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Purpose: Individuals with learning disabilities (LD) often face higher rates of
premature mortality and prolonged hospital stays compared to the general
population. Predicting the length of stay (LOS) for patients with LD and multiple
long-term conditions (MLTCs) is critical for improving patient care and optimising
medical resource allocation. However, there is limited research on the application
of machine learning (ML) models to this population. Furthermore, approaches
designed for the general population often lack generalisability and fairness,
particularly when applied across sensitive groups within their cohort.
Method: This study analyses hospitalisations of 9,618 patients with LD in Wales
using electronic health records (EHR) from the SAIL Databank. A Random Forest
(RF) ML model was developed to predict hospital LOS, incorporating
demographics, medication history, lifestyle factors, and 39 long-term conditions.
To address fairness concerns, two bias mitigation techniques were applied: a
post-processing threshold optimiser and an in-processing reductions method
using an exponentiated gradient. These methods aimed to minimise performance
discrepancies across ethnic groups while ensuring robust model performance.
Results: The RF model outperformed other state-of-the-art models, achieving
an area under the curve of 0.759 for males and 0.756 for females, a false
negative rate of 0.224 for males and 0.229 for females, and a balanced
accuracy of 0.690 for males and 0.689 for females. Bias mitigation algorithms
reduced disparities in prediction performance across ethnic groups, with the
threshold optimiser yielding the most notable improvements. Performance
metrics, including false positive rate and balanced accuracy, showed
significant enhancements in fairness for the male cohort.
Conclusion: This study demonstrates the feasibility of applying ML models to
predict LOS for patients with LD and MLTCs, while addressing fairness through
bias mitigation techniques. The findings highlight the potential for equitable
healthcare predictions using EHR data, paving the way for improved clinical
decision-making and resource management.
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Introduction

Learning disability (LD), also referred to as intellectual

disabilities in some contexts, have been defined by the Learning

Disabilities Observatory (1) as the presence of: “a significantly

reduced ability to understand new or complex information, to

learn new skills (impaired intelligence), with a reduced ability to

cope independently (impaired social functioning); which started

before adulthood, with a lasting effect on development.” There

are approximately 1.1 million adults aged 18 years and older

living with an LD in the UK, including over 54,000 individuals

from Wales (2). Existing sources show that individuals with LD

often experience poorer physical and mental health, as well as

higher rates of multiple long-term conditions (MLTCs) and

avoidable mortality compared to those without LD (3–10). This

demographic presents unique needs and challenges that impact

their hospitalisations (11).

Effectively managing healthcare resources while ensuring

optimal patient outcomes poses particular challenges for patients

with LD. An important outcome of interest for patients with LD

is a reliable prediction of the length of hospital stay (LOS) of their

admission and the underlying factors that could influence their

LOS (12). Predicting the LOS can lead to enhanced healthcare

services and further initiate proactive measures to prevent

prolonged LOS. A recent study conducted in the UK discovered

that at any given time, approximately 2,000 patients with LD and/

or autism in long-stay hospitals have been hospitalised, with over

half having spent over 2 years in hospital care. This includes 350

LD patients who have been in long-stay hospitals for more than a

decade (13). The extended LOS in their study was attributed to

either the patient’s personal characteristics or limitations of the

system supporting them. Another study found that other general

factors contributing to prolonged hospital stay for patients who

are medically fit for discharge included hospital-acquired

infections, falls, and other medical errors (14). Conversely, there is

also a downside to patients being discharged prematurely, as it

may result in readmissions or, in severe cases, preventable deaths

(15, 16). Although these studies were carried out on the general

population, the conclusion and outcome may still apply to people

with LD with MLTCs.

The above-mentioned studies highlight the importance of

proactively managing patient discharges as early as possible

during their hospitalisation to optimise the LOS.

Several studies have utilised machine learning (ML) models to

predict the LOS of individual patients in the general population by

analysing large datasets of hospital admission records (17–19).

These models typically assess the influence of various factors—

such as sex, age, diagnosis, admission method, and illness severity

—on the likelihood of hospital stays exceeding a predefined

threshold. However, there is limited research focusing on the

prediction of hospitalisations for adults with learning disabilities

using ML. This cohort faces unique challenges, underscoring the

importance of tracking their clinical pathways to better inform

medical interventions and reduce average hospital durations.

Most existing LOS prediction studies using ML focus on specific

long-term conditions, medical units, or single hospitals or geographic
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regions. As a result, many of these models may not be applicable to

patients with varied MLTCs [e.g., those with multiple co-occurring

long-term conditions (LTCs)] or to individuals from diverse socio-

geographic backgrounds. Furthermore, a vast majority of these

studies fail to provide adequate explanations regarding the accuracy

of ML models across distinct patient subgroups, such as ethnicity,

age, and sex (20–22). This lack of transparency raises concerns

about the applicability of these models to sensitive groups. Such

concerns are particularly important from an ethical standpoint, as

the models may be biased towards underrepresented communities.

These limitations underscore the urgent need for fairness in

healthcare ML models, ensuring that predictions are explainable,

and that model performance is thoroughly evaluated and optimised

across diverse patient groups (23).

This study aims to predict the LOS of patients with LD and

MLTCs in Wales using ML models. The model is built on a

dataset of 62,243 hospital admission records from 9,618 patients

with LD. It incorporates 39 long-term conditions (S1), identified

through a literature review and expert consensus (24, 25), as well

as demographics, medication history, prior hospitalisations, and

lifestyle factors to account for potential confounding variables.

Bias in ML classification models in healthcare often stems from

imbalanced datasets, systemic inequities, or suboptimal feature

selection, which can result in unfair outcomes for sensitive

patient groups (e.g., ethnic minorities, sex, socioeconomic status,

or specific medical conditions). To address these issues, bias

mitigation techniques are typically applied at three stages of the

ML pipeline: preprocessing (before model training), in-processing

(during training), and post-processing (after training) (26, 27).

