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Does digital device software lead
to exclusion? Investigating a
portable metabolic analysis
system and the input of sex data
on physiological parameters

James W. Navalta*, Olivia R. Perez, Michael W. H. Wong and

Dustin W. Davis

Exercise Physiology Laboratory, Department of Kinesiology and Nutrition Sciences, University of

Nevada, Las Vegas, Las Vegas, NV, United States

Background: Digital health devices have enhanced healthcare accessibility, but

their design may unintentionally exclude gender diverse people. This study

examines whether the input of binary sex data in a portable metabolic analysis

system (COSMED K5) impacts the accuracy of physiological measurements

during self-paced exercise.

Methods: Twenty adult participants (10 females, 10 males) completed two

identical self-paced walking and running protocols with sex data alternately

input as female or male in the device software. Key metabolic and pulmonary

variables, including VO2, VCO2, ventilation, respiratory exchange ratio (RER),

respiratory rate, and energy expenditure, were measured. Statistical

comparisons evaluated differences between conditions.

Results: No differences were observed in any measured variables between the

female and male conditions during walking or running (p > 0.05). Correlations

between conditions were strong (r= 0.73–0.98).

Conclusion: The COSMED K5 device does not utilize binary sex input to alter

physiological outputs, confirming that these data remain unaffected by this

demographic variable. However, the limitation of binary sex options in the

device software represents a barrier to inclusivity for gender diverse people.

Device manufacturers are encouraged to update software with more inclusive

options, aligning with recommendations for equitable research practices and

addressing existing knowledge gaps in sport and exercise science.

KEYWORDS

digital health, metabolic analysis, gender inclusion, wearable technology, exercise

physiology

Introduction

The incorporation of digital devices and wearables for personal health data has the

potential to reduce barriers to health access (1). Perceived barriers resulting in delayed

care include discrimination and access (i.e., ability to make appointments,

transportation to care location, limited care hours) (2). Digital devices, as inanimate

objects, do not discriminate while increasing patient engagement by facilitating the

sharing of data with providers (3). Additionally, device sensors can be connected to

care providers around the clock to provide real-time personalized medicine in a remote
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format (4), eliminating the need to make appointments or travel to

care locations. While digital devices hold promise, we acknowledge

that cost (5) and greater adoption remain barriers to full

integration into health care (6).

An important component of health is cardiorespiratory fitness.

Cardiorespiratory fitness reflects the ability of the circulatory and

respiratory systems to provide skeletal muscle with oxygen

necessary for energy production during exercise and physical

activity (7). Determining cardiovascular fitness is important

because moderate to high levels are associated with a reduced

risk of all-cause mortality (8), regardless of adiposity, age, alcohol

intake, ethnicity, and smoking status (9). Cardiorespiratory

fitness is traditionally measured by laboratory-based metabolic

analysis systems and the collection of expired gasses during

incrementally increasing intensity exercise tests (10). Advances in

technology have resulted in the development of valid wearable

portable metabolic analysis systems (11) which allows sport and

exercise scientists to obtain measurements outside the laboratory.

Additional demographic variables commonly reported in the

sport and exercise science literature include sex and gender. Sex

refers to biological factors (i.e., genetic, hormonal, and or

anatomical traits) (12) while gender is a social construct with roles

and activities that are learned through a socialization process (13).

For this reason, it is recommended that data on sex and gender be

collected in a two-step process, (1) sex assigned at birth, and (2)

current gender (14). Acknowledging diversity in gender is

important, and includes people who are non-binary, transgender,

and gender fluid across many indigenous cultures (i.e., Two Spirit

in North America, Hijra in India, fa’afafine in Samoa) (15). There

is a need for greater inclusion in sport and exercise science

research, particularly when considering sex and gender diverse

people (16). A study of over 800 published papers on exercise

science-related topics reported that three investigations collected

participant sex or gender with options other than the female-male

binary (17). Allowing participants to identify their sex and gender

in inclusive terms is important because misgendering (when an

individual is described using terminology that is inconsistent with

their gender identification) can affect statistical outcomes and

interpretation of data in typical sample sizes employed in sport

and exercise science research (18). It is possible that a barrier to

inclusion for sport and exercise scientists exists in the software

and equipment most regularly used.

