes preprocessing before being fed into CNN
models trained on the MIT-BIH Arrhythmia dataset. The model is designed for
both binary and multi-class classification, distinguishing normal and abnormal
heart rhythms. Performance metrics, including accuracy, were evaluated
against state-of-the-art approaches to assess classification effectiveness.
Results: Experimental evaluations demonstrate the CNNmodel’s high classification
accuracy, achieving 98.35% in binary classification and 99.3% in multi-class
classification. These results surpass existing benchmarks, highlighting the
efficiency of the proposed system. The system's low-cost hardware and real-time
classification capabilities enhance its suitability for continuous cardiac monitoring.
Discussion: The proposed ECG monitoring system presents a reliable and cost-
effective solution for early arrhythmia detection. By leveraging CNNs, it ensures
accurate classification of cardiac abnormalities, making it a promising tool for
both clinical and remote healthcare settings. Its potential impact extends to
real-time monitoring, early diagnosis, and personalized healthcare,
contributing to improved cardiovascular health management.

KEYWORDS

ECG, portable monitoring, convolutional neural networks, arrhythmia detection,
Arduino Nano, AD8232 ECG sensor

1 Introduction

The ECG is an important tool for identifying heart diseases as it offers information

about the heart’s electrical activity. Patterns in ECG signals helps in the understanding

and diagnosis of various cardiac diseases. Accurate and prompt interpretation of these

signals is critical for early detection and treatment of heart disorders, highlighting the

value of ECG monitoring in clinical practice. Changes in medical care, such as

prevention and personalized medicine, underline the need of portable ECG monitoring.

The traditional pattern of hospital visits for ECG tests might be too expensive,
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FIGURE 1

Received signal from ECG device, image obtained from cited Database.
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particularly for those with chronic diseases or who require ongoing

treatment. Recent technological advances have resulted in more

efficient ECG monitoring solutions.

The fundamental elements of ECG patterns are known as P, QRS

and T waves, each displaying either positive or negative voltage (1).

These signals arise from the electrical activity associated with the

contraction and relaxation phases of distinct regions within the heart

muscle. A sample ECG signal signal I shown in Figure 1. Each of the

waves and segments is explained in detail below:

• The P wave is typically indicating an ectopic atrial pacemaker. If

the P wave is of unusually long duration, it may represent atrial

enlargement. Typically, a large right atrium gives a tall, peaked

P wave while a large left atrium gives a two-humped bifid P wave.

• The PR interval is measured from the beginning of the P wave to

the beginning of the QRS complex. This interval reflects the

time the electrical impulse takes to travel from the sinus node

through the atrioventricular (AV) node. A PR interval shorter

than 120 ms suggests that the electrical impulse is bypassing

the AV node, as in Wolff-Parkinson-White syndrome. A PR

interval consistently longer than 200 ms diagnoses first degree

atrioventricular block. The PR segment (the portion of the

tracing after the P wave and before the QRS complex) is

typically completely flat, but may be depressed in pericarditis.

• The electrical current that contracts the right and left ventricles is

called the QRS complex. If the QRS complex is wide (longer than

120 ms) it suggests disruption of the heart’s conduction system,

such as in Left Bundle Branch Block (LBBB), Right Bundle

Branch Block (RBBB), or ventricular rhythms such as ventricular

tachycardia. Metabolic issues such as severe hyperkalemia, or

tricyclic antidepressant overdose can also widen the QRS complex.

An unusually tall QRS complex may represent left ventricular
Frontiers in Digital Health 02
hypertrophy while a very low-amplitude QRS complex may

represent a pericardial effusion or infiltrative myocardial disease.

• ST—The ST segment connects the QRS complex and the

T wave; it represents the period when the ventricles are

depolarised. It is usually isoelectric, but may be depressed or

elevated with myocardial infarction or ischemia. ST depression

can also be caused by Left Ventricular Hypertrophy (LVH) or

digoxin. ST elevation can also be caused by pericarditis,

Brugada syndrome, or can be a normal variant.

• The T wave represents the repolarisation of the ventricles.

Inverted T waves can be a sign of myocardial ischemia, left

ventricular hypertrophy, high intracranial pressure, or

metabolic abnormalities. Peaked T waves can be a sign of

hyperkalemia or very early myocardial infarction.

Portable electrocardiogram systems have gained attention for

their potential in enabling convenient cardiac monitoring. They

help users to instantly monitor their heart status wherever they

are. The existing studies have explored diverse methodologies

and technologies aimed at enhancing accuracy, classification and

signal transmission capabilities of these systems. Numerous

studies have been conducted to study various methodologies and

technologies aimed at enhancing the precision, categorization,

and signal transmission capabilities of portable ECG monitoring

systems. Among other things, researchers have built complete

systems for monitoring ECG signals in real time via the Internet,

low-cost Holter systems based on microcontrollers, and portable

ECG recorders that connect to cellphones and other Bluetooth-

enabled devices.