This study focuses on fairness in predicting outcomes across

sensitive ethnic groups by employing two bias mitigation

techniques. The first is the threshold optimiser, a post-processing

method applied after model training. It adjusts the classifier’s

output scores based on a fairness constraint to reduce bias (27, 28).

The second is the reductions method with exponentiated gradient

(EG), an in-processing approach that modifies the classifier’s

weights during training to ensure fairness in real time (22, 27).

Both techniques were rigorously evaluated to assess their impact on

model performance across different ethnic groups.

The structured electronic healthcare datasets used in this study

presented inherent complexities due to various inconsistencies in

patient records over time. These inconsistencies can stem from

factors such as data entry errors, biased data collection, missing

documentation, issues with patient compliance, and changes in

patient status that are not captured in the electronic health

record (EHR) (29). To address these complexities, we employed

statistical preprocessing techniques, systematically handled

missing data, and applied algorithms to mitigate biases. The

resulting ML model demonstrated strong performance, validating

our approach to managing complex healthcare data. The

contributions of this paper are as follows:

• Analysis of hospitalised Welsh LD patient population—provided

statistics on demographics, prevalence of 39 LTCs, previous

hospitalisation data including prior admissions, episodes, days,

and condition prevalence.
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• Identification of primary conditions treated during

hospitalisation and the prevalent LTCs for hospitalised

patients with LD, along with admission rates per patient.

• Identification of prevalent LTCs linked to prolonged hospital

stays (�129 days).

• Statistical analysis to identify factors associated with hospital

stays �4 days using non-parametric tests.

• Development and evaluation of machine learning models to

predict whether a patient’s LOS would be <4 days or �4 days,

using patient data available up to the first 24 h of admission.

• Assessment of model performance differences across ethnic

groups. Application and comparison of two bias mitigation

algorithms: threshold optimisation and reductions algorithm

using an exponentiated gradient.

• Demonstrated potential of applying ML with effective bias

mitigation on electronic health records data to promote

equitable prediction across groups when predicting LOS.

Methods

The LOS is defined as the number of days an inpatient is

hospitalised during a single admission (12). For each admission,

the LOS value was obtained by calculating the difference between
FIGURE 1

Machine learning framework diagram.
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the admission and discharge dates. An LOS threshold c was

obtained by taking the ceiling value of the mean LOS across all

extracted admission records, excluding the “outliers.” With the

mean LOS of 3.015 days (standard deviation of 4.064 days), c

was set to c ¼ d3:015e ¼ 4 days. Therefore, the LOS threshold

(c) was set to 4 days. Throughout this study, a “long stay” refers

to hospitalisation with LOS �4 days, while a “short stay” denotes

LOS <4 days. The “long-stay rate,” is defined as the percentage of

admissions lasting at least 4 days, calculated using

Long-stay rate ¼ Number of admissions with LOS � 4
Total number of admissions

(1)

This study addresses three key research questions: (1) How can ML

models be used to accurately predict the LOS for patients with LD

and MLTCs using EHR data? (2) What are the key sources of bias

in ML models for LOS prediction, and how do they impact

accuracy and fairness across sensitive groups, such as ethnic

minorities? (3) Can bias mitigation techniques effectively

improve fairness across ethnic groups while maintaining or

enhancing predictive performance? To tackle these challenges, a

structured methodology was developed as illustrated in Figure 1,

integrating data extraction, preprocessing, ML model
frontiersin.org
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development, and applying bias mitigation techniques to ensure

robust and equitable predictions for this population.
Stage I: data extraction

SAIL database
This study utilised EHR data sources of hospital admissions for

patients with LD, contained in the Secure Anonymised

Information Linkage (SAIL) Databank, the national Trusted

Research Environment (TRE) for Wales, enabling the use of

anonymised individual-level, population-scale, and linked data

sources (30–32). SAIL partners with the National Health Service

(NHS) and Welsh government to organise routinely collected

longitudinal health and administrative data for approximately 5

million Welsh residents, accessed securely under strict conditions

compliant with the General Data Protection Regulation (GDPR).

Specifically for this study the Welsh Longitudinal General

Practice (WLGP) data containing information on primary care

General Practice (GP) records, the Patient Episode Database for

Wales (PEDW) containing information on secondary care

inpatient hospitalisation admissions, the Welsh Demographic

Service Dataset (WDSD) containing patient demographic,
FIGURE 2

Consort flow diagram.
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residency, and registration history, and the Annual District Death

Extract (ADDE) containing mortality records from the Office for

National Statistics (ONS) were accessed. An Anonymised Linking

Field (ALF) facilitates longitudinal anonymised linkage through

all data sources in SAIL (33). Data captured within primary care

is via read codes. The International Classification of Diseases

version 10 (ICD-10) codes capture diagnosis, and Office of

Population Censuses and Surveys (OPCS) Classification of

Interventions and Procedures version 4 (OPCS-4) captures

operations in hospital admissions.

Inclusion and exclusion criteria
The study focused on Welsh residents aged 18 years or older

identified with LD during the period from 1 January 2000 to 31

December 2021, as depicted in Figure 2: Exclusions were

implemented for individuals younger than 18 years, those not

residing in Wales, individuals not registered with a SAIL GP at

the study start date, and those without LD. This process led to a

total of 14,323 unique patients during the data extraction phase.

Subsequently, patients without any hospital admission records

between the study start and end dates were omitted. The

resulting admissions data were then associated with 39 LTCs

(Supplementary Table S1), documented primarily through Read
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1538793
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Abakasanga et al. 10.3389/fdgth.2025.1538793
codes in primary care and ICD-10 codes in secondary care (34, 35).