Metabolic analysis systems are a common piece of equipment

in exercise physiology laboratories and provide data for many

exercise investigations (19). The software connected to these

devices require the input of sex data, and to our knowledge, is

limited to the binary options of female or male. Because

metabolic analysis systems and the derived data should not be

affected by the sex selected in the software, it was hypothesized

that there would be no differences in metabolic or pulmonary

data between identical exercise bouts conducted by the same

individual when categorized as a female or male. Thus, the

purpose of this investigation was to test the hypothesis by having

the same participants perform identical self-paced walking bouts

and running bouts under the female and male categories in

the software.

Materials and methods

Participants

An effect size (r = 0.9397) was calculated using reported

differences in energy expenditure between women and men

during exercise (20). An a priori power analysis was conducted

in G*Power (21) using correlation: bivariate normal model

statistical test (exact test family), an α error of probability of

0.05, and a power (1−β error of probability) of 0.95 indicating a

total sample size of seven participants. To be conservative, we

recruited and tested the number of participants most commonly

used in sport and exercise science (N = 20) (17). The

investigation was approved by the institution’s Institutional

Review Board (#2023-525) and carried out fully in accordance to

the ethical standards of the International Journal of Exercise

Science (22).

Twenty adult participants (self-identified sex: female n = 10,

male n = 10, identified otherwise n = 0) took part in this study

after submitting an online informed consent form via Qualtrics

(Provo, UT), including a health risk questionnaire to determine

eligibility for this study. Participants were recruited from the

University of Nevada, Las Vegas campus and surrounding

communities. Participant demographic information (arithmetic

mean ± standard deviation) included age (years) 24.5 ± 7.5, height

(cm) 168.3 ± 9.2, and body mass (kg) 68.8 ± 13.7.

Protocol

A randomization chart (Google Sheets, Mountainview, CA)

was generated and utilized to determine the order in which

sex was input into the Omnia software (Rome, Italy)

demographics profile and COSMED K5 portable metabolic

analysis system (Rome, Italy). The randomization chart

determined whether a participant sex was entered into

the Omnia software as “female” during the initial trial, or

whether the participant sex was entered as “male” (all other

demographic information was consistent between trials).

A Polar H10 heart rate monitor (Polar Electro Inc., Kempele,

Finland) was paired with the COSMED K5 to collect heart rate

data in conjunction with metabolic and pulmonary variables.

The metabolic variables collected included relative VO2

(ml·kg−1·min−1), absolute VO2 (L·min−1), VCO2 (L·min−1),

ventilation [VE (L·min−1)], respiratory exchange ratio (RER),

respiratory rate in breaths per minute [RR (BPM)], and

accumulated total kilocalories (kcal).

The study was completed on a single testing day. Participant

resting heart rate was obtained, followed by facemask fitting for

the COSMED K5. Resting heart rate was determined by having

participants sit quietly in a comfortable position for a minimum

of five minutes, during which heart rate was continuously

monitored until it was stabilized with no interruptions. The

lowest observed heart rate during this period was recorded as the

resting heart rate. A facemask was chosen for participant comfort

and because no difference in metabolic data have been reported
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when compared to a traditional mouthpiece apparatus (23).

Participants selected preferred walking and running speeds on a

treadmill (WOODWAY 4Front, Waukesha, WI) through a

blinded procedure over three trials each (24). During each trial,

participants increased the treadmill speed from 0 m·min−1 to

their preferred walking/running speed, which they perceived they

could maintain for five minutes. Once preferred speeds from the

three trials were collected, the respective values were averaged to

determine the selected walking (mean = 64.9 ± 18.2 m·min−1) and

running speeds (mean = 130.2 ± 29.0 m·min−1) that were utilized

for the remainder of the study (24). Each participant performed

only a single walking speed during the walking trials and a single

running speed during the running trials.