The primary motivation for our project is to solve critical

difficulties in cardiovascular health, particularly the early
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diagnosis and management of arrhythmias. Arrhythmias are a

major health concern worldwide, with potentially fatal

implications if undiagnosed or mistreated. Our project aims to

address this issue by creating an integrated portable ECG

monitoring device supplemented with cutting-edge machine

learning algorithms. By creating an integrated portable ECG

monitoring system with CNN classification for early arrhythmia

identification, we hope to make a real difference in the lives of

patients, healthcare providers, and communities around the world.
2 Literature survey

Kong et al. (2) described a comprehensive method for real-time

ECG signal monitoring via the Internet. The system consists of three

main components: a portable Holter device with dual-channel ECG

readings, an FM transmitter for live data feed, and a CompactFlash

slot for storage. The Holter, which is based on an 8,051

microprocessor, can run for more than 24 h on two AA

rechargeable batteries. Segura et al. (3) created a low-cost,

microcontroller-based Holter system for ambulatory ECG capture,

taking use of the availability of powerful but affordable computers.

The methodology follows a logical sequence, beginning with ECG

signal acquisition via three strategically placed electrodes and

progressing through signal processing steps such as amplification,

Analog to Digital Converter (ADC), and data storage.

Chiang et al. (4). enhanced ECG signal processing for heart rate

regulation by integrating various techniques, including a biomedical

signal amplifier/filter, protection circuit, ADC, USB flash disk and

computer interface, to create a portable ECG recorder. Using the

MSP430F149 as the master CPU and SL81 IHS as the interface

chip, the system’s performance is managed and lead II ECG

signals are collected. MathWorks’ computer language is employed

to design a program locating R-wave peaks. Sung-Yuan et al. (5).

designed an Android smartphone and Bluetooth-enabled device

(HL-MD08R-C2 module) for ECG signal acquisition, utilising a

conductive belt and KY202 sensor. The captured signal is

transmitted to the smartphone, displayed on-screen for real-time

monitoring. Tomcat an open-source servlet is used to run Java

based program for Managing the system on HTTP web server.

Operating on a Hadoop distribution system.

Campillo et al. (6). used MSP430F5419A and CC2540

microcontrollers, integrating GSM/GPRS and GPS modules. The

device features a TFT display showcasing critical parameters,

including signal strength, battery status, time, Bluetooth

connectivity and connection status. Powered by a Li-Ion battery,

the portable system ensures 48 h of continuous ECG signal

acquisition. Celebi et al. (7). used two independent circuits, each

powered by small batteries for compactness, form the basis of a

system designed to detect heart signals and beats. The compact

size of the circuits allows for portability. The system operates

autonomously without reliance on external platforms such as

smartphones or PCs. Users can observe real-time heart rate

results displayed directly on the device. The absence of mention

regarding ML models suggests a non-automated approach,

focusing on simplicity and direct signal display for user awareness.
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Hodrob et al. (8). proposed healthcare system integrating an

Android app for customers and a web application for doctors,

utilising IoT technology. A Raspberry Pi, equipped with sensors

from HealthyPi HAT and HealthyPi, captures signals, sends data to

a cloud server and applies data mining and ML models for analysis.

Users access analysed data via the mobile app, while doctors use the

web portal. Achieving a 99.3% accuracy, addressing the critical

challenge of ensuring a reliable real-time system for healthcare

applications. Security measures are prioritised to safeguard sensitive

health data. In their study, Gradl et al. (9) present an Android ECG

monitoring application which utilises the Pan-Tompkins algorithm

to accurately detect QRS complexes and employs additional

algorithms to identify abnormal heartbeats, boasting an accuracy

rate exceeding 99%. The application seamlessly interfaces with

external ECG sensors through Bluetooth.

Jeon et al. (10) introduced a portable ECG device designed to

facilitate the early detection of atrial fibrillation (AF) and

myocardial ischemia, both critical for enhancing survival rates

among cardiac patients and able to achieve sensitivity rate of

95.1% and specificity of 95.9%. This method involves

preprocessing noisy ECG signals, employing wavelet analysis and

utilising an ARM processor-based feature extraction technique for

the detection of QRS complexes and subsequent support vector

machine classification. Raspberry Pi 3-based device introduced by

Valliappan et al. (11) serves as a bridge between sensors and a

mobile ECG app. The device employs a precise peak detection

algorithm for real-time analysis with over 95% accuracy. It

effectively handles signal processing intricacies such as baseline

wandering and power line noise removal while sampling ECG

signals at 100 samples per second and transmitting data via WiFi.