The dataset comprised 62,523 unique admissions from 9,630 LD

patients, spanning the period from January 2000 to December

2021. Exclusions were applied to records with missing discharge

dates and negative LOS, resulting in a cohort of 62,521 unique

admissions from 9,630 LD patients. Finally, admissions with no

data within the first 24 h were excluded, yielding the final cohort

of 9,618 unique patients (4,929 males, 4,689 females) with 62,243

unique admissions (32,275 males, 29,968 females). Refer to

Supplementary Table S2 for further details on demographic

distribution. Additionally, Supplementary Table S3 provides a

comprehensive list of all variables extracted for each patient

across their admissions.

Dataset demographic description
Age group. Age was categorised into seven groups, as shown in

Supplementary Table S2. Patient and admission counts generally

followed a normal distribution across age groups for both sexes,

with fewer admissions in ages above 60–69 and below 30.

Possible factors for lower admission rates in ages above 60–69

include home care reducing hospital need and mortality (see

Supplementary Table S4 for mortality statistics on this study

cohort). The statistics on mortality obtained in this study are

consistent with the life expectancy statistics (66 and 67 years for

LD males and females, respectively) (36). Notably, ages above

60–69 exhibited higher rates of long stays, similar for both sexes.

Welsh Index of Multiple Deprivation. Patients’

socioeconomic status was described using the Welsh Index of

Multiple Deprivation (WIMD) version 2019 for Wales (37), an

area-level weighted index across seven deprivation domains

assigned based on the individual’s residence using their Lower-

layer Super Output Areas (LSOA) version 2011, with each LSOA

representing an area of around 1,500 people. The seven

deprivation domains include income, employment, health and

disability, education skills and training, barriers to housing and

services, living environment, and crime. WIMD quintiles were

used, categorising the area of residence from 1 (most deprived)

to 5 (least deprived) as shown in Supplementary Table S2.

Patients without an LSOA or associated WIMD quintile were

grouped as “Unknown.” The highest representation of hospital

admissions was from the most deprived quintile (quintile 1),

comprising �28% of admissions for males and �27% of

admissions for females, indicating heightened hospital demand

with increasing deprivation. This aligns with research done on

the general population, attributing higher admission rates in

impoverished areas to factors such as inadequate allied healthcare

and local resources and potential underuse of community

medical resources (38, 39). Supplementary Table S4 also shows

higher mortality rates with increasing deprivation for the study

cohort. This finding is consistent with a recently published study

on the impact of deprivation on mortality (7).

Ethnic group. Ethnic groups were classified using the ONS, UK

categorisation. The methodology by Akbari et al. (40) was used to

extract and harmonise the ethnic group details from the various

data sources available to the project. The cohort was not uniformly

represented (i.e., unbalanced) in terms of ethnic groups: �73% of
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patients (�79% of admissions) and �74% of patients (�80% of

admissions) were from the “White” group for the male and the

female sex, respectively (see Supplementary Table S2). Within the

cohort, �25% of males and �24% of females had no ethnic

group records, classified as “Unknown” (19.24% and 17.53% of

male and female admissions, respectively). The remaining ethnic

groups (Black, Asian, Mixed, Other) each represented ,3% of

patients and admissions for both sexes. Long-stay rates varied

widely across the ethnic groups, with the “Black” group having the

highest rate (M: 52% and F: 65.9%; M denotes male sex and

F denotes female sex) and the “Other” group the lowest (M: 34.2%

and F: 30.4%). A similar finding was observed in a study on

inpatient discharges for the general patient population in the

United States, which revealed that Black patients had significantly

longer LOSs compared to other groups (41).

Feature extraction
Extracting the inputs. The ML models in this study utilise a

dataset of 9,618 patients with LD (see Supplementary Table S2)

and a total of 62,243 hospital admission records to predict each

patient’s LOS (i.e., target variable). For each admission, data

relating to the patient’s health up until the first 24 h of admission

were extracted to be applied as inputs to the ML models. As

detailed in Supplementary Table S3, this data includes variables

describing: the patient’s lifestyle and history [body mass index

(BMI), smoking, alcohol consumption, physical exercise, autism];

prior 1-year and 3-year hospitalisation data (previous admissions

and hospital episodes, cumulative hospital days from past

admissions, and the number of MLTCs from previous admissions);

prescribed antipsychotic, antidepressant, and anti-manic/

anti-epileptic medications (Supplementary Table S5 provides the

medications list); and other variables from first 24 h of current

admission, indicating the prevalence of the 39 LTCs (see

Supplementary Table S1 for the full list of LTCs). Age group was

also included as an input into the model (i.e., as a predictor)

because MLTC counts increase with age (5, 42) and consequently

have an impact on the length of stay. There is a deficit of studies

that apply ML to predict the LOS for adults with LD. Therefore,

the variables used as inputs in this study were selected through a

review by a professional advisory board, supplemented by insights

from existing studies utilising ML for hospital predictions in the

general population (18, 19, 43, 44).

Extracting the target variable. The LOS variable indicating the

number of hospital days was replaced with a binary target variable

(LOSClass) for machine learning classification purposes, as follows:

values with an LOS � 4 days where replaced with 1 indicating long

stay, and values with LOS < 4 days where replaced with 0 indicating

short stay, as shown in Supplementary Table S3.
Stage II: preprocessing the inputs for ML

Step 1: data cleaning
Supplementary Table S3 describes the ML model input and

target variables, and how they were preprocessed for ML training

and analysis. Supplementary Table S3 also shows the
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demographic variables and these were not applied as inputs to the

ML model (except age group) but were utilised for describing the

cohort and for bias analysis of ML model performance. To clean

the data two steps were carried out: coding the longitudinal

variables and handling missing data

Preprocessing longitudinal risk factors. BMI, alcohol

consumption, smoking, physical activity, and medications are

longitudinal variables, gathered and coded by GPs or practice

nurses. These risk factors change over time across patients.