The facemask was attached to the participant and, after

checking for air leakage, the COSMED K5 was securely placed in

front of the participant on the treadmill. Participants completed

a total of 20 minutes of exercise, divided into two five-minute

walking and two five-minute running bouts (see Figure 1). Each

participant completed bouts for walking and running under the

female and male sex in the available Omnia software associated

with the COSMED K5. Between each bout, participants were

guided off the treadmill and instructed to sit for a rest period

until their heart rate was within 10 beats per minute of their

resting heart rate. The mean rest time between the walk and the

run was 3.6 ± 3.9 minutes. When the first walking and running

trials under the randomly designated sex were completed, a new

FIGURE 1

Study protocol depicting rest, self-paced walking, and self-paced running under randomly designated sex available in the omnia software

environment. HR, heart rate. Artist attribution: Nigar Novruzova (vecteezy.com). Icons reproduced from: “Sit icon” by cube29; “Vector illustration

of man stands, walk and run icon set” by Nigar Novruzova, licensed under Free License.
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demographics profile was created for the alternate binary sex

option in the software using the same age, height, and body

mass, and the protocol was repeated. During this time,

participants were instructed to sit and rest until the heart rate

was within 10 beats per minute of the resting heart rate (mean

time = 6.3 ± 3.5 minutes).

Statistical analysis

Statistical tests (IBM SPSS Statistics, Version 29.0.2.0, Armonk,

NY) were conducted to assess potential differences in metabolic

and pulmonary variables between input for the female sex

condition and the male sex condition, specifically a dependent

t-test for each dependent variable. Data were checked for

normality using the Shapiro–Wilk test. P-values < 0.05 were

considered significant. Effect sizes were calculated through

Cohen’s d, with negligible = 0.0–0.2, small = 0.2–0.49,

medium = 0.5–0.79, and large ≥0.8 (25). Correlations between the

female and male conditions were evaluated using Pearson

product-moment correlation coefficients (r) for each dependent

variable and r2 as a measure of effect size.

Results

All data met the assumptions for normality. No differences

between the female and male conditions were observed for any

metabolic or pulmonary variables during self-paced walking (see

Table 1). The shared variance was between 54% and 96% (see Table 1).

Similar to walking, no differences between the female and male

conditions were observed for any metabolic or pulmonary variables

during self-paced running (see Table 2). The shared variance was

between 67% and 97% (see Table 2).

According to the randomization schema, 14 participants (n = 7

female, n = 7 male) began the study under the condition that

aligned with their self-identified sex (i.e., female participant

randomized into the female condition first), while 6 participants

(n = 3 female, n = 3 male) began the study under the condition

that was not aligned with their self-identified sex (i.e., female

participant randomized into the male condition first). No

differences for any variable were observed when the aligned with

sex condition was compared to the condition not aligned with

participants’ sex for walking (see Table 3) or running (see Table 4).

The present study did not aim to evaluate sex differences, so we

did not test for them. However, to align with the Sex and Gender

Equity in Research (SAGER) guidelines (26) and support future

meta-analyses, we present disaggregated metabolic and

pulmonary data in Table 5. Table 6 presents disaggregated

metabolic and pulmonary data when participants’ self-identified

sex aligned with the randomized condition, and when it did

not align.

Discussion

We hypothesized that a portable metabolic analysis system

measuring metabolic and pulmonary variables would not be

affected by participant sex entered into the software

environment, and as such, no differences in the variables would

TABLE 1 Metabolic and pulmonary variables during self-paced walking when sex was input as female in the omnia software environment and when the
sex was input as male.