Ramkumar et al. (12) discuss the difficulties in detecting atrial

fibrillation and point out that there’s a lot of variation in who gets

screened, how they’re monitored and the types of devices used.

This variation happens because different people have different

levels of risk for AF. For instance, Holter monitoring is often used

for people at higher risk of stroke, while portable ECG studies

might include healthier individuals. Even though intermittent

monitoring sounds promising, there isn’t a standard way to do it

and it’s hard to measure how much AF someone has. Using a

single-lead portable ECG has challenges as the algorithms used to

detect AF aren’t always reliable. Ahmed et al. (13). developed an

affordable and user-friendly heart monitoring system that analyses

ECG signal variations, comparing them to normal heart rates and

RR intervals for early detection of potential AF. Designed for

individuals with cardiovascular disease or high-risk factors, the

device employs a straightforward yet effective algorithm and digital

filtering methods for improved diagnosis of cardiac pathologies.

Malepati et al. (14) designed a prototype aimed at real-time

classification of ECG signals utilising an ECG sensor coupled

with Raspberry Pi. The system integrates a trained SVM

algorithm to detect various arrhythmias based on extracted

features with an accuracy of 72.41% for testing data. Diamantino

et al. (15) introduce a handheld dual-electrode stick as a portable

atrial fibrillation screening device (AFSD) featuring light

indication of irregular rhythm and single-lead ECG recording

and achieved 90.2% sensitivity and 84.0% specificity for AF
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detection. This study evaluates its performance in primary care

patients referred for echo-cardiograms. Ahsanuzzaman et al. (16)

devised a system architecture tailored specifically for detecting

atrial fibrillation, employing Long Short-Term Memory (LSTM)

techniques for processing raw ECG signals. AD8232 single lead

ECG sensor captures heart voltage, with signals processed by

Arduino UNO and Raspberry Pi 3 and transmitted to a mobile

application via the HC-05 Bluetooth module. Falaschetti et al.

(17) discussed a classification algorithm based on recurrent

neural networks directly operating on ECG data.

Sowmya et al. (18) employs a CNN-LSTM deep learning

model. With a training and validation accuracy of 97.3% and

97.0%, respectively, the model outperforms a standalone CNN.

Liu et al. (19) introduced a novel Aggregation Attention

Multilabel Electrocardiogram classification model, designed to

identify cardiac abnormalities through the utilisation of raw

images. Rawal et al. (20) proposed two different 1D CNN

Architectures for classification of ECG Signal one with very high

accuracy Supreme CNN Architecture (SCA) and another one

with low computational power accuracy Software-Selected CNN

Architecture (SSCA). Hao et al. (21) presented a filter design

methodology aimed at enhancing the quality of ECG signal,

specifically targeting R-peak detection, while accommodating

constraints imposed by limited hardware resources. The

approach strives to yield filters characterised by both low

computational complexity and heightened prominence in R-peak

detection. Utsha et al. (22) designed a smartphone application

with embedded system for continuous ECG monitoring, Heart

Rate display and cardiac abnormality detection through edge

computing utilising a pre-trained deep-learning classifier.

The evaluation of various approaches to ECG monitoring and

early arrhythmia detection has demonstrated the effectiveness of

several systems, including Android applications, portable devices,

and Raspberry Pi 3 solutions, all of which have different features

and degrees of accuracy. Issues like as signal quality during

wireless transmission and consistency in monitoring techniques

have highlighted the importance of continued advancement in

these sectors. Furthermore, the development of advanced

classification models, such as CNN and LSTM approaches, suggests

a good trend in improving the precision and effectiveness of

arrhythmia detection systems. The proposed Integrated Portable

ECG Monitoring System with CNN Classification has the potential

to be a complete early arrhythmia diagnosis approach that blends

cutting-edge technology with practical clinical requirements. This

technology provides a cost-effective option for continuous ECG

monitoring. It employs CNNs to categorize heartbeats. Its ability to

detect arrhythmias early on provides valuable insights into

cardiovascular health and encourages collaboration and

improvements in the field of portable health monitors.
3 Dataset

The MIT-BIH Arrhythmia Database (21), utilised in this

proposed study, contains 48 half-hour excerpts of two-channel

ambulatory ECG recordings obtained from 47 patients assessed
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by the BIH Arrhythmia Laboratory. Of these recordings, 23 were

randomly selected from a pool of 4,000 24 h ambulatory ECG

recordings, reflecting a broad mix of inpatients (approximately

60%) and outpatients (about 40%) at Boston’s Beth Israel

Hospital. The remaining 25 recordings were specifically chosen

to capture less common but clinically significant arrhythmias

that would not be well represented in a typical random sample.