Hence, the variable “BMI” was coded categorically using the

patient’s BMI value documented closest to the admission date.

This enables the model to use the most recent patient BMI

description for each unique admission. Alcohol and smoking

records, which are self-reported risk factors, were found to be

noisy and inconsistent across patients. For example, some

chronological records indicated declarations such as “ex-smoker,”

followed by “smoker,” and then “never smoked,” suggesting

potential dishonesty or imputation errors. To address this, these

risk factors were recoded based on historical data rather than

current status, assuming that past behaviours could have a lasting

impact on the patient’s physiology (45, 46). The variables

“ALCOHOL_HISTORY” and “SMOKING_HISTORY” were

categorised based on intake history up to the admission date

(see Supplementary Figures S1, S2). “PHYSICAL” was coded

categorically using the patient’s physical activity status (i.e., if the

patient engages in light or regular exercise) documented nearest

admission. The “MEDICATIONS” variable was coded as binary

for intake history at each admission and assumed lifetime use

from the first prescription.

Missing values. Missing values for all categorical variables were

classified into “unknown” categories for their respective variables

This allows models to utilise the partial information from

observations with missing data rather than discarding or

imputing them during preprocessing, consequently introducing

more bias into the model. There were no missing data for the

numerical variables.

Step 2: feature selection
A correlation test explored relationships between the numerical

features (columns) in the dataset. Correlation analysis aids ML

model building by detecting redundant inputs, simplifying

interpretations, and improving target prediction performance.

Supplementary Table S3 describes all features for predicting LOS.

The Kolmogorov–Smirnov test assessed feature normality before

selecting an appropriate correlation analysis. As shown in

Supplementary Table S6, all features had non-normal

distributions. Consequently, the non-parametric Spearman rank

correlation coefficient was evaluated. Supplementary Figures S3,

S4 illustrate no statistically significant associations between any

input and the outcome (LOSClass) for male and female cohorts.

However, several input variable pairs exhibited collinearity,

with correlation coefficients exceeding +0.5 for both groups.

This study found that the interaction of the highly correlated

variable pairs provided useful information to the model for the

cohort examined. “While their correlation did not imply

causation, this observation, combined with feedback from
Frontiers in Digital Health 06
clinicians on the professional advisory panel, supported their

inclusion in the analysis.”

Step 3: convert categorical variables to one-hot
encoded variables

ML models require numerical inputs/target variables. To

enable this, the categorical input variables were converted into

numeric representations via one-hot encoding. The steps for one-

hot encoding a categorical variable using the variable

“PHYSICAL” as an example, are as follows:

1. Identify unique categories and count per variable, e.g.,

“PHYSICAL” has three categories: Yes, No, Unknown

(Supplementary Table S3).

2. Create a new binary variable for each category. For each

admission, only one of the new binary variables is “hot” (1),

indicating its category. This is illustrated by example in

Supplementary Tables S7, S8 for the variable “PHYSICAL”

recorded over three admissions.

3. Concatenate these new binary columns to the dataset. Hence,

from the example, instead of one three-value variable,

“PHYSICAL” is now encoded into three separate binaries that

ML models can easily use.

Step 4: data normalisation
Z-score normalisation was applied to all numerical input

variables in Supplementary Table S3. Through this, each numerical

variable was centred to have zero mean and unit variance. The

standardised data retains the skewness and kurtosis shape

properties of the original dataset. Data normalisation ensures that

variables with different scales are rescaled to a common range,

preventing larger features from dominating ML models. This

improves model performance, training stability, and convergence

while reducing the impact of outliers. In this study, normalisation

ensured equal contributions from all features, enhancing accuracy,

fairness, and generalisability in predicting the LOS.
Stage III: model training and evaluation
methodology

Step 1: initial train and test split
The preprocessed dataset comprising the model inputs was

split into two separate sets: a training set and a test set, utilising

a stratified 50–50 partition. Hence, the training and test set each

had 16,121 samples for the male dataset and 15,094 samples for

the female group.

Step 2: downsampling of the training set
To ensure a balanced representation across the two classes of

the target variable (long stay: LOSClass = 1 and short stay:

LOSClass = 0), the majority class (short stay) in the training set

was downsampled. Specifically, the number of training samples

belonging to the short-stay class was reduced to match the

number of examples from the smaller, long-stay class. Applying

this balanced downsampling serves to mitigate potential
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modelling inefficiencies caused by class imbalance, where models

may ignore or not properly learn underrepresented classes. Also,

by harmonising class distributions, downsampling can improve

model evaluation metrics related to average performance across

classes, such as balanced accuracy, as both classes are weighted

and assessed equally. Supplementary Tables S9, S10 show the

demographic distribution of the training and test data applied in

classifying the LOS for males and females, respectively.

Step 3: model training and testing
To identify an optimal ML model for predicting hospitalisation

duration (LOSClass), eight classifiers were evaluated including

logistic regression (LR) (47, 48), support vector machine (SVM)

(47, 49), Random Forest (RF) (47, 49), eXtreme Gradient

Boosting (XGBoost) (47), histogram-based gradient boosting

(HISTGBoost) (48), XGBoost (48), k-nearest neighbor (KNN)

(47), and a sequential neural network (NN) model (49).

Supplementary Table S11 indicates the parameter configurations

set for each classifier. Supplementary Tables S12, S13 detail the

parameter configurations for the NN.

Step 4: performance evaluation
Several evaluation metrics were employed to evaluate each

classifier’s performance on the test set. Let jTPj denote the

number of unique admissions for which the long stay (i.e.,

LOSClass = 1) was correctly classified; jTNj be the number of

short stays (LOSClass = 0) correctly classified; jFPj be the

number of short stays incorrectly classified as long stays; jFNj be
the number of long stays incorrectly classified as short stays; jPj
be the total number of long-stay admissions, where

jPj ¼ jTPj þ jFNj; and jNj represents the total number of short-

stay admissions, where jNj ¼ jTNj þ jFPj. The following metrics

defined in Equations 2–6 were utilised to evaluate the

performance of the ML models.