Variable Female condition Male condition p-value Cohen’s d Pearson’s r r2

VO2 (ml·kg−1·min−1) 13.53 (3.04) 13.76 (3.35) 0.26 0.26 0.9658 0.9328

VO2 (L·min−1) 0.92 (0.22) 0.93 (0.21) 0.44 0.18 0.9724 0.9455

VCO2 (L·min−1) 0.72 (0.20) 0.73 (0.20) 0.08 0.42 0.9801 0.9607

VE (L·min−1) 23.37 (5.62) 24.30 (4.75) 0.06 0.47 0.9404 0.8843

RER 0.77 (0.06) 0.79 (0.64) 0.06 0.45 0.9234 0.8527

RR (bpm) 21.37 (5.16) 22.78 (3.81) 0.09 0.39 0.7344 0.5394

EE (kcal) 21.95 (5.18) 22.6 (5.61) 0.09 0.40 0.9575 0.9168

VO2, oxygen uptake; VCO2, carbon dioxide production; VE, pulmonary ventilation; RER, respiratory exchange ratio; RR, respiratory rate; bpm, breaths per minute; EE, energy expenditure;

kcal, kilocalories.

TABLE 2 Metabolic and pulmonary variables during self-paced running when sex was input as female in the omnia software environment and when the
sex was input as male.

Variable Female condition Male condition p-value Cohen’s d Pearson’s r r2

VO2 (ml·kg−1·min−1) 33.19 (6.62) 33.08 (6.49) 0.76 0.07 0.9728 0.9463

VO2 (L·min−1) 2.25 (0.54) 2.24 (0.49) 0.53 0.14 0.9852 0.9707

VCO2 (L·min−1) 1.97 (0.53) 1.95 (0.52) 0.46 0.17 0.9489 0.9004

VE (L·min−1) 59.52 (17.44) 60.04 (14.82) 0.64 0.11 0.9653 0.9319

RER 0.87 (0.06) 0.88 (0.05) 0.21 0.29 0.8395 0.7047

RR (bpm) 34.38 (8.71) 34.54 (8.17) 0.90 0.03 0.8165 0.6666

EE (kcal) 52.30 (12.46) 52.05 (10.48) 0.71 0.09 0.9828 0.9659

VO2, oxygen uptake; VCO2, carbon dioxide production; VE, pulmonary ventilation; RER, respiratory exchange ratio; RR, respiratory rate; bpm, breaths per minute; EE, energy expenditure;

kcal, kilocalories.
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be observed between the female or male sex categories available in

the software during self-paced walking or self-paced running. Our

hypothesis was supported, as oxygen uptake (expressed in absolute

and relative terms) carbon dioxide output, respiratory exchange

ratio, pulmonary ventilation, respiratory rate, and accumulated

kilocalories were unaffected by the sex data entered into the

device software.

These results provide evidence that, while differences among

females and males may be present for metabolic and pulmonary

variables during exercise (20, 27), the COSMED K5 and

accompanying Omnia software designed to measure such

variables do not utilize the input of demographic sex data to

measure the metabolic or pulmonary variables investigated in the

present study. We believe that any deviation between conditions

TABLE 3 Metabolic and pulmonary variables during self-paced walking when condition aligned with participant’ sex and when condition did not align
with participants’ sex.

Variable Sex aligned Sex not aligned p-value Cohen’s d Pearson’s r r2

VO2 (ml·kg−1·min−1) 13.60 (2.97) 13.70 (3.41) 0.63 0.11 0.9684 0.9378

VO2 (L·min−1) 0.92 (0.21) 0.92 (0.21) 0.87 0.04 0.9701 0.9411

VCO2 (L·min−1) 0.72 (0.20) 0.73 (0.20) 0.55 0.14 0.9766 0.9537

VE (L·min−1) 23.49 (5.26) 24.17 (5.16) 0.16 0.33 0.9202 0.8468

RER 0.78 (0.07) 0.78 (0.06) 0.32 0.23 0.9213 0.8488

RR (bpm) 21.62 (4.93) 22.53 (4.18) 0.28 0.25 0.6865 0.4712

EE (kcal) 22.20 (5.51) 22.35 (5.30) 0.71 0.09 0.9480 0.8988

VO2, oxygen uptake; VCO2, carbon dioxide production; VE, pulmonary ventilation; RER, respiratory exchange ratio; RR, respiratory rate; bpm, breaths per minute; EE, energy expenditure;

kcal, kilocalories.

