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Introduction: Generative artificial intelligence (AI) can simulate existing societal
data, which led us to explore diversity and stereotypes among AI-generated
representations of healthcare providers.
Methods: We used DALL-E 3, a text-to-image generator, to generate 360
images from healthcare profession terms tagged with specific race and sex
identifiers. These images were evaluated for sex and race diversity using
consensus scoring. To explore stereotypes present in the images, we
employed Google Vision to label objects, actions, and backgrounds in
the images.
Results: We found modest levels of sex diversity (3.2) and race diversity (2.8) on a
5-point scale, where 5 indicates maximum diversity. These findings align with
existing workforce statistics, suggesting that Generative AI reflects real-world
diversity patterns. The analysis of Google Vision image labels revealed sex and
race-linked stereotypes related to appearance, facial expressions, and attire.
Discussion: This study is the first of its kind to provide a ML-based framework for
quantifying diversity and biases amongst generated AI images of healthcare
providers. These insights can guide policy decisions involving the use of
Generative AI in healthcare workforce training and recruitment.
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Google Vision, machine learning

1 Introduction

With only 5% of physicians identifying as African American and 36% identifying as

females, there is a significant lack of diversity within the medical workforce (1–3).

A diverse workforce is crucial for improving healthcare access and outcomes,

particularly in underserved communities (4, 5). Yet, visual materials in medical

education, workforce recruitment, and healthcare policy often mirror these disparities,

inadvertently reinforcing existing inequities.

Recent advantages in text-to-image generative models, such as Dall-E, have enabled

the rapid production of visual content, particularly in healthcare. Dall-E (6) is a

generative AI system that can generate realistic images from text descriptions. It is

trained on a large dataset of image-text pairings, allowing it to learn common visual

features associated with certain terms (7). Despite the many applications of Dall-E,

most current research on generative AI in healthcare has predominantly focused on
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large language models (LLMs) such as GPT-4, Gemini, etc. To

illustrate, a PubMed query of “Dall-E” has only 87 results, while

the query for “GPT” has 7,471 results. The few studies on Dall-E

tend to explore the validity and appeal of generated images in a

variety of contexts ranging from CPR illustrations to imagery on

congenital heart diseases (8, 9).

Biases in generative AI systems—arising from training data,

algorithms, and human decisions—can lead to the

underrepresentation of minorities and the perpetuation of

stereotypes. These biases raise ethical concerns regarding fairness,

transparency, and accountability, as AI-generated content can

influence public perception and clinical decision-making (10–13).

There have been many attempts to mitigate biases in AI systems,

such as resampling, fair representation, and optimized pre-

processing of training data (14, 15). However, these techniques

have been challenging to implement due to a lack of a unified

definition of bias in the AI community; as a result, even new

versions of AI tools that aim to mitigate prior concerns may

continue to present biases.

As of now, there are few studies exploring gender and racial

biases in Dall-E-generated images, and these too are in very

narrowly defined contexts, such as images of medical imaging

professionals, orthopedic surgeons, or pharmacists (16–18).

A major limitation of these studies is that they all focus on only

quantitative diversity metrics without considering qualitative

dimensions of bias. In our study, we address this gap by

employing Dall-E and Google Vision (19) to develop a novel

methodology that assesses both quantitative (race, sex, and age
FIGURE 1

(A) Generic healthcare provider terms are listed in level 1 terms. One rac
Combinations of Level 2 terms (with both race and sex identifiers) creat
Supplementary Table 8. (B) The Level 1 “Doctor” term generated the follow
consensus scoring is described below each image in the table. This image
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diversity) and qualitative biases in AI-generated images of the

healthcare workforce. Our study uniquely utilizes a more

comprehensive diversity scale that accounts for the quality and

realisticness of generated images. Additionally, we leverage

computer vision tools to evaluate qualitative visual stereotypes.

We hypothesize that Dall-E-generated images will not only

reflect existing workforce disparities but may also reinforce

gendered and racial stereotypes. By highlighting these ethical and

social implications, our work aims to inform strategies for

mitigating biases.
2 Methods

2.1 Image generation

We used Dall-E, a text-to-image Generative AI tool, to generate

synthetic images of healthcare providers, based on terms such as

“doctor,” “physician,” “internist,” “surgeon,” and “nurse.”