True positive rate (TPR) ¼ jTPj
jTPj þ jFNj [ (0, 1) (2)

True negative rate (TNR) ¼ jTNj
jTNj þ jFPj [ (0, 1) (3)

Balanced accuracy ¼ TPR + TNR
2

[ (0, 1): (4)
The closer the values of the abovementioned metrics are to 1,

the better the performance of the model. The FNR and FPR are

given by the expression

FNR ¼ 1� TPR ¼ jFNj
jTPj þ jFNj , [ (0, 1), (5)

FPR ¼ 1� TNR ¼ jFPj
jTNj þ jFPj , [ (0, 1): (6)

The closer the values of the FNR and the FPR are to 0, the better

the performance of the model. Another important evaluative
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measure is the receiver operating characteristic (ROC) curve,

which plots the true positive rate (TPR) against the FPR at

different threshold values. This creates a curve from (0,0) to

(1,1). The area under the ROC curve (AUC) measures the two-

dimensional area beneath this curve. A greater AUC shows better

performance in predicting the long (LOS �4 days) and short

(LOS < 4 days) hospital stays.

Assessing model generisability. After the optimal model (RF)

was selected by comparing the metrics, it was further evaluated

using repeated random train/test splits to scrutinise the model’s

generalisability. Specifically, the dataset was randomly split into

dedicated 50% sized training sets and 50% sized testing sets a

total of 10 times. This generated 10 distinct train/test set

combinations, allowing for evaluation across different data

partitions. For each of the 10 train/test splits, the corresponding

training set was downsampled as described in step 2 of Stage III

and used to train the model. The model performance was

evaluated at each iteration using its corresponding test set.

Finally, the evaluation performance across the 10 iterations with

different dataset splits was averaged to assess generalisability.
Stage IV: bias analysis and mitigation

To check for fairness across ethnic groups, the optimal random

forest model was analysed by ethnic groups. Particularly, this

analysis refers to the performance range that is obtained by

taking the difference between the maximum and minimum

values for each metric across ethnic groups. For instance, if the

FNR for an ML model has a maximum of 0.17 for the “White”

ethnic group and a minimum of 0.51 for the “Asian” ethnic

group, the performance range is calculated as follows:

Performance rangeFNR ¼ max {FNR}�min {FNR},

which equals 0.34 or 34%. The closer the performance range is to 0

the better the performance of the model. In this study, two bias

mitigation techniques (reductions with EG and threshold

optimiser) were evaluated to balance performance metrics across

ethnic groups.
Reductions with exponentiated gradient
The reductions algorithm (22) was applied during training to

limit performance ranges across ethnic groups. A fairness

constraint was defined on FNR parity, requiring the FNR range

between ethnic groups to be at most 0.2. The model was trained

and evaluated to measure unfairness based on this constraint.

The EG algorithm assigned weights to training instances that

reduce the overall violation of the fairness constraint, with higher

weights to instances contributing more to unfairness. The

weighted training data was used to retrain the model to focus

more on instances contributing to unfairness. These steps were

repeated 10 times, updating instance weights iteratively to reduce

bias while maintaining accuracy across ethnic groups. At each

iteration, the algorithm updates the model parameters by
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considering the gradient of an objective function incorporating

both predictive balanced accuracy and fairness constraints. The

model parameters are then updated to effectively adjust the

model to reduce bias while maintaining predictive

balanced accuracy.
Threshold optimiser
To check for performance discrepancies across demographic

groups, the post-processing threshold-optimiser approach (28)

was utilised. Specifically, the threshold optimiser tuned the

decision boundary of the random forest classifier to achieve

parity in the balanced accuracy metric between ethnic groups

subject to enforcing constraints on the FNRs per group. This

optimised the fairness-balanced accuracy trade-off solution

without needing to modify the underlying ML model or

training procedure. The threshold optimiser takes an already

trained model and fits a transformation function to the model’s

outputs to satisfy certain fairness constraints. This approach

allows for mitigating unfairness when developers have no

control over the training process of the model, which may

occur due to practical limitations or considerations around

security or privacy.
Results

This section presents the findings from the analysis of hospital

admission records for patients with LD and MLTCs. The results are

structured to address key research questions, including the primary

and prevalent conditions for hospital admissions, the distribution

and factors influencing LOS, and the application of ML models

to predict LOS while addressing bias across ethnic groups.

Insights from the study are further supported by performance

evaluations of ML models and the application of bias mitigation

techniques to improve fairness and generalisability.
FIGURE 3

The top five primary conditions and top five prevalent (common) condition
females with LD and MLTCs. The primary conditions indicate the main co
conditions indicate the most frequently treated or investigated condition
unique hospitalisations of patients with LD and MLTCs.
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What were the primary conditions for
hospital admissions of patients with LD?

The PEDW data includes a variable “diag_num”—a number

used to identify the position of diagnosis assigned to a patient

during a unique admission. Value “1” relates to the primary

ICD-10 Diagnostic Code, which is the main condition treated or

investigated during the relevant episode of healthcare. Values > 1

relate to secondary ICD-10 diagnostic codes. Analysis of 18,541

admissions of men and 17,587 admissions of women with LD

from the last 10 years of study duration (January 2011–

December 2021) showed cancer as the primary condition for

admission, with 1,703 (9.2%) male and 2,149 (12.2%) female

admissions. The subsequent top primary conditions differed by

sex, respectively, as shown in Figure 3: epilepsy, chronic

pneumonia, chronic airway diseases, and mental illness for

males; vs. chronic kidney disease, epilepsy, chronic pneumonia,

and chronic airway diseases for females. Supplementary Tables

S14, S15 detail the top 10 primary conditions for both sexes

including admission counts, patient numbers, and admission

rates per patient. The high standard deviation (SD) values in the

admission rate for some conditions indicate the variation in

admission rates per individual, as some patients may be admitted

more times than others. The admission rates are strongly

influenced by the number of MLTCs across individuals.
What were the prevalent conditions in
hospital admissions for patients with LD?