The dataset was digitised at 360 samples per second per channel

with 11-bit precision over a 10 mV range and includes

annotations from two or more cardiologists for each record,

providing a computer-readable reference for the database’s

approximately 110,000 beat annotations.
4 Proposed methodology

In the proposed work, a portable ECG machine is designed that

smoothly integrates standard ECG signal acquisition with cutting-

edge machine learning capabilities. The device starts the procedure

by detecting electrical signals from the user’s body via electrodes

put on the chest. The captured signals are then preprocessed,

including a filtering step to remove noise and artefacts, resulting

in a pure signal ready for further analysis. The sensor converts

this electrical activity into voltage variations, which are then

sampled by the Arduino Nano at a specified sampling rate.

Arduino Nano reads the serial data from the sensor, which

contains voltage values corresponding to the ECG signal. These

voltage values are then decoded and stored as floating-point

numbers in a CSV file for further analysis. The ECG signal data

stored in the CSV file is utilised as an input for classification

models. Convolution Neural Network models are designed and

extensively trained on MIT-BIH datasets containing both normal

and pathological heartbeat rhythms. These models function as

the core intellect, using its accumulated knowledge to analyse

incoming ECG signals in real time. Using complex signal

detection, the models accurately distinguish between normal and

abnormal heartbeats, providing instant insights into the user’s

cardiac health. The results of this analytical procedure are

immediately transmitted to the user via an interactive interface,

delivering real-time data regarding the nature of their heartbeat.

This rapid feedback mechanism is extremely useful for

monitoring and maintaining heart health. The flow of the

proposed work is shown in (Figure 2a).

The block diagram shown in (Figure 2b) illustrates a portable

ECG system integrating electrode sensing units [Right Arm (RA),

Left Arm (LA), Right Leg (RL)] connected to an ECG sensor

with a two-pole high pass filter, three-pole lowpass filter and

amplifier module. The sensor data is processed by an Arduino

Nano microcontroller equipped with a UART for communication

with a laptop, where a machine learning model performs ECG

signal analysis for prediction, presenting results through a user

interface. The Arduino Nano is chosen due to its small size, low

cost and versatility in handling sensor data and running

algorithms. AD8232 sensor, designed specifically for ECG signal

capture, has high input impedance, low noise and precise signal

conditioning capabilities. The built-in instrumentation amplifier
frontiersin.org
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FIGURE 2

(a) Flow diagram of the proposed system: heart signals are captured, processed by the AD8232 sensor, filtered and classified by an ML model. (b) Block
diagram of the device: heart signals are processed by the AD8232, managed by the ATmega328P and displayed on a laptop interface.
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guarantees dependable signal acquisition by filtering common-

mode interference and amplifying feeble electrical impulses

produced by the heart. A buzzer alerts consumers of sudden

pulse increases in real time. The user’s laptop or mobile device

functions as an interface, displaying the classification results. It

takes the preprocessed ECG data from the sensor, executes the

preset machine learning model for heartbeat categorization, and

effectively displays the findings to the user. This configuration

allows for compact and portable real-time ECG monitoring and

analysis with predictive capabilities.

We provide a portable ECG monitoring system that includes

major hardware components optimized for signal capture and

user interaction. Our system is built around the AD8232 ECG

sensor, which provides low-power, high-precision ECG signal

capture that is ideal for wearable health monitoring devices. The

specialized integrated circuit has a high input impedance, low

noise, and strong signal conditioning capabilities, effectively

filtering out common-mode interference while amplifying the
Frontiers in Digital Health 05
faint electrical signals produced by the heart. To further improve

signal integrity, the system includes a two-pole high-pass filter

and a three-pole low-pass filter, which successfully reduce noise

and artifacts in ECG data. The Arduino Nano microcontroller

complements the sensor by offering a small and adaptable

solution for processing the collected data. The Arduino Nano,

which is built around the ATmega328P, is well-known for its low

cost and appropriateness for embedded healthcare applications. It

oversees data processing and transfer via UART, allowing for

real-time delivery of ECG data to connected devices.

Furthermore, the device has a buzzer that works as a real-time

alert mechanism, notifying users of any detected irregularities in

heartbeat patterns. This component improves user involvement

by delivering immediate feedback, allowing for timely answers to

potential health issues and, eventually, improving the entire user

experience with cardiac health monitoring.

Table 1 summarizes the components and specifications of the

designed system. It describes the models, operating
frontiersin.org
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TABLE 1 Hardware specifications.