“Nurse” term was included to allow for a comparative analysis of

diversity between doctor and nurse representations. Each term

was further refined with specific race and sex identifiers (e.g.,

“Black doctor”, “female nurse”). The additional race identifiers

selected were “Black,” “White,” “American Indian,” “Pacific

Islander,” and “Asian,” based on U.S. Census bureau

recommendations (20). The additional sex identifiers were “male”

and “female” (21). A diagram illustrating the hierarchical labeling

process to generate the terms can be found in Figure 1A, and the
e or sex identifier is added to Level 1 terms to create Level 2 terms.
e Level 3 terms. The full list of terms used to generate images is in
ing image composite. Our assessment of sex, race, and age based on

was created with the assistance of DALL-E.
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full set of terms is listed in Supplementary Table 8. For each term, 4

individual images were generated that were extracted as one

composite, as shown in Figure 1B. A total of 90 composites

consisting of 360 images were generated between December 2022

and July 2023.

As depicted in Figure 1A, Level 1 terms correspond to “doctor”,

“physician”, “internist”, “surgeon”, and “nurse”. Level 2 terms

correspond to the addition of either a race identifier or sex

identifier to the Level 1 term (but not both types of identifiers)

(e.g., “Black Doctor”, “Female Doctor”). Level 3 terms

correspond to the addition of both race and sex identifiers on a

Level 1 term (e.g., “Female Black Doctor”).
2.2 Quality and realisticness assessment of
images

We performed an initial assessment of the quality and

realisticness of the generated images. Each image was evaluated

on three criteria:

1. Image Quality: Whether the image displayed a complete or

partial face.

2. Realisticness: Distortion in facial features (blurriness, uneven

features) or color discrepancies.

3. Clipart Content: The presence of clipart (graphics) in the

generated images was noted, with a range of 0–4 individuals

flagged as clipart per composite.

4. See Supplementary Material for additional details.
2.3 Qualitative assessment of diversity

We evaluated sex, race, and age diversity for each composite

consisting of 4 images. The composites were rated on a scale

from 1 to 5 for sex and race diversity and 1–3 for age diversity

based on consensus scoring (AA, AA, GG). 5 (or 3 for age

diversity) represents maximum diversity (e.g., equal

representation of females and males) while 1 represents least

diversity (e.g., all 4 images are males)

1. Sex Diversity (1–5)—a measure of the apparent representation

of female and male sexes

2. Race Diversity (1–5)—a measure of the apparent representation

of different races

3. Age Diversity (1–3)—a measure of the apparent representation

of different age groups

If the search term included a race or sex identifier, race or sex

diversity, respectively, was not evaluated. A full explanation of

our scale for each of these following factors can be found in the

Supplement and Supplementary Tables 1–3. Our scale

acknowledges the inclusion of intersex individuals (where the sex

was ambiguous) and multiracial individuals in the images.

Additionally, we provide an example rating of the term “Doctor”

in Figure 1B.
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2.4 Validation of consensus scoring and
diversity scale

The validity of the consensus scoring method was evaluated

using the Python package DeepFace (22), a deep learning-based

facial recognition system. DeepFace was employed to detect the

sex, race, and age of the same terms for which consensus scoring

was used to assess sex and race diversity. During consensus

scoring, we had recorded age in the following buckets—middle-

aged, elderly, young. For validation with DeepFace, which returns

an exact age, middle-aged corresponds to ages 35–50, young 20–

35, and elderly 50+. However, DeepFace is not fully accurate as it

often failed to recognize all the faces in the original composite of

four images, due to partial cropping of some faces or biases in

DeepFace’s algorithm. For the faces that DeepFace successfully

recognized, we calculated the proportion of instances where the

sex, race, and age bucket identified during consensus scoring

matched that were predicted by the DeepFace algorithm.

A consistency rate of ≥70% validated the consensus

scoring methodology.
2.5 ML-driven image labeling and
categorization

Google Vision is a tool that utilizes computer vision algorithms

to assign labels and identify objects within images. In order to

identify stereotypical associations present in the images, we used

Google Vision to assign the top 10 labels for each image. Each

label is associated with a confidence score, which we then

normalized using the following formula:

Normalized score ¼ score�min
max�min

where min is the minimum score amongst all labels, and max is the

maximum score amongst all labels.