Further 2011–2021 admission analysis was made on the PEDW

data for the prevalent conditions treated or investigated during

unique hospital admissions. This includes both primary and

secondary diagnostic codes. The analysis revealed epilepsy as the

most commonly treated LTCs during admissions, present in
s treated or investigated during hospitalisations for the (a) males and (b)
ndition treated or investigated during the admission, and the prevalent
s (includes both primary and secondary diagnostic codes) across all
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29:4% of male and 24:1% of female admissions (Figure 3). The

next most prevalent conditions in the male group were diabetes,

chronic airway diseases, mental illness, and cancer, while the

female group had chronic airway diseases, diabetes, thyroid

disorders, and mental illness as the next most prevalent

conditions after epilepsy. Figure 3 also indicates slightly higher

rates of epilepsy, diabetes, and mental illness admissions in males

compared to females, and higher rates of chronic airway diseases

in females compared to males. Supplementary Table S16 provides

the ranking of common LTCs treated during hospital admissions

for the stated period.
What is the distribution of the LOS across
patients?

The LOS for all extracted patients’ hospitalisation records from

birth ranged from a minimum of 0 day (indicating no overnight

stay during admission) to over 5,000 days. The combined male

and female group comprised 67,377 admissions. The median

hospitalisation was Q2 ¼ 2 days with first and third quartiles of

0 day (Q1) and 7 days (Q3), respectively, giving an interquartile

range (IQR) of Q3 � Q1. This is illustrated using the box plot in

Supplementary Figure S5, which includes lower and upper

whiskers. All admissions with LOS days below the lower whiskers

or above the upper whiskers are described as outliers. The lower

whisker was the smallest LOS value in days greater than

Q1 � 1:5 � IQR, equal to Q1 (0 day). The upper whisker was

obtained as the largest LOS value in days less than

Q3 þ 1:5 � IQR, obtained at 17 days.
Outliers
For the entire hospitalisation records of patients from birth,

outliers (admissions with LOS >17 days) were further analysed to

understand patterns among admissions with the most extended

stays. Hence, quartile values from boxplots of outlier records
FIGURE 4

Distribution of patients with LOS � 129 days. (a) The 4 most common condi
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were obtained: Q1 ¼ 24 days, Q2 ¼ 36 days, Q3 ¼ 66 days, and an

IQR of 42 days. The upper whisker was the largest hospital stay

under Q3 þ 1:5 � IQR, obtained at 129 days. Consequently,

admissions with LOS �129 days were numerically evaluated. This

amounted to 934 unique admissions. The majority of these

admissions are related to mental illness. Generally,

hospitalisations with very long LOS are common for mental

health admissions, especially for those with challenging

behaviours and autism/personality disorders posing safety risks

(50, 51). Figure 4a further illustrates these findings, depicting the

common conditions for stays �129 days. For these admissions

with LOS �129, the most common condition was mental illness

and epilepsy, followed by diabetes, dementia, and cerebral palsy.

Supplementary Table S17 provides a full breakdown of related

LTCs for admissions with LOS �129 days. Figure 4b further

depicts, for all admissions with LOS �129 days, the age

distribution for admissions involving mental illness and without

mental illness. For the latter, age was normally distributed and

skewed towards the older age groups. Given the study cohort

includes patients with MLTCs, most patients admitted for a

primary condition also experienced hospital episodes associated

with other secondary conditions.
What factors were prevalent in hospital
stays � 4 days?

Analysis was conducted prior to the ML predictions to identify

common trends among admissions with LOS �4 days within the

study duration. The extracted data was analysed by sex (male

and female) across all admissions in the study duration. The

one-sample chi-square and binomial tests were applied to all

categorical features to test the null hypothesis that the variable

categories occur with equal probability. Results stated in

Supplementary Table S18 rejected this hypothesis for all

categorical variables.
tions and (b) age distribution of patients with and without mental illness.
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FIGURE 5

Distribution of mean MLTC count across age groups for (a) combined sexes and (b) individual sexes.
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Excluding “unknown” groups, Supplementary Table S19 revealed

�4 days stays were predominantly in patients aged �50 years, from

more deprived socioeconomic quintiles, obese, and less physically

active, compared to patients with short stays (LOS < 4 days). This

observation was similar for both sexes. In addition, females with

prescribed antipsychotic, antidepressant, or anti-manic/anti-

epileptic medications were also seen to have more long stay

admissions with LOS �4 days, compared to female admissions

with LOS <4 days. Other factors influencing �4 days stays include

the primary long-term condition for admission and MLTCs

counts, which can increase hospital episodes in a single admission.

Patients in this study cohort had between 1 and 21 comorbid

conditions per person. Figures 5a,b illustrate the average MLTCs

counts by age group for combined and separate sexes, showing a

linear rise with age. Further analysis was also conducted on

previous hospitalisation data that included the number of previous

admissions and hospital episodes, cumulative hospital days from

past admissions, and the number of MLTCs from previous

admissions (see Supplementary Table S3). Patients with a higher

number of MLTCs, cumulative hospital days from past admissions,

and long-term conditions treated in previous admissions were

more likely to be hospitalised for �4 days compared to patients

with stays less than 4 days. Patients with more frequent prior

admissions and higher counts of previous hospital episodes tended

to have short LOS in their current admission. This is illustrated in

Supplementary Figures S6–S9. Those patients with LOS <1 day

were most likely to be attending routine appointments rather than

emergency visits.
Can machine learning predict the LOS
across hospital admissions?

