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Validation of markerless
video-based gait analysis
using pose estimation in
toddlers with and without
neurodevelopmental disorders
Jeffrey T. Anderson1, Jan Stenum2, Ryan T. Roemmich2,3 and
Rujuta B. Wilson1,4*
1Department of Medicine, University of California, Los Angeles, CA, United States, 2Department of
Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, MD,
United States, 3Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, United States,
4Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States

Introduction: The onset of locomotion is a critical motor milestone in early
childhood and increases engagement with the environment. Toddlers with
neurodevelopmental disabilities often have atypical motor development that
impacts later outcomes. Video-based gait analysis using pose estimation offers
an alternative to standardized motor assessments which are subjective and
difficult to ascertain in some populations, yet very little work has been done to
determine its accuracy in young children. To fill this gap, this study aims to
assess the feasibility and accuracy of pose estimation for gait analysis in
children with a range of developmental levels.
Methods: We analyzed the overground gait of 112 toddlers (M: 30 months, SD: 8
months) with and without developmental disabilities using the ProtoKinetics Zeno
Walkway system. Simultaneously recorded videos were processed in OpenPose to
perform pose estimation and a custom MATLAB workflow to calculate average
spatiotemporal gait parameters. Pearson correlations were used to compare
OpenPose with the Zeno Walkway for velocity, step length, and step time.
A Bland-Altman analysis (difference vs. average) was used to assess the
agreement between methodologies and determine the difference of means.
Developmental levels were assessed using the Mullen Scales of Early Learning.
Results: Our analysis included children with autism (n=77), non-autism
developmental concerns (n=6), tuberous sclerosis complex (n= 13), 22q
deletion (n= 1), and typical development (n= 15). Mullen early learning
composite scores ranged from 49 to 95 (m=80.91, sd = 26.68). Velocity
(r = 0.87, p <0.0001), step length (r = 0.79, p <0.0001), and step time (r = 0.96,
p < 0.0001) were all highly correlated between OpenPose and the Zeno Walkway,
with an absolute difference of means of 0.04 m/s, 0.03 m, and 0.01 s, respectively.
Discussion: Our results suggest that video-based gait analysis using pose estimation
is accurate in toddlers with a range of developmental levels. Video-based gait analysis
is low cost and can be implemented for remote data collection in natural
environments such as a participant’s home. These advantages open possibilities for
using repeated measures to increase our knowledge of how gait ability changes
over time in pediatric populations and improve clinical screening tools, particularly
in those with neurodevelopmental disabilities who exhibit motor impairments.
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Introduction

Motor development in early childhood is dynamic and allows a

toddler to receive numerous learning opportunities through

environmental exploration and social interactions. In toddlers

with neurodevelopmental disorders (NDDs), aspects of atypical

motor development such as delayed motor milestones, atypical

gait, poor coordination, and balance have been widely described

(1). These motor impairments are particularly prominent in

children with genetic NDDs, often present earlier in life, and can

be related to genetic severity (2, 3). Studies have also shown that

motor impairments in those with and without

neurodevelopmental conditions can negatively impact later

developing fundamental motor skills, adaptive functioning,

language, and social communication (4–7).

Clinically, evidence suggests that atypical movement and

coordination could be an important factor in the early diagnosis

of neurodevelopmental conditions (8). The onset of walking is

one major developmental milestone that allows children to travel

farther, faster, and engage with their larger environment (9).

Studies have shown that children with autism may show delayed

walking onset or atypical features of walking regardless of when

the milestone is achieved (10, 11). Delays and atypical walking

can impact the child’s overall developmental functioning and

limit opportunities for participating in activities and engaging

with peers (12). Given the prevalence and pervasiveness of motor

impairments in NDDs, there is a need to improve the

identification, treatment, and surveillance of these motor

impairments early in life and over time. Furthermore, individuals

with NDDs have heterogenous presentations with a range of

intellectual and verbal ability and co-occurring behavioral

diagnoses. Commonly used standardized assessments of motor

function in these populations often have limitations due to the

level of cognitive ability or attention needed to understand and

complete the tasks (13, 14). The use of quantitative tools such as

motion tracking, wearable sensors, or pressure sensor gait

analysis methods, can overcome these limitations as they alleviate

this cognitive burden and provide objective and granular

measures of movement abilities (15). There are also

considerations of using methods that can be employed in the

home environment because these methods can capture

naturalistic movements and be more easily used longitudinally to

capture change over time or secondary to an intervention.