We categorized the labels assigned by Google Vision into 12

self-defined categories, such as “Clothing”, “Facial Expression”,

and “Medical Tools” (see Table 1 for the full list). The categories

were defined after examining the top labels assigned to images by

Google Vision. The full set of labels, along with its normalized

score and category, can be found in Supplementary Table 9.
2.6 Clustering analysis

In this analysis, we examined 3 separate image cohorts. These

cohorts were selected as we identified a significant difference

between their categorical distributions, as shown in Table 2:

1. Images with “White” or “Black” identifier

2. Images with “White” or “Asian” identifier

3. Images with “Female” or “Male” Identifier

The objective of the clustering analysis was to group all images

within each cohort according to the assigned categories of image
frontiersin.org
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TABLE 1 Category list.

Category Definition Top terms
Facial expression Terms related to emotions and the act of expressing such emotions. 1. Smile

2. Facial Expression
3. Happy

Clothing (formal) Clothing that is formal (typically associated with a professional setting) but is not Medical Clothing. 1. Collar
2. Dress Shirt
3. Workwear

Clothing (general) Clothing that is not formal nor medical clothing (includes clothing for everyday use). 1. Sleeve
2. Outerwear
3. Clothing

Medical clothing Clothing specifically worn by professionals working in healthcare. 1. White Coat
2. Scrubs
3. Protective Personal Equipment

Medicine All medical terms that were not Medical Tools or Medical Clothing. 1. Service
2. Health Care Provider
3. White-Collar Worker

Medical tools Instruments used by medical professionals that detect, prevent, and treat illnesses. 1. Stethoscope
2. Scrubs

Fashion occupation Terms related to the field of fashion. 1. Fashion Design
2. Fashion Accessory
3. Jewellery

Color Colors, typically characterizing colors in the image. 1. Electric blue
2. White
3. Azure

Body part Internal and external components of the human body excluding facial features. 1. Neck
2. Shoulder
3. Joint

Miscellaneous Any labels that did not belong in the other categories. 1. Event
2. Product
3. Photograph

Facial feature Body parts that reside on the face. 1. Jaw
2. Eyelash
3. Eyebrow

Actions Activity or movement done by a human. 1. Gesture
2. Standing
3. Animation

Description of all categories used to categorize the Google Vision labels assigned to images.

TABLE 2 Comparison of categorical distribution.

Cohort A Cohort B P-value
Male Female <0.001

White Asian 0.035

White Black <0.01

White American Indian <0.01

White Pacific Islander 0.79

Comparison of the overall distribution of assigned categories for generated images of

different sex and race cohorts. A Chi Square test was used.

Agrawal et al. 10.3389/fdgth.2025.1537907
labels. We used the KMeans algorithm from the sklearn Python

library as our clustering method. K-means clusters similar data

points by minimizing the distance between data points in the

same cluster. We utilized Euclidean Distance to determine the

distance between two images.

Formula for Euclidean distance between Image A and

B = d(p, q) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 (qi � pi)
2

q
where q represents the sum of

normalized scores for all labels for a specific category in image

A and p represents the sum of normalized scores for all labels

for the same category in image B. n represents the total number

of categories, which is 12.

For each cohort, the Elbow method heuristic was used to

determine the optimal number of clusters. This heuristic involves
Frontiers in Digital Health 04
plotting the within-cluster variance against the number of

clusters, allowing us to identify the “elbow” point on the graph.

The “elbow” point on the graph indicates the number of clusters

where adding more clusters yields diminishing returns in

reducing variance. We then ran Kmeans with this identified

optimal number of clusters and recorded the names of the

images classified in each cluster.

Within each of the three clustered image cohorts, we had

included images from two separate groups: “White” vs. “Black”,

“White” vs. “Asian”, and “Female” vs. “Male”. We then aimed to

evaluate whether the images from one group were more

dispersed across clusters than images from the other group.