Several classification models were developed for the prediction

of the LOS using the selected features described in Supplementary

Table S3. The models were designed to predict whether a patient’s
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admission would have LOS <4 days or �4 days. Predictions were

made using available patient data up until the first 24 h of

admission. The classification performance of each model is

presented in Supplementary Table S20. Additionally, Figures 6a,b

depict the ROC curve for each classifier, along with the AUC and

optimal ROC point values. An optimal ROC point refers to the

point on an ROC curve that provides the best balance between the

TPR and the FPR for a given classification model.
Classification performance
In this study, the HISTGBoost and RF classifiers showed the

best performance compared to the other models as shown in

Supplementary Table S20. The HISTGBoost classifier achieved

higher AUC (M: 0.771, F: 0.773) and balanced accuracy (M:

0.701, F: 0.705). This was followed by the XGBoost classifier

[AUC = 0.763 (M), 0.761 (F); balanced accuracy = 0.695 (M),

0.692 (F)] and the RF classifier [AUC = 0.759 (M), 0.756 (F);

balanced accuracy = 0.690 (M), 0.689 (F)]. Regarding the FNR

(indicating patients predicted to be discharged early when a

longer (i.e., �4 days) hospital stay is required), the RF classifier

returned lower values compared to the other models [FNR =

0.224 (M), 0.229 (F)]. The FNR value was approximately 7%

lower for the RF classifier than the HISTGBoost model for the

male group and �6% lower than the XGBoost model for the

female group. The RF demonstrated optimal performance for

both the male and female groups as shown by its low FNRs and

high balanced accuracy. The low FNR indicates fewer missed

cases where patients require longer hospitalisation �4 days, while

the balanced accuracy shows high predictive performance.
Is the performance of the best model consistent
across different train/test combinations?

The selected RF model was further evaluated using 10

randomly selected distinct train/test combinations to assess its

performance across different samples. The mean performance
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FIGURE 6

ROC curves across models indicating their optimal points (FPR and TPR) for (a) male and (b) female cohorts.
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(with SD) across all 10 iterations is provided in Supplementary

Table S21 for the male and female cohorts. The mean value

obtained for each parameter across sexes is similar to the

performance detailed in Supplementary Table S20 for the male

and female cohorts, and the SD is less than 0.007 for all

parameters as shown in Supplementary Table S21. This suggests

the RF model achieves consistent performance across different

data samples, indicating it has good generalisability and is not

overfitting on the given training set. The low SD also shows the

model yields reliable and stable predictions.
How did the best model perform across
ethnic groups?

The RF model that showed optimal performance was further

evaluated to address potential performance bias associated with

the ethnic groups. Supplementary Tables S22, S23 provide an

overview of the RF model’s performance segmented by ethnic

groups for the male and female groups, respectively.
Males
For males, the “Other” ethnic group exhibited the highest FNR

at 33.3% followed by the “Black” group with FNR of 27.3%. The

“Black” group had the lowest balanced accuracy at 59.7%. In

contrast, the “Asian” group demonstrated the lowest FNR of

19.5%, and the “White” group had the highest balanced accuracy

of 69.2%. Overall, there was an approximate 13.8% range in

the FNR and a 9.5% range in balanced accuracy across the

considered ethnic groups. The model’s performance for the

“White” ethnic group closely resembled the overall model

performance (detailed in Supplementary Table S20 for the RF

model), most likely because the majority of the training data

(79%) originated from the “White” group. The “White” group

constituted 79% of the entire male cohort.
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Females
For females, the model’s performance for the “White” group

closely matched the overall classifier performance, attributable to

the high representation of the “White” group (80.6% of training,

80% of total data). The model underperformed in predicting LOS

for the “Black” group with the lowest balanced accuracy (66.7%),

and highest FPR (50%). Both the “Black” and “Other” groups

had the lowest representation in the extracted data (0.15% and

0.19%, respectively), suggesting insufficient data for optimal

modelling. The “Other” group, despite having a low

representation of admission records, demonstrated improved

performance with the lowest FNR (11.1%) and the highest

balanced accuracy (77.8%). This suggests the classifier was able

to effectively model outcomes for the “Other” ethnic group given

the available training samples. Overall, for females, there was a

performance range in the FNR, and balanced accuracy of

approximately 12%, and 11.1%, respectively across ethnic groups.
Can consistency in ML performance be
achieved across ethnic groups?

In the context of this study, an ideally fair model would exhibit

consistent performance in predicting the LOS across ethnic groups.

To improve the fairness of the LOS prediction models, two bias

mitigation algorithms: one post-processing (threshold optimiser)

and one in-processing (reductions approach with exponentiated

gradient) were empirically investigated. Both approaches aimed

to minimise the range of each performance metric across the

ethnic groups. Each bias mitigation algorithm was assessed and

compared to the unmitigated model to determine its effectiveness.

In-processing (reductions with EG)
Supplementary Tables S24, S25 overview the EG reductions

performance. This approach worked best in reducing the
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Box 1 Overview of findings

• Analysed electronic health records of 9,618 patients
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performance range of the FNR for the males by 9% compared to

the unmitigated model. However, the performance range was not

optimised for the FPRs and balanced accuracies for both sexes

(see Supplementary Tables S26, S27).

with LD and MLTCs in Wales, examining 62,243

hospital admissions.

• Cancer was the top primary condition for hospital

admissions in both males and females with LD. Epilepsy

was the most commonly co-occurring condition across all

admissions between January 2011 and December 2021.

• Hospital stays lasted a median of 2 days, with an IQR of

0–7 days. Stays exceeding 129 days were commonly

related to mental illness.

• Common factors associated with patients with hospital

stays �4 days included: age �50 years, higher

socioeconomic deprivation, obesity, low physical activity

as well as a higher number of MLTCs, cumulative

hospital days from past admissions, and long-term

conditions treated during previous admissions.