In recent years, markerless computer vision technologies have

shown rising promise for use in motor analysis. “Markerless”

refers to technologies that do not rely on wearable reflective

markers, unlike optical motion capture (3D motion capture).

A growing body of research has tested video-based gait analysis

using two-dimensional pose estimation to automatically track

anatomical landmarks such as knees or ankles in digital videos.

Video-based gait analysis has been evaluated against established

methodologies such as motion capture and several studies have

reported accuracy within established thresholds (16). In

particular, OpenPose has emerged as a free, popular open-source

software that can be used by researchers to perform pose

estimation (17). Previous research has tested the validity of pose
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estimation for gait analysis by recording adults walking on a

treadmill while concurrently measuring their gait with a marker-

based motion capture system. In this case, researchers found that

knee and joint angles calculated with OpenPose were

significantly correlated with those calculated with motion capture

(18). Another study compared OpenPose analysis of adult gait

with simultaneously recorded 3-D motion capture and found

that spatiotemporal gait parameters were accurate and could be

used to measure change (19).

Recent research has expanded on the body of evidence validating

pose estimation by testing its real-world applications in clinical and

non-clinical settings. This includes clinical motor assessments for

patients with degenerative or developmental conditions such as

Parkinson’s Disease and cerebral palsy, as well as limited use in

infant locomotion (20). For example, spatiotemporal gait

parameters of stroke patients walking on a treadmill and

overground calculated with pose estimation are significantly

correlated with motion capture (21). The successful

implementation of video-based pose estimation presents a

promising approach to mitigate many of the barriers associated

with common motor analysis methods. Only a smartphone or

tablet is needed to record digital videos which significantly lowers

cost compared to 3D motion capture systems. Furthermore, pose

estimation enables at-home motor assessments using any type of

handheld device (e.g., smartphone, tablet). These benefits serve to

improve the overall scalability and reach of motor research,

particularly for individuals with NDDs who may have geographic,

physical, or behavioral barriers to accessing a research environment.

Despite the numerous applications and benefits of pose

estimation that have been identified for motor analysis in adults,

studies testing the feasibility and validity of this technology in

pediatric populations, particularly children with NDDs, are

extremely limited. Markerless methods are of particular interest

for capturing data in young children who may be averse to

wearing physical markers, a problem which is likely exacerbated

by the presence of NDDs. Researchers have explored leveraging

2D pose estimation in machine learning models to predict

autism diagnosis in toddlers based on behavioral traits classified

in clinical screening tools, which has achieved an accuracy of up

to 80% (22). Preliminary findings have also shown that a deep

learning model can be trained to calculate spatiotemporal gait

parameters from keypoints overlayed onto videos of children

with cerebral palsy using pose estimation. Researchers found high

correlation with motion capture for walking speed, cadence, gait

deviation index, and knee flexion (23). These findings suggest

that pose estimation could prove to be a valuable tool for

developmental research, a field in which rigorous motor

measures are essential for determining developmental milestones

and identifying motor differences in clinical populations who

have atypical development.

Considering the totality of the current findings in the field,

there are three major motivations for the present study:

1. Video-based gait analysis with pose estimation can be captured

in any context compared to laboratory based measures such as

pressure sensors or 3D motion capture with wearable markers,
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making it an attractive option for cost effectiveness

and scalability.

2. Markerless methods are ideal for pediatric populations with

NDDs, who may struggle to comply with wearing physical

markers or sensors.

3. There is currently a scarcity of studies assessing the validity and

generalizability of video-based gait analysis for young children

with varying developmental diagnoses.