Component Model Name Parameters Size Cost
ECG Sensor AD8232 Operating Voltage (VDC) 3.3

Operating Temperature: −40 to 90°C
3 × Electrode Pads
Gain 100 & CMRR 80 dB

4 mm × 4 mm $6

Arduino Nano
Atmega328P-AU MCU

R3 CH340 Operating Voltage (VDC) 5
Power Consumption (Watt) 1
Clock Speed 16 MHz
Flash Memory 32 KB

18 mm × 45 mm $4

Buzzer – Operating Voltage (VDC) 3.3∼5.5
Frequency (2,500 Hz)

18.5 mm × 15 mm × 5 mm $0.5

Total 48 × 35 × 10 mm $10.5

Panwar et al. 10.3389/fdgth.2025.1535335
characteristics, size, and cost of the buzzer, Arduino Nano

microcontroller, and ECG sensor. The proposed ECG

classification model costs $10.5, which is much less than the $58

reported by S. M. Ahsanuzzaman et al. (16). This demonstrates

the cost-effectiveness of our technique while still maintaining

great classification performance.

In our analysis, we concentrate on the specific ECG

characteristics that are necessary for recognizing supraventricular

ectopic beats, ventricular beats, and fusion beats, all of which are

represented in the MIT-BIH dataset. While the QT interval is a

significant aspect of ECG analysis, it was excluded from our

study. This decision is based on the understanding that the target

beats can be accurately detected without an in-depth examination

of the QT interval, allowing for a more streamlined approach to

arrhythmia classification.

A CNN is designed for heartbeat classification in this ECG

machine to extract relevant features from the ECG signals

without manual feature engineering. CNN’s convolutional layers

learn to discover relevant patterns, edges, and feature

combinations within ECG signal data, which is critical for

correct classification. Conv-1D layers are specifically designed to

handle one-dimensional sequential data, making them optimal

for ECG signal analysis. These layers conduct convolutions along

the temporal axis of the ECG data, collecting patterns and

fluctuations over time that are critical for comprehending the

intricacies of various heartbeat types. Adam optimizer uses two

distinct CNN model architectures for categorization. One

approach classifies heartbeats as normal or abnormal, whereas

the other divides them into five categories: normal,

supraventricular ectopic, ventricular ectopic, fusion, and

unknown beats.
4.1 Binary classification

Figure 3 illustrates the binary classification neural network

architecture, which is composed of up of sequential layers meant

to analyze data. It starts with a Conv1D layer with 32 filters and

a kernel size of 5, then uses a rectified linear unit (ReLU)

activation function to extract various features from the input

sequences, which are 187 data points long and have a single

feature dimension. This is followed by a MaxPooling1D layer
Frontiers in Digital Health 06
with a pool size of two, which performs downsampling to reduce

the dimensionality of the output. Another set of Conv1D and

MaxPooling1D layers are provided to capture more detailed

patterns and lower the spatial dimensions of the output via the

corresponding layers. The Flatten layer subsequently reduces the

multidimensional data to a one-dimensional array, which is

passed into a Dense layer with ReLU activation. This dense layer

enables more advanced feature extraction and representation

learning. To avoid overfitting, a Dropout layer is used, which

randomly eliminates connections during training to achieve

better generalization. Finally, the architecture concludes with a

Dense layer containing a single unit and a sigmoid activation

function, producing a binary classification output, indicating

either normal or abnormal heartbeats based on the sigmoid

threshold output. The models’ architecture for the binary

classification with Layers, Activations, Parameters is give in give

in Table 2.

Several hyperparameters are selected to optimise performance

for the binary classification. The model is trained for 40 epochs

with a batch size of 32, allowing it to effectively learn from the

data while updating weights in manageable increments. To avoid

overfitting, a dropout rate of 0.5 is employed, randomly

deactivating half of the neurons during training, which helps the

model generalise better to unseen data. The model is compiled

using the Adam optimiser, known for its adaptive learning rate

capabilities and binary crossentropy as the loss function, which is

appropriate for binary classification tasks. This ensures efficient

training and accurate performance evaluation.
4.2 Multiclass classification

For multi-class classification, we designed a sophisticated and

computationally efficient neural network, as shown in Figure 3.

The neural network architecture is designed to analyze sequential

data using Conv1D, pooling, and dense layers. It starts with a

Conv1D layer with 128 filters and a kernel size of 3, which is

activated by a rectified linear unit (ReLU) to process data

sequences of similar lengths. Following the initial convolution, a

MaxPooling1D layer with a pool size of 2 decreases

dimensionality while emphasizing important characteristics.