TABLE 4 Metabolic and pulmonary variables during self-paced running when condition aligned with participants’ sex and when condition did not align
with participants’ sex.

Variable Sex aligned Sex not aligned p-value Cohen’s d Pearson’s r r2

VO2 (ml·kg−1·min−1) 33.03 (6.71) 33.25 (6.41) 0.52 0.15 0.9741 0.9488

VO2 (L·min−1) 2.24 (0.51) 2.26 (0.52) 0.42 0.18 0.9819 0.9641

VCO2 (L·min−1) 1.94 (0.54) 1.98 (0.52) 0.24 0.27 0.9518 0.9059

VE (L·min−1) 59.47 (15.10) 60.08 (17.20) 0.59 0.12 0.9609 0.9234

RER 0.88 (0.05) 0.88 (0.06) 0.95 0.02 0.8243 0.6795

RR (bpm) 34.08 (8.00) 34.84 (8.84) 0.51 0.15 0.8226 0.6767

EE (kcal) 51.75 (10.85) 52.60 (12.13) 0.19 0.31 0.9769 0.9544

VO2, oxygen uptake; VCO2, carbon dioxide production; VE, pulmonary ventilation; RER, respiratory exchange ratio; RR, respiratory rate; bpm, breaths per minute; EE, energy expenditure;

kcal, kilocalories.

TABLE 5 Disaggregated metabolic and pulmonary data of females (n = 10) walking and running in the female and male condition, and males (n = 10) in
walking and running in the female and male condition.

Variable Females walking Females running

Female condition Male condition Female condition Male condition

VO2 (ml·kg−1·min−1) 13.44 (3.61) 13.77 (4.25) 31.44 (7.30) 31.56 (6.91)

VO2 (L·min−1) 0.83 (0.16) 0.84 (0.16) 1.94 (0.40) 1.95 (0.35)

VCO2 (L·min−1) 0.62 (0.14) 0.65 (0.15) 1.65 (0.31) 1.67 (0.26)

VE (L·min−1) 20.78 (4.53) 22.38 (4.23) 51.05 (10.02) 52.18 (10.15)

RER 0.75 (0.04) 0.77 (0.04) 0.85 (0.04) 0.86 (0.05)

RR (bpm) 21.71 (6.12) 24.03 (3.64) 33.71 (10.32) 34.63 (10.61)

EE (kcal) 19.80 (4.34) 20.60 (5.02) 44.70 (7.65) 45.30 (7.15)

Variable Males walking Males running

Female condition Male condition Female condition Male condition

VO2 (ml·kg−1·min−1) 13.62 (2.55) 13.75 (2.36) 34.94 (5.70) 34.61 (6.00)

VO2 (L·min−1) 1.01 (0.24) 1.02 (0.22) 2.56 (0.48) 2.53 (0.44)

VCO2 (L·min−1) 0.81 (0.21) 0.82 (0.21) 2.29 (0.53) 2.22 (0.58)

VE (L·min−1) 25.97 (5.59) 26.21 (4.65) 67.98 (19.56) 67.90 (14.95)

RER 0.80 (0.07) 0.81 (0.08) 0.89 (0.07) 0.90 (0.05)

RR (bpm) 21.03 (4.31) 21.53 (3.73) 35.05 (7.25) 34.44 (5.33)

EE (kcal) 24.10 (5.24) 24.60 (5.70) 59.90 (11.87) 58.80 (8.92)

