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1 Introduction

Osteoporosis is an asymptomatic disease characterized by bone microarchitecture

deterioration due to multiple risk factors, such as low bone mineral density (BMD),

nutritional deficiency, a sedentary lifestyle, alcohol use, smoking, genetic factors, and

the use of medications such as glucocorticoids, for example (1–4). The worldwide

prevalence of osteoporosis is estimated to be 23.1% in women and 11.7% in men (5).

The economic burden related to osteoporosis fractures is significant, costing

approximately $17.9 billion a year in the US alone (6).

Studies show that the early and systematic identification of people with clinical

indicators of osteoporosis, combined with primary care, appropriate interventions, and

the use of therapeutic drugs has reduced the risk of fractures (7, 8). Clark and

colleagues (9) demonstrated in a randomized clinical trial that primary healthcare

screening tools increased osteoporosis drug prescriptions by 124% and reduced the

incidence of fractures in the observed group. Their results support the premise that

improving preventive screening methods is essential for identifying individuals at high

risk of osteoporotic fractures. Therefore, the development of low-cost digital health

technologies or solutions for rapid diagnosis in primary health care is essential.

Early screening for osteoporosis is a challenging problem because the most appropriate

diagnostic method, based on dual-energy X-ray absorptiometry (DXA) to measure the

number of grams of mineral per square centimeter (g/cm2) (from the lumbar spine,

total femur, femoral neck or middle third of the radius) (10, 11), is highly expensive.

Furthermore, as this method uses ionizing radiation technology and requires large,

specialized equipment, these devices are generally concentrated in major healthcare

centers. Given Brazil’s social inequality and geographical challenges, access to such

services is often bureaucratic, slow, and, in some cases, unfeasible.
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To overcome these challenges Brazilian researchers have

developed a low-cost, portable device for osteoporosis screening

called OSSEUS (12, 13). The device combines techniques for

measuring the attenuation of electromagnetic waves passing

through bone tissue, extracting patient features(risk factors), and

recognizing patterns to help classify osteoporosis and provide

decision support for healthcare professionals (14). A primary health

care screening study using OSSEUS with a group of 505 people

referred for a DXA scan found that 78.2% could start preventive

care. In addition, the study also showed that 110 people (21.8%)

were healthy (concerning this pathology) and did not need to be

referred to specialized health centers to get a DXA screening (15).

Recognizing the importance of osteoporosis screening in

primary health care and early care, such as treatment to reduce

the incidence of fractures—especially in people identified by

OSSEUS as having risk factors for the disease—, this study aims

to provide a database of 669 people available to support future

research, especially in the field of artificial intelligence and

machine learning, and contribute to the development of digital

health solutions in response to osteoporosis. The dataset is

available at: https://doi.org/10.5281/zenodo.14259374.

2 Materials and methods

2.1 Study design and participants

This study consists of a data report conducted and guided by a

descriptive analysis of osteoporosis and innovative technologies

enabling early disease detection. The dataset comprises 669

people (575 females, 94 males), 156 from the control group, aged

between 20–85 years (median age: 55; mean age: 54.5 + 13.2),

and 513 with low BMD, aged between 18–101 years (median age:

66; mean age: 65.3 + 11.2). Table 1 shows the demographic,

anthropometric, risk factor, OSSEUS, and DXA features of the

population in the dataset. All participants in the dataset were

volunteers who met the eligibility criteria. Participation was

limited to individuals of both sexes, aged 18 or older, with a

medical indication (prescription/request) for DXA. In addition to

these criteria, participants were required to have intact middle

finger phalanges to meet specific prerequisites for OSSEUS.

2.1.1 Ethical approval
The experimental protocol was approved by the Research

Ethics Committee (CEP) of the Federal University of Rio Grande

do Norte, Natal, Brazil, through a letter, under CAAE No.

39675020.0.0000.5292/2020, as well as by the Federal Institute of

Rio Grande do Norte, Natal-RN, Brazil, an official letter; under

CAAE No. 75015123.9.0000.0225/2023, and following the

Helsinki Accords (as amended in 2004).

2.2 Procedures

2.2.1 Data collection
The data from the 669 people was collected at the Onofre Lopes

University Hospital (HUOL) at the Federal University of Rio Grande

do Norte (UFRN), between July 2021 and November 2023. The

sampling procedure tookan average of 20min per person and

consisted of three stages: (i) completion of anamnesis in the

Electronic Health Record (EHR) for collection of clinical data and

identification of risk factors for metabolic bone diseases; (ii)

performing anthropometry with a pachymeter on the medial

phalanx of the middle finger of the non-dominant hand, followed

by measurement of radiofrequency signals using OSSEUS; (iii)

acquisition of standard deviations calculated by DXA (GE Lunar

DPX Pro) at the sites the scan was performed (10).

Figure 1 illustrates the architecture designed for integrating the

three distinct data sources into a centralized database. Each person in

those data sources was identified with a unique hash code, ensuring

data integrity when building the consolidated database. The database

includes 29 features, which have been duly anonymized. A subset of

features from a subgroup of individuals in the database was used as

predictor variables in a preliminary machine learning study to

predict referrals for bone densitometry tests (15).

2.2.2 Data preprocessing
The data were inspected for instances with missing values or

values outside the normal range (outliers). Instances with missing

TABLE 1 General characteristics of dataset.