Subsequent layers include two Conv1D layers with various filter
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FIGURE 3

CNN architecture for classification.
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and kernel sizes, as well as two MaxPooling1D levels for feature

refinement. The Flatten layer reshapes the output into a one-

dimensional array that the dense layers can process. The

architecture continues with a Dense layer of 128 units activated

by ReLU to capture higher-level characteristics. A Dropout layer

reduces overfitting by randomly deactivating connections during

training. Another dense layer, with 64 units and ReLU activation,

helps to refine the learned representations. Finally, a Dense layer

with 5 units and a softmax activation function helps in multi-

class classification by predicting probabilities for five separate

classes. This design supports extensive sequential feature
Frontiers in Digital Health 07
extraction, hierarchical representation learning, and multi-class

classification across a variety of datasets. Table 3 shows the

model architecture for multi-class classification, which includes

layers, activations, and parameters.

Several hyperparameters have been selected to strengthen the

efficiency and ability to classify different types of heartbeats.

The training phase lasts 50 epochs with a batch size of 32,

giving the model numerous chances to learn while maintaining

computational efficiency. To reduce overfitting, a dropout rate of

0.5 is used, ensuring that the model retains its generalization

capabilities. The model is built utilizing sparse categorical
frontiersin.org
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TABLE 2 Architecture details of the proposed binary model for
ECG classification.

Layer (type) Output
shape

Param#

conv1d (Conv1D) (None, 183, 32) 192

max_pooling1d
(MaxPooling1D)

(None, 91, 32) 0

conv1d_1 (Conv1D) (None, 89, 64) 6,208

max_pooling1d_1
(MaxPooling1D)

(None, 44, 64) 0

flatten (Flatten) (None, 2,816) 0

dense (Dense) (None, 64) 1,80,288

dropout (Dropout) (None, 64) 0

dense_1 (Dense) (None, 1) 65

Total params: 1,86,753
(729.50 KB)
Trainable params: 1,86,753
(729.50 KB)
Non-trainable params: 0 (0.00
Byte)

TABLE 3 Architecture details of the proposed multi class classification
model for ECG classification.

Layer (type) Output
shape

Param#

conv1d_2 (Conv1D) (None, 185, 128) 512

max_pooling1d_2
(MaxPooling1D)

(None, 92, 128) 0

conv1d_3 (Conv1D) (None, 90, 64) 24,640

max_pooling1d_3
(MaxPooling1D)

(None, 45, 64) 0

conv1d_4 (Conv1D) (None, 44, 64) 8,256

max_pooling1d_4
(MaxPooling1D)

(None, 22, 64) 0

flatten_1 (Flatten) (None, 1,408) 0

dense_2 (Dense) (None, 128) 1,80,352

dropout_1 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 64) 8,256

dense_3 (Dense) (None, 5) 325

Total params: 2,22,341
(868.52 KB)
Trainable params: 2,22,341
(868.52 KB)
Non-trainable params: 0 (0.00
Byte)
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cross-entropy as the loss function, which is appropriate for

multi-class scenarios with integer-encoded labels. Using Adam

optimizer, which allows for dynamic modifications to the

learning rate, resulting in enhanced stability and convergence

throughout training.
5 Results and discussion

This section gives a comprehensive evaluation of binary and

multi-class classification using a CNN model for arrhythmia

detection, with a focus on performance across diverse arrhythmia

types. The CNN model has excellent performance measures,

including high recall rates and precision scores, demonstrating its
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ability to accurately recognize arrhythmia. Furthermore, it

emphasizes the CNN model’s potential impact on clinical

practice and patient care by providing a thorough analysis and

demonstrating its applicability and dependability for accurate

arrhythmia diagnosis.
5.1 Hyperparameter optimization and
training dynamics

An detailed evaluation of different configurations and their

impact on model performance was performed to establish the

ideal hyperparameters for ECG signal categorization, as

illustrated in Figure 4. Based on the results, a two-layer Conv1D

architecture was developed, with the first layer using 32 filters

with a kernel size of 5 to capture broad temporal patterns in

ECG data and the second layer using 64 filters with a kernel size

of 3 to extract finer details. This steady increase of filters is

consistent with CNN’s best practices for feature extraction.

A dropout rate of 0.5 was chosen since it gave better

generalization than 0.2, hence preventing overfitting. The

learning rate of 0.001 consistently beat 0.0001, resulting in stable

and efficient convergence.

For training stability and performance, a batch size of 32 was

chosen to strike a balance between generalization and

computational efficiency. Furthermore, increasing the number of

epochs to 20 enabled the model to properly acquire ECG

patterns while avoiding the underfitting seen in tests with 5 or

fewer epochs. These options were confirmed as the best-

performing setup for ECG classification via rigorous

hyperparameter tuning and analysis.