VO2, oxygen uptake; VCO2, carbon dioxide production; VE, pulmonary ventilation; RER, respiratory exchange ratio; RR, respiratory rate; bpm, breaths per minute; EE, energy expenditure;

kcal, kilocalories.
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is due to the usual physiological variation that occurs between

bouts of exercise (28, 29). However, it must be pointed out in

the present study that workload in terms of walking and running

speed was maintained from one bout to the next. Because the

device software limits the sex input to two options (female and

male), a potential consequence is an unintentional barrier,

engineered into the software, to the inclusion of sex and gender

diverse people. We suggest a similar unintentional barrier may

exist with much of the equipment found in exercise physiology

(i.e., electrocardiogram machines, electromyography systems,

blood lactate analyzers, spirometers) and biomechanics (motion

capture systems, force platforms, isokinetic dynamometers)

laboratories and the accompanying software running these

devices. While testing similar to what was conducted in the

current investigation is likely unnecessary for all equipment, an

opportunity exists, particularly with respect to sex and gender

input options, for device software to be updated to be more

inclusive of people who are sex and gender diverse. These

findings may have regulatory implications, as they suggest that a

more critical evaluation of sex-based algorithms in medical

devices and digital health tools is warranted. Future

guidelines should prioritize evidence-based inclusion of

demographic variables.

Belief in sex differences in energy expenditure and resting

metabolic rate is well-entrenched dogma (30). The Harris and

Benedict equation for estimating basal metabolic rate was

published in 1918 and assumed a difference between females

and males of up to 7% (31). The Mifflin-St Joer equation

for estimating resting metabolic rate was published in 1990

and assumed a sex difference of 166 kcal (32). With respect

to physical activity, sex differences in energy expenditure

have been reported in individuals completing a three-month

wilderness expedition; however, it should be noted that

measures were estimated from actigraphy (33). Additionally,

males have been reported to expend significantly greater

energy expenditure than females while playing golf, however

kcal was derived as estimates via heart rate devices rather

than indirect calorimetry (34). The energy estimations for

physical activity and exercise derived from actigraphy and

wearable device estimations are likely influenced by the

same assumptions embedded within most resting metabolic

rate equations. While it is outside the scope of this

investigation to explore underlying assumptions, we can

state that the portable metabolic analysis system utilized in

the present study was not influenced by the same limitation,

as no differences were observed between sex input as an

independent variable. Wearable and other digital device

manufacturers whose devices measure or estimate energy

expenditure may wish to reconsider certain assumptions and

make their software more inclusive. Additionally, many

fitness wearables require users to input their sex to create a

profile, but if the measured outcome is step count, our

research suggests the input is not needed.

A knowledge gap in the sport and exercise science

literature among females and males has been documented

because males make up the majority of participants tested, at

around 65% (17, 35, 36). The consequence of this knowledge

gap is a lack of appropriate scientific recommendations for

females in areas such as training, recovery, and rehabilitation

(36). We propose that a much wider chasm exists for sex

and gender diverse people, such as people who are intersex,

transgender, and/or non-binary. Because of this, a leading

professional organization in the field, the American College

of Sports Medicine, is only able to provide a single

paragraph in recommendation to gender diverse people

among the over 500-page text (37). While there is a

disparity of reporting sex and gender diverse people in the

sport and exercise science literature (17), it is possible that a

true lack of inclusion may not be present. Similar to what

we report in the present study, a barrier may be present at

the software- and equipment-level running through the study

design, which results in data on sex and gender diverse

people not being collected or ultimately reported in the

literature. We have suggested that investigators consider how

sex and gender data are collected (18). If researchers rely on

obtaining these data from their connected devices and

software, having insufficient options for sex and gender

maintains the present knowledge gap and exclusivity of the

sport and exercise science literature.

This study is not without limitations. The authors acknowledge

that while we propose an opportunity for greater inclusivity in

sport and exercise science research exists, the current study only

TABLE 6 Disaggregated metabolic and pulmonary data walking and
running in the condition where sex was aligned, and in the condition
where sex was not aligned.