• A random forest machine learning model achieved AUCs

of 0.759 (males) and 0.756 (females) in predicting the

length of stay using data up to the first 24 h of admission.

• Before bias mitigation, the model demonstrated

performance discrepancies across ethnic groups. Two bias

mitigation approaches were tested, with the threshold

optimiser outperforming the reductions approach in

minimising some performance differences across groups.
Post-processing (threshold optimiser)
Supplementary Tables S24, S25 depict the performance of the

threshold-optimised model. For females, compared to the

unmitigated model, the threshold optimiser reduced the FNR range

across ethnic groups by 3.6% (see Supplementary Table S27).

However, the range for the FPR and balanced accuracy increased

by 9.8% and 5.6%, respectively across ethnic groups compared to

the unmitigated model. Specifically, the optimiser did not

substantially improve the model fairness across the female group.

The threshold optimiser yielded better performance in males,

reducing the range for the FPR and the balanced accuracy values

across ethnic groups by 7.4% and 1.8%, respectively. However, the

range for FNR increased slightly by 1.7% for the threshold

optimiser compared to the unmitigated model. Particularly, the

unmitigated classifier had a lower FNR range across the ethnic

groups than the optimiser for males (see Supplementary Table S26).

In summary, although the fairness goal of equal performance

across ethnic groups was not fully met, the post-processing

threshold optimiser approach was more effective at improving

performance uniformity across ethnic groups compared to the

reduction with exponentiated gradient.
Discussion

Prolonged hospital stays pose significant patient risks, including

increased susceptibility to infections, falls, sleep deprivation, and

physical and mental decline. To address these issues, NHS

England’s Reducing Length of Stay (RLoS) program (52) aims to

improve patient care and optimise resource use by minimising

unnecessary delays in hospital discharges. The program’s national

goal to reduce hospital stays of 21+ days by 25%–40% highlights

the importance of timely discharge planning in improving patient

outcomes, increasing capacity in urgent and emergency care, and

freeing up hospital beds. However, individuals with LD experience

poorer health outcomes compared to the general population,

which often leads to prolonged hospital stays (10). Accurately

predicting the LOS for this population is therefore crucial for

optimising resource allocation and preventing unnecessarily

prolonged or premature discharges (12).

This study contributes to these goals by developing ML models

to predict hospital LOS for patients with LD and MLTCs while

addressing fairness concerns across ethnic groups. An overview

of findings from this study is detailed in Box 1. As ML

increasingly guides healthcare decision-making, ensuring

algorithmic fairness is critical to avoid exacerbating existing

health disparities. However, the dataset used in this study

exhibited imbalanced representation across ethnic groups, with

underrepresentation of minority patients and missing ethnic

information for a significant proportion of records. These

imbalances resulted in performance disparities in the Random
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Forest (RF) model, particularly in FNRs for minority females,

indicating poorer predictions of long stays for this subgroup.

To address these challenges, two bias mitigation techniques were

applied: the threshold optimizer (post-processing) and reductions

method with exponentiated gradient (in-processing). These

techniques successfully reduced performance discrepancies across

ethnic groups while maintaining strong overall predictive accuracy.

However, this study underscores the critical importance of improving

the completeness and consistency of data recording. Enhancing the

quality of such data would provide more representative training

examples, improving both the fairness and reliability of ML models

and ultimately enabling more equitable healthcare outcomes.

In summary, this study advances the use of ML for LOS

prediction by integrating fairness-focused methodologies, thereby

contributing to equitable healthcare delivery for disadvantaged

populations. These findings demonstrate the potential of ML

models to enhance care planning, optimise resource allocation,

and align with broader policy initiatives, such as the RLoS

program. Future research should explore the scalability of these

methods across different healthcare systems and address data

gaps to further improve fairness and generalisability.
Limitations

While the techniques employed in this study show promise,

challenges remain in achieving a balance between fairness and
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accuracy, as highlighted by the results, addressing intersectional

biases, and ensuring generalisability across diverse patient

populations. Healthcare datasets are often constrained by privacy

concerns and small sample sizes, further complicating the

implementation of effective bias mitigation strategies. The dataset

of Welsh patients used in this study exhibited significant

imbalances in ethnic group representation, limiting the model’s

ability to generalise and contributing to performance disparities

across groups. Additionally, missing and incomplete data,

categorised as “unknown” during preprocessing, may have

obscured important nuances or introduced biases. Future

research should focus on acquiring complete and consistent

datasets, particularly for sensitive attributes such as ethnicity and

socioeconomic status, to enhance model fairness and accuracy.

Additionally, consistent annual health checks for the LD cohort

could enhance data integrity and the accuracy of time-varying

predictors such as BMI, smoking status, alcohol intake, and

medication history (53).
Future research directions

Future research should focus on expanding datasets to include

larger and more diverse cohorts, enhancing applicability across

regions, healthcare systems, and population groups. Incorporating

longitudinal data and social determinants of health, such as income,

education, living composition (e.g., whether a patient with LD lives

alone or with a carer), and communication or mobility difficulties,

could further refine predictions and improve utility for this cohort.

Addressing intersectional biases based on overlapping attributes

(e.g., age, ethnicity, and socioeconomic status) and developing

advanced fairness algorithms to balance equity and accuracy remain

essential. For real-world implementation, integrating the models

into clinical decision support systems for adults with LD and

conducting pilot studies in hospitals are key steps to evaluating

usability and effectiveness. Training clinicians and administrators to

interpret AI-driven predictions will be crucial for fostering trust and

adoption. Lastly, extending the binary classification of hospital stays

(short vs. long) into more granular ordinal or continuous

prediction models could provide deeper insights into healthcare

needs and outcomes for the study cohort.
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