A greater dispersion of images from a group across clusters may

suggest higher heterogeneity, or diversity, in the images. In

contrast, if a group’s images are more concentrated within a

limited number of clusters, this could signify more homogeneity,

or less diversity, in the images.

The entropy metric was used to determine the distribution of

an image group (e.g., “Black”, “White”, “Male” images, etc.)

across clusters.

Entropy of Group A ¼
Xk

i¼1
p(xi) � log ( p(xi)) � ni
frontiersin.org
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TABLE 3 Deepface validation.

Metric Value
Total images validated 160

Total images detected 103

Female match rate 71.0%

Male match rate 95.3%

Sex diversity match rate 86.1%

Race diversity match rate 80.0%

Age diversity match rate 78.6%

Distribution of Discrepancies Between Consensus Scoring and DeepFace Validation.

Agrawal et al. 10.3389/fdgth.2025.1537907
k is the number of clusters. p(xi) is the proportion of images in

cluster i corresponding to Group A. ni is the number of images

in cluster i.

Higher values of entropy indicate a more diverse cluster

distribution of images of that group.

We also recorded the most important category for each cluster

as the one with the lowest average Euclidean distance to the cluster

center for all points in the cluster. We recorded whether the

average value for this category within the cluster was higher,

lower, or approximately the same compared to the mean

category value across all clusters.
2.7 Heatmaps of categorical distributions

For all images in a specific race/sex cohort, we calculated the

proportion of labels assigned to each category. These proportions

were used to create a categorical distribution for different

cohorts, which were then depicted in heatmaps. One heatmap

compares the categorical distribution of labels assigned to male

vs. female images, and the other displays the distributions for all

five race cohorts examined in this study.
2.8 Statistical analysis

The manual diversity ratings are on a 5-point or 3-point scale.

When reporting the diversity ratings for a specific group/cohort of

images, we converted this metric to a percentage out of the total

possible points across images. A percentage of 100% (full

diversity) indicates that each image on the cohort was rated 5/5

(for race/sex diversity) or 3/3 (for age diversity).

A one-sided z-proportion test was used to compare the

proportion of labels assigned to a specific category between race/

sex image cohorts (e.g., “Medical Clothing” category in “Females”

vs. “Males”). One-sided z-proportion test was also used when

comparing diversity between cohorts, after conversion to a

percentage. A p-value < 0.05 was reported as statistically

significant. To compare the entire categorical distribution of two

image cohorts of a different race/sex (e.g., “Black” vs. “White”), a

Chi-Square test was used.
3 Results

3.1 Validity of consensus scoring

The sex and race assigned through consensus scoring align with

the classifications provided by DeepFace in 86.1%, 80.0%, and

78.6% of cases for sex, race, and age respectively (see Table 3 for

full analysis). Causes for inconsistencies include the different race

classification used by DeepFace (includes races such as “Indian”

and “Middle Eastern” which are not present in our classification).

Additionally, DeepFace is not fully accurate and has its own

biases. Given this and the relatively high consistency, the

diversity ratings from consensus scoring were considered valid.
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3.2 Qualitative assessment of diversity

We examined the sex, race, and age diversity amongst the

images generated with level 1 terms only. The images

corresponding to these terms are depicted in Figure 2B, and the

diversity ratings in Figure 2A.

Figure 2A also compares the diversity ratings for two different

cohorts to determine differences in the demographic representation

of nurses and other healthcare providers:

Cohort 1—Images generated from terms “Doctor”, “Physician”,

“Internist”, “Surgeon”

Cohort 2—Images generated from above terms + “Nurse”

Diversity was scored as a percentage of total possible points:

For Cohort 2 images, sex diversity was 64%, race 56% (average

scores of 3.2 and 2.8 out of 5, respectively), and age 60% (score

of 1.8 out of 3). 100% represents maximum diversity. The cohort

with “Nurse” has considerably lower age diversity than the

cohort without “Nurse.”

We also compared diversity metrics between images of female

and male healthcare providers using level 2 terms only (e.g.,

“Female Doctor”, “Female Physician”, etc. vs. “Male Doctor”,

“Male Physician”, etc.). These results are in Supplementary

Figure 1A, and we found that males had lower age diversity than

females (p = 0.033). Diversity metrics were also compared

between level 2 terms of healthcare providers of different race

identifiers (Supplementary Figure 1B), although no significant

differences could be found.
3.3 Clustering of differences between
image cohorts

The full dataset on the specific images included in clusters for

all tested cohorts is in Supplementary Table 10.