Features Male
(n ¼ 94)

Female
(n ¼ 575)

n (14,05%) n (85,95%)

Electronic health record

Age (mean + SD, min-max) 61 + 15, 18–85 63 + 12, 19–101

Height (mean + SD, cm) 163,1 +12, 9 151,8 + 10,2

Weight (mean + SD, kg) 74,1 + 15,1 67,0 + 16,6

Ethnicity (black) 12 12,7% 18 3,1%

Ethnicity (brown) 32 34,0% 170 29,5%

Ethnicity (white) 50 53,1% 387 67,3%

Alcohol 29 30,8% 84 14,6%

Smoking 40 42,5% 211 36,6%

Activity 42 44,6% 173 30,0%

Milk 65 69,1% 455 79,1%

Calcium 20 21,2% 217 37,7%

Vitamin D 50 53,1% 278 48,3%

Fall 22 23,4% 110 19,1%

Parents osteoporosis 23 24,4% 195 33,9%

Parents curved 8 8,5% 38 6,6%

Corticosteroids 23 24,4% 132 22,9%

Arthritis 1 1,0% 59 10,2%

Diseases 41 43,6% 260 45,2%

Menopause 0 0% 519 90,2%

Target (normal) 40 42,5% 116 20,1%

Target (LBMD) 35 37,2% 274 47,6%

Target (osteoporosis) 19 20,2% 185 32,1%

OSSEUS

Medial length (mean + SD, cm) 28,7 + 2,2 27,1 + 2,2

Medial height (mean + SD, cm) 14,7 + 1,5 12,5 + 1,1

Medial width (mean + SD, cm) 16,2 + 1,5 14,1 + 1,2

Calibration (mean + SD, mV) 1667,1 + 51,5 1685,8 + 42,6

Attenuation (mean + SD, mV) 1255,6 + 109,2 1304,2 + 110,8

DXA

Deviation (mean + SD) �1,4 + 1,5 �2,0 + 1,1

Carvalho et al. 10.3389/fdgth.2025.1538477

Frontiers in Digital Health 02 frontiersin.org

https://doi.org/10.5281/zenodo.14259374
https://doi.org/10.3389/fdgth.2025.1538477
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


values for attributes related to age and the DXA scans were

removed. Next, the data generated by the OSSEUS device was

inspected and the instances with attenuation values exceeding

those obtained during calibration were removed—since results

falling outside the calibrated range may indicate measurement

errors or malfunctioning of the device, compromising the validity

and quality of the readings.

A new attribute, named’ worst deviation’, was defined to store

the lowest value among the four possible sites DXA can be

performed. This attribute, along with age, gender, and menopause

attributes, is considered in calculations for a diagnostic definition

of metabolic bone diseases, as recommended by the Brazilian

Ministry of Health in its Clinical Protocol and Therapeutic

Guidelines for Osteoporosis (PCDT) (10). In summary, based on

the calculation of clinical variables, menopausal women and

individuals aged 50 or older are diagnosed using the T-score

deviation. The remaining registries use the Z-score for diagnosis

(16). Deviation values below �2:0 in the Z-score or below �1:0 in

the T-score are classified as “low BMD” or “osteoporosis” (17).

The dataset also enables feature engineering, i.e., the definition,

creation, or aggregation of predictive attributes. For instance, it is

possible to calculate the Body Mass Index (BMI) from Electronic

Health Record (EHR) data, considering body weight (kg), height

(m), and the following equation:

BMI ¼
weight

height2
:

In addition, it is possible to conduct investigative research

using OSSEUS data, considering the real or percentage

differences between the calibration and attenuation attributes of

the biomedical device and the influence of obstacles in this

context. The obstacle can be determined by estimating the area

or volume of the medial phalanx of the middle finger, using the

following equations:

area ¼ 2pr(r þ h); volume ¼ pr2h,

where:

– d ¼
medial heightþmedial width

2
, determines the diameter of the

medial phalanx of the middle finger;

– r ¼ d
2
, defines the medial phalanx radius of the middle finger;

– h ¼ medial length, represents the length of the medial phalanx

of the middle finger.

3 Descriptive analysis

The dataset presents relevant characteristics of a particular

region of Brazil, which can significantly contribute to training

artificial intelligence algorithms, especially machine learning. The

DXA screening reports certified by specialized health

professionals indicated that 156 (23.32%) individuals had normal

BMD, 309 (46.19%) had low BMD, and 204 (30.49%) had

osteoporosis. In the sample, 609 (91.10%) were eligible for

analysis based on the T-score and 60 (8.90%) on the Z-score, as

recommended by the Clinical Protocol and Therapeutic

Guidelines for Osteoporosis (PCDT) (10).

Moreover, based on gender features, 575 (85.95%) participants

were females, and 94 (14.05%) were males. Figure 2a breaks down

the most relevant features of both groups, considering the disease-

FIGURE 1

Architecture for integrating data into a database.
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related outcome. Figure 2b displays the age range of the studied

group and shows a higher concentration of people in the 50–79

age bracket, totaling 541 (80.87%) individuals.

One of the groups recommended for DXA screening includes

women over 65 and men aged 70 or older (10). Such group

comprises 312 (46.6%) individuals with an average age of 72.8

years (ranging from 65 to 101 years), including 33 (10.5%) with

normal BMD, 149 (47.7%) with low BMD, and 130 (41.6%)

with osteoporosis.

Data stratification revealed that 252 people (37.67%) reported

smoking, 215 (32.14%) were physically active, and 218 (32.59%)

had osteoporotic parents. In addition to these characteristics, the

analysis revealed a group of 302 (45.14%) individuals with

underlying comorbidities and a second group of 132 (19.73%)

who had previously experienced falls. Considering only the

female group, which accounts for 575 participants, the data show

that 519 (90.26%) reported being menopausal. In the male group,

there were no reports of testosterone use. Additional

characteristics can also be noted in the dataset, such as milk

intake (77.7% reported consuming it) and supplementation with

calcium (35.58%) and vitamin D (49.18%).
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Analysis summary. (a) Overview of individuals’ features. (b) Age distribution by gender. LBMD, low bone mineral density; OP, osteoporosis.
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