Variable Walking—sex
aligned

Running—sex
aligned

Female
(n = 10)

Male
(n= 10)

Female
(n = 10)

Male
(n = 10)

VO2

(ml·kg−1·min−1)

13.44 (3.61) 13.75 (2.36) 31.44 (7.30) 34.61 (6.01)

VO2 (L·min−1) 0.83 (0.16) 1.02 (0.22) 1.94 (0.40) 2.53 (0.45)

VCO2 (L·min−1) 0.62 (0.14) 0.82 (0.21) 1.65 (0.31) 2.22 (0.58)

VE (L·min−1) 20.78 (4.53) 26.21 (4.65) 51.05 (10.02) 67.90 (14.95

RER 0.75 (0.04) 0.81 (0.08) 0.85 (0.04) 0.90 (0.05)

RR (bpm) 21.71 (6.12) 21.53 (3.73) 33.71 (10.32) 34.44 (5.34)

EE (kcal) 19.80 (4.34) 24.60 (5.70) 44.70 (7.65) 58.80 (8.92)

Variable Walking—sex not
aligned

Running—sex not
aligned

Female
(n= 10)

Male
(n= 10)

Female
(n= 10)

Male
(n= 10)

VO2

(ml·kg−1·min−1)

13.77 (4.25) 13.62 (2.55) 31.56 (6.91) 34.94 (5.70)

VO2 (L·min−1) 0.84 (0.16) 1.01 (0.24) 1.95 (0.35) 2.56 (0.48)

VCO2 (L·min−1) 0.65 (0.15) 0.81 (0.21) 1.67 (0.26) 2.29 (0.53)

VE (L·min−1) 22.38 (4.23) 25.97 (5.59) 52.18 (10.15) 67.98 (19.56)

RER 0.77 (0.04) 0.80 (0.07) 0.86 (0.05) 0.89 (0.07)

RR (bpm) 24.03 (3.64) 21.03 (4.31) 34.63 (10.61) 35.05 (7.25)

EE (kcal) 20.60 (5.01) 24.10 (5.24) 45.30 (7.15) 59.90 (11.87)

VO2, oxygen uptake; VCO2, carbon dioxide production; VE, pulmonary ventilation; RER,

respiratory exchange ratio; RR, respiratory rate; bpm, breaths per minute; EE, energy

expenditure; kcal, kilocalories.
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tested participants who identified as cisgender females or males.

While we did not exclude gender diverse individuals from

participating, our findings cannot directly speak to the

experiences of those outside the binary framework.

A potential limitation may be in our recruitment and

enrollment methodology, which could have reduced the

likelihood of participation by people who identify as sex or

gender diverse. To address this, future studies could

employ more targeted recruitment of gender diverse

individuals by partnering with LGBTQ + community groups

or gender clinics.

In conclusion, we report that an individual’s sex, as

designated in the Omnia software and associated COSMED

K5 portable metabolic analysis system, does not affect

measures of relative and absolute oxygen uptake, carbon

dioxide production, ventilation, respiratory exchange ratio,

respiratory rate, or energy expenditure. From a practical

standpoint, researchers who inadvertently enter a

participants sex incorrectly into the Omnia software can be

reassured the mistake will have no adverse effects on the

outcome variables. We propose that limiting the input of

sex options to the female-male binary is a barrier to

researchers’ ability to include sex and gender diverse people.

Manufacturers of digital devices and equipment whose

measurements or estimations are not affected by sex could

remove this barrier by updating software with inclusive

options, potentially enabling the reporting of disaggregated

data as recommended by the SAGER guidelines (26). These

actions could help to address the knowledge gap present for

people who are sex and gender diverse in sport and exercise

science research. Until digital devices allow for more

inclusive sex and gender options, researchers are encouraged

to be intentional in their approach for collecting sex and

gender using a two-step process [sex, acknowledging more

than binary options (i.e., intersex); and gender, allowing for

an open-response option].
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