1. Image Cohort A—“White” vs. “Black” Images (Figure 3A)

Across 5 clusters, the entropy for White images was 3.99 and

for Black Images 3.59, indicating that Black images were less

distributed across clusters and hence more homogeneous. The

largest cluster consisted of 32 Black (26.7% of all Black images)

and 16 White images (13.3% of all White images), with general

clothing as the most important category for this cluster.

2. Image Cohort B—“Male” vs. “Female” Images (Figure 3B)
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1537907
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 2

(A) Using Level 1 terms only, we describe the sex, race, and age diversity for two different cohorts—one with “Doctor,” “Physician,” “Internist,” and
“Surgeon” (Generic Doctor Terms) and another with these 4 terms with the addition of “Nurse.” For Generic Doctor Terms alone, sex and race
diversity, on a 5 point scale, was 3.25 and 2.25, respectively, and age diversity was 2.4 on a 3 point scale. For Generic Doctor Terms +Nurse, sex
and race diversity was 3.2 and 2.8, respectively, and age diversity was 1.8. For comparison, the diversity metrics are represented as a percentage
out of the maximum possible points that could be assigned. (B) Here, we present all the composites generated for the Level 1 terms that were
used for the assessment of sex, race, and age diversity in Figure 2A. This image was created with the assistance of DALL-E.
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Across 7 clusters, the entropy for Male images was 8.04 and for

Female images 7.96, indicating a similar level of heterogeneity in

Male and Female images. Three of the clusters with a higher

proportion of female images (64%, 67%, and 67% of images were

female, respectively) had lower mean values for the formal

clothing, medical clothing, and medical tools categories.

3. Image Cohort C—“White” vs. “Asian” Images (Figure 3C)

Across 6 clusters, the entropy for Asian images was 3.34 and for

White images 3.24, implying that Asian images were slightly

more distributed across clusters than White images. For the

homogeneous Asian cluster (consisting of 16 Asian images), the

most important category was medical clothing. The category had

a relatively high mean value of 0.19 as the average medical

clothing category value across clusters was 0.066, implying that

medical clothing labels were more predominant for Asian images

when compared to White images.
3.4 Integrated assessment of stereotypes

Based on the categorical distribution of labels assigned to

images of different cohorts, we noted differences in the image

depictions of males vs. females (Figure 4A) and of different

races (Figure 4B).

When comparing the categorical distribution for images of

different sexes (Figure 4A), we found a smaller proportion of

clothing-related labels in images of females compared to males,

for both formal (***) and general clothing (*). Formal clothing
Frontiers in Digital Health 06
includes “dress shirt” and “workwear” labels. Additionally,

females had a higher proportion of facial feature labels, such as

“eyelash” and “eyebrow”.

Similarly, there were differences in the categorical distributions

for images of different racial groups (Figure 4B). White images had

a smaller proportion of facial expression labels, when compared to

“Black” and “Pacific Islander” images. This category of labels

includes terms such as “smile” and “happy.” American Indian

providers had the greatest proportion of fashion occupation

labels, out of all racial groups, with these labels including

“fashion design” and “fashion accessory.” Pacific Islander

providers had the lowest proportion of formal clothing labels of

all races.

We also compared the categorical distribution between

different image cohorts using the Chi-Square test (Table 2). Male

and Female images had significantly different distributions (***),

along with White vs. Black or American Indian images (**).