To address this gap, we leveraged OpenPose to perform pose

estimation and conduct a retroactive video analysis of children

during overground walking in which footfalls were

simultaneously recorded by a ProtoKinetics Zeno walkway

system, an instrumented gait mat. Pressure-sensing walkways are

a gold standard measure for deriving spatiotemporal gait

parameters and can serve as a reference when evaluating novel

technologies (24). A custom workflow that has previously been

validated in adult populations was used to calculate

spatiotemporal gait parameters from videos that had been

analyzed in OpenPose. This software is equipped with a user

interface that allows researchers with limited training to review

videos and correct for any errors in pose estimation prior to

variable calculation (19). Spatiotemporal gait parameters were

additionally calculated with the ProtoKinetics Movement

Analysis Software (PKMAS), the Zeno walkway’s associated gait

analysis software. Our primary goals are to:

1. demonstrate the feasibility of using pose estimation to perform

gait analysis in children with and without neurodevelopmental

conditions; and

2. assess the validity of OpenPose for measuring spatiotemporal

gait parameters through comparison to PKMAS.

Specifically, we focus on toddlers with a diagnosis of autism, non-

autism developmental concerns, a genetic neurodevelopmental

syndrome, or typical development. We hypothesized that

OpenPose analysis would yield spatiotemporal gait parameters

that were significantly correlated with those calculated using the

instrumented gait mat.
Methods

Ethics statement

Our study protocol and data collection methodology were

approved by the University of California, Los Angeles (UCLA)

Institutional Review Board (IRB#17-001269, IRB#17-001265,

IRB#17-000262). Due to the age of the participant population

and/or diagnoses that affect cognitive abilities, a legally

authorized representative of all participants provided written

informed consent for their data to be used in related research.
Participants

Participants were recruited from ongoing longitudinal research

studies at the UCLA Center for Autism Research and Treatment
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and included children with autism, non-autism developmental

concerns, typical development, tuberous sclerosis complex (TSC),

or 22q deletion. Individuals with autism were diagnosed using

validated assessments including the autism diagnostic observation

schedule, second edition (25) and the autism diagnostic

interview-revised (26). Individuals with TSC were diagnosed

either through genetic testing or meeting clinical criteria for TSC

and the individual with 22q deletion was diagnosed through

genetic testing. All participants completed the same standardized

gait data collection protocol between April 2018 and July 2023.
Developmental assessment

Developmental level of participants was evaluated using the

Mullen Scales of Early Learning (27). The Mullen Scales of Early

Learning is a widely used developmental assessment that provides

information on several subscales, including (1) fine motor, (2)

visual reception, (3) receptive language, (4) expressive language,

and (5) gross motor. The first four of these subscales can be used

to compute an early learning composite score, which is a measure

of overall intelligence. The Mullen was administered by trained

clinical psychologists. We excluded Mullen data that was collected

more than 3 months away from the participant’s gait assessment.
Data collection using pressurized gait mat
and video recordings

Spatiotemporal gait parameters were captured using the

ProtoKinetics Zeno Walkway, a 16 ft mat with embedded

pressure sensors sampling at a rate of 120 Hz, and analyzed with

PKMAS. Participants walked four full lengths of the mat plus an

additional four feet on either end to account for acceleration and

deceleration. Participants walked using their spontaneous self-

paced gait. Due to the young age of the participants, a researcher

gave a demonstration and further instruction when necessary to

elicit this type of walking. Additional passes were performed to

replace passes where the participant stepped off the mat, did not

use a self-paced gait (e.g., running, jumping, scooting, shuffling),

or stopped on the mat in the middle of a pass. If a researcher

determined that sufficient attempts had been made but the child

did not complete four passes using a self-paced gait, the trial was

concluded and analyzed so long as at least two passes could be

used to generate average spatiotemporal gait parameters.

Trials were simultaneously recorded with a monocular camera

that was centered and placed five feet away from the edge of the

mat, parallel with the walking direction of the participant (i.e.,

the videos provided a frontal view of the participants walking

toward or away from the camera). A visual representation of the

experimental setup can be seen in Figure 1A. Trials were

processed, reviewed, and cleaned within PKMAS by trained

research assistants to ensure that the recorded data consisted

only of the participant’s spontaneous self-paced gait. PKMAS

automatically detects right and left footfalls and displays them on

a graphical representation of activated sensors, which is synced
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FIGURE 1

Experimental design. Includes a general overview of the experimental design used for gait data collection, including (A) the experimental setup
consisting of a 16-foot instrumented gait mat, a frontal plane camera, and gait analysis software; (B) examples