Table 4 summarizes the CNN model’s performance metrics

across several arrhythmia classes in a multi-class classification

task. It demonstrates the model’s ability to effectively identify

cases of each arrhythmia type, as seen by high recall rates

ranging from 97.96% to 100%. Furthermore, the model has

strong specificity values above 99% in most classes, as well as

good precision scores ranging from 98.72% to 99.78%. Low false

discovery rates, ranging from 0.15% to 1.99%, demonstrate the

model’s capacity to reduce misclassifications. With F1 values

ranging from 98.42% to 99.84%, the table demonstrates the CNN

model’s strong performance in reliably diagnosing diverse

arrhythmia types, emphasizing its potential therapeutic utility.

The binary classification confusion matrix given in Figure 5

reveals a strong performance, with 10,675 out of 10,873 instances

correctly classified as negative or positive. In the multi-class

classification, the model effectively discriminates between five

arrhythmia categories, with high values along the diagonal

suggesting accurate classification. Despite small misclassifications

in some categories, the majority of occurrences are accurately

detected, demonstrating the model’s accuracy in arrhythmia

recognition across various arrhythmia types.

Figure 6 depicts the Accuracy v/s Epoch plot, which shows how

the accuracy of both the binary classification CNN model and the

multiclass classification model changes throughout training epochs.

It shows the model’s learning progress, with higher accuracy
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FIGURE 4

Performance analysis of Various hyperparameter configurations in ECG classification.

TABLE 4 Performance metrics table for multi class classification.

Arrhythmia category Recall Specificity Precision False discovery rate F1-score
Normal Beats 97.96 99.96 98.88 0.15 98.42

Supraventricular Ectopic Beats 99.55 99.48 98.72 1.99 99.13

Ventricular Beats 98.45 99.93 99.78 0.28 99.11

Fusion Beats 100 99.85 98.79 0.58 99.39

Unknown Beats 99.93 99.88 99.76 0.44 99.84

FIGURE 5

Confusion matrix for binary and multi class classification.
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signifying better performance over successive epochs. The Loss v/s

Epoch in Figure 6 shows how the model’s loss function evolves

throughout training epochs. Loss values that are decreasing

indicate that the model is getting closer to its ideal parameters,

which reflects higher performance.
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Assessing the ECG classification results shown in Figure 7

reveals details about the model’s performance and the nature

of its faults. For False Positives (FP), where normal beats are

misclassified as abnormal, the model is too sensitive to tiny

alterations in the ST segment or QRS complex. This sensitivity
frontiersin.org
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FIGURE 6

Accuracy and loss plots for (a) binary and (b) multi class classification.
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is represented in the False Discovery Rate (FDR) for normal

beats, which, while low at 0.15%, highlights the occurrence of

false alarms produced by normal changes perceived as

abnormalities. False Negatives (FN) arise when true aberrant

beats are classified as normal while being faint, such as mild

QRS widening or small alterations in the ST segment. This is

evident in the recall scores for several arrhythmia types, with

supraventricular ectopic beats and ventricular beats

earning 99.55% and 98.45% recall, respectively. While these

high values indicate great performance, they also reflect the

model’s occasional difficulty spotting borderline situations

with less obvious problems. On the other hand, the model

performs well in recognizing True Positives (TP) and True

Negatives (TN). For example, all arrhythmia groups have

F1-scores that exceed 98%, with fusion beats at 99.39% and

unknown beats at 99.84%. These findings show that the model

effectively separates evident examples of abnormality, such as

strong QRS widening and distinct ST deviations, while

maintaining high specificity (up to 99.96% for regular beats),

resulting in consistent rhythm classifications for normal

ECG patterns.
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5.2 Comparative analysis with existing
models

The proposed work performs well compared to other models in

Table 5 in terms of classification accuracy for both binary and multi-

class arrhythmia detection. While the SVM model achieves a binary

classification accuracy of 95.9% and the Peak Detection Algorithm

reaches 95% for multi-class classification, the proposed 1D CNN

models significantly outperform these benchmarks with accuracies of

98.35% and 99.3% respectively. The robustness and high accuracy of

the proposed 1D CNN models suggest their efficacy in accurately

classifying arrhythmia types, making them valuable contributions to

the field of arrhythmia detection and classification.
5.3 Practical implications: efficiency,
reliability, and cost-effectiveness

While the proposed system achieves high performance

parameters, it also has significant advantages over state-of-the-art
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FIGURE 7

Illustrative ECG signals for different classification outcomes.

TABLE 5 Accuracy comparison for different ML models on MIT-
BIH dataset.

Ref Model Classification Accuracy
(11) Peak Detection Algorithm Multi Class 95.00%

(16) LSTM Binary 97.57%

(10) SVM Binary 95.9%

(23) Transfer Learning on pre-trained
architecture of DenseNet

Multi Class 98.92%

(24) 2D-CNN Multi Class 95.20%

(19) 2D-CNN Multi Class 98.04%

Proposed 1D-CNN Binary 98.35%

Proposed 1D-CNN Multi Class 99.3%
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systems in terms of computational efficiency, clinical reliability,

and cost effectiveness.
• Computational Efficiency: The Arduino Nano, powered by the

ATmega328P microcontroller, processes ECG data with low
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computing cost, resulting in real-time performance. Unlike

systems based on more resource-intensive platforms, such as

the Raspberry Pi 3 (16), our architecture retains efficient

processing with much lower power consumption (1 W),

allowing for longer operational periods without

sacrificing performance.

• Clinical Reliability: The AD8232 sensor, with its high input

impedance, low noise, and robust signal conditioning,

provides precise ECG signal capture. This clinical

dependability is equivalent to conventional systems, but it has

improved noise filtering via integrated two-pole high-pass and

three-pole low-pass filters. The real-time feedback mechanism,

which includes a buzzer for quick irregular heartbeat

notifications, improves user safety and prompt response.

• Cost-Effectiveness: The proposed ECG classification model

costs about $10.5, which is significantly lower than the 58

USD reported by S. M. Ahsanuzzaman et al. (16). This large

cost decrease is accomplished without sacrificing performance,
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making the system extremely accessible for resource-

constrained environments while maintaining excellent

classification accuracy.

Overall, the proposed Methodology stands out for its new

methodologies and ability to handle variable-length ECG signals

while keeping their temporal integrity, resulting in increased feature

extraction and accuracy. This approach effectively analyzes

sequential ECG data, retaining temporal features through

convolutional layers while allowing for faster feature extraction and

classification, resulting in improved accuracy. The solution functions

in real time, acquiring signals from the ECG sensor at a baud rate

of 9,600. The total time required to categorize the ECG signal is

roughly 173 ms for binary classification and 218 ms for multi-class

classification, indicating that they are appropriate for portable health

monitoring systems where prompt alarms are critical for patient

outcomes. High accuracy rates reflect the models’ ability to

effectively categorize ECG signals. Furthermore, it has a real-time

monitoring interface that improves user involvement. Comparative

assessments of existing solutions show that our technique not only

increases classification performance.
6 Conclusion

Our proposed portable ECG equipment, which has machine

learning (ML) capabilities, stands out for its low cost, ease of use,

and high accuracy. Our device’s size and cost are rigorously

optimized to enable portability while remaining affordable. Its plug-

and-play functionality makes it simple to use even for people with

little technological understanding. In terms of accuracy, our ML

models for ECG signal classification outperform the competition,

with 98.35% accuracy for binary classification and an amazing

99.3% for multiclass classification. Our classification models’

architecture is highly adjusted to extract key elements from ECG

data, resulting in excellent accuracy. Convolutional layers in the

binary model identify essential patterns such as QRS complexes and

T waves, whereas max-pooling levels lower spatial resolution and

noise. The flattened layer condenses these multidimensional features

into a succinct format that allows the dense layer to find essential

patterns in the flattened feature vector, providing flexibility for

capturing intricate relationships within the data. Dropout layers

reduce overfitting while ensuring robustness. Similarly, the

multiclass model uses a similar architecture but adds additional

layers to allow it to distinguish between different sorts of classes.

These architectural decisions enable our models to comprehend

complicated correlations within ECG data, yielding precise and

consistent classification results.

ECG signals, while useful for detecting arrhythmias, are prone

to noise and interference from muscle movements and other

electrical sources. While filtering techniques help to address these

difficulties, attaining absolutely clean signals remains a challenge,

potentially affecting diagnostic accuracy. This constraint,

however, creates opportunity for future system expansion.

Advanced noise reduction algorithms, such as adaptive filtering

or deep learning-based systems, may dramatically increase signal

clarity. Furthermore, adopting cloud connectivity has numerous
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benefits. Cloud-based data storage allows for long-term ECG

surveillance, while remote monitoring features allow healthcare

providers to successfully treat patients with chronic illnesses

regardless of location. This continuous data stream delivers real-

time information, enabling preemptive intervention and

individualized care. To improve therapeutic trust, enhanced

interpretability techniques such as SHAP or Grad-CAM could

give clinicians with clear explanations of the model’s decision-

making process. Finally, optimizing the system for real-time

performance, which includes lowering inference latency and

increasing energy efficiency, is critical for continuous monitoring

in resource-constrained, portable contexts.

To enable replication and additional research, we have made

the source code public at: https://github.com/Arnavarya35/ECG.
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