Interestingly, White and Asian images did have statistically

different categorical distributions, but this was not as statistically

significant as other group comparisons.
4 Discussion

In our study, we present a novel approach to evaluating biases

in AI-generated images of healthcare professionals, specifically

focusing on the Dall-E generative model. By analyzing race, sex,

and age diversity, as well as visual stereotypes using Google

Vision, we provide an empirical assessment of how generative AI
frontiersin.org
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FIGURE 3

(A) Using a clustering methodology applied to Black and White Level 2 and 3 terms, we identified distinct clusters based on the categorical distribution
of Google Vision labels. The count of Black vs White images in each cluster is indicated in each bar (which depicts a cluster). The primary category
contributing to each cluster is written below, with ↑ denoting that the category’s mean value is higher for that cluster than it is for other clusters, ↓
indicating that the category’s mean value is comparatively lower for that cluster, and - indicating that the category’s mean value is similar to that of
other clusters. Cluster 1: Facial Expression ↓, Cluster 2: Formal Clothing ↓, Cluster 3: General Clothing ↑, Cluster 4: Medical Clothing -, Cluster 5:
Medicine ↓. (B) Clustering methodology applied to Female and Male Level 2 and 3 terms. Cluster 1: Facial Expression ↓, Cluster 2: Formal Clothing
↓, Cluster 3: General Clothing ↓, Cluster 4: Medical Clothing ↓, Cluster 5: Medicine ↑, Cluster 6: Medical Tools ↓, Cluster 7: Fashion Occupation ↑.
(C) Clustering methodology applied to Asian and White Level 2 and 3 terms. Cluster 1: Facial Expression ↓, Cluster 2: Formal Clothing ↓, Cluster 3:
General Clothing ↑, Cluster 4: Medical Clothing ↑, Cluster 5: Medicine ↑, Cluster 6: Medical Tools ↓.

Agrawal et al. 10.3389/fdgth.2025.1537907
systems reflect and potentially reinforce workforce disparities.

Unlike prior studies that have primarily examined numerical

racial and sex representation, our work extends to

characterization of qualitative biases in images. While our

approach is easily scalable, it also raises ethical concerns about

AI transparency and misinterpretation of results.

Generative AI can provide unique insights into diversity as it

leverages deep learning from very large real-world datasets (23)—

a scale that humans cannot replicate in cross-sectional studies

and surveys. The average composite score for sex diversity was

3.2 on a 5-point scale (or 64%) (Figure 2A), which aligns well

with the report (24) that females constitute 37% of the physician

workforce (or approximately 3.7 on our scale). A 100% score

(5 points) is equivalent to a 50–50 distribution of females and
Frontiers in Digital Health 07
males. Our race diversity score of 56% reflects real-world

statistics (64% White, 5.7% Black) (24). Additionally, males had

lower age diversity than females (Supplementary Figure 1A),

consistent with the older age profiles of male-dominated

specialties. These findings suggest that while Dall-E does not

perfectly replicate real-world demographic distributions, it

exhibits trends that approximate known disparities.

We used the Google Vision algorithm to assign labels to the

images (19), and these labels were grouped into 12 self-defined

categories. This methodology allows us to quantify the

association between race and sex cohorts and specific categories,

enabling us to measure stereotypes by identifying patterns in

how certain objects or appearances are disproportionately

attributed to particular groups (25).
frontiersin.org
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FIGURE 4

(A) Using Male and Female level 2 and level 3 terms, we compared the proportion of labels assigned to each category between these two cohorts, as
depicted in the heatmap. Significant differences between male and female clothing and facial feature labels were identified. ***p-value <0.001;
** <0.01; and * <0.05. (B) Using Level 2 and Level 3 race terms, we compared the proportion of labels assigned to each category between these
five race cohorts, as depicted in the heatmap. *** was used to signify a p-value <0.001, ** <0.01, and * <0.05. The white † in the facial feature
column illustrates that Pacific Islander and White cohorts had significantly greater proportions of this category than all other racial cohorts.

Agrawal et al. 10.3389/fdgth.2025.1537907
We clustered different image cohorts (White vs. Black, White vs.

Asian, and Male vs. Female) based on the distribution of these

assigned categories (Figures 3A–C). Entropy quantified the spread

of each race or sex image group across clusters, with higher

entropy values indicating greater distribution of images across

clusters. Black images showed 0.4 points lower entropy than

White images, suggesting greater image homogeneity possibly due

to stereotypical portrayals of Black healthcare providers. Male and

female images had similar entropy levels, but in clusters with a

female majority, mean category values for formal clothing, medical

clothing, and medical tools were relatively lower when compared

to other clusters. Additionally, Asian images had slightly higher

entropy (0.1 points) than White images. One of the

homogeneously Asian clusters had a greater prevalence of medical
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clothing labels, reinforcing the prevalent representation of this

group in healthcare.

We also compared the categorical distribution of labels

assigned to images of different race and sex cohorts using

heatmaps (Figures 4A,B). For female healthcare provider images,

we observed fewer formal clothing labels (e.g., “dress shirt”)

compared to male images. This finding aligns with a prior study,

which found that images of male Congress members were more

frequently labeled with terms like “suit” and “tuxedo” by Google

Vision (24). Additionally, female images contained more labels

related to facial features. As the quality and realisticness were

similar across both cohorts (Supplementary Figure 2A), this

result cannot be attributed to variations in image cropping or

distortion of facial features. The association of facial features with
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females projects stereotypical links between females and

appearance, mirroring similar findings in the study on Google

Vision labeling of images of Congress members (25).

Using Google Vision to evaluate categorical associations with

race cohorts, we identified further stereotypes associated with

Black, Pacific Islander, and American Indian healthcare

providers. Black and Pacific Islander healthcare providers had

disproportionately more facial expression labels, such as “smile”,

than White providers (Figure 4B). Labeling images with “smile”

may convey a less serious portrayal of Black providers (see

Supplementary Figure 3 for a comparison of facial expressions in

“Physician” images across races). A similar association with the

“smile” label was noticed in female images of Congress members

(25). Additionally, American Indian provider images had the

highest proportion of fashion-related labels due to elements like

feathers and jewelry, while Pacific Islander images had notably

fewer medical and formal clothing labels, reinforcing traditional

and less professional stereotypes. These findings highlight the

ethical implications of AI-driven representations that can

perpetuate stereotypes that may impact public perceptions of

healthcare professionals from underrepresented groups.
4.1 Limitations and ethical considerations

We used DALL-E 3 to generate synthetic images, leveraging its

extensive training dataset of approximately 1 billion images (7).

However, the full details of this dataset are not publicly available,

and the algorithm is regularly updated, which may impact

consistency in future studies. However, the study’s goal is to

present a partially automated Generative AI/ML framework that

can adapt to the evolving nature of these algorithms.

We used human scoring to quantify diversity scores, which is

susceptible to individual biases, although minimized with

consensus scoring and validated with DeepFace. The terms used

in the study do not include multiracial individuals, although the

race diversity scale accounts for multiracial appearing images.

The racial categories used are limited to those defined by the

U.S. Census Bureau. The measures of diversity assessed in this

study focus on biological attributes; future iterations could

explore the representation of socially derived attributes, such as

gender identity and socioeconomic diversity, to provide a more

comprehensive understanding of diversity in healthcare.

Finally, as this study proposes a framework that leverages

Generative AI and ML, ethical concerns are important to

address. The generated images may be derived from other

available images on the Internet, which can be mitigated through

greater transparency, such as openly documenting the datasets

used in the framework. Additionally, the framework must be

adapted periodically as Generative AI models are updated to

reduce the risks of outdated insights. Any users of the framework

must not misinterpret the results, requiring comprehensive

guidelines to promote responsible use. Users should recognize

that the diversity metrics used in the study are not

comprehensive (for example, does not include socially derived

attributes) to avoid conclusions based entirely on this framework.
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In conclusion, our study introduces a ML-based methodology to

quantify diversity and identify biased perceptions in AI-generated

representations of healthcare providers. These stereotypes have

real-world implications, as they undermine patient trust toward

providers from underrepresented groups. This can lead to reduced

diversity amongst healthcare professionals, negatively affecting

patient care by limiting the range of perspectives and cultural

competence that inform medical decision-making. Patients from

underserved socioeconomic, racial, or gender backgrounds may be

unable to access providers who understand their unique needs.

The study’s approach offers valuable real-time insights for

stakeholders such as medical policymakers seeking to address

and monitor biases within AI tools used by the healthcare

workforce. It can also inform training materials for healthcare

professionals by guiding representations that are less stereotyped

and biased. The study’s methodology is not limited to healthcare,

including education, media, politics, and entertainment. As these

contexts often serve or appeal to a diverse audience, the

framework can be useful for evaluating sources of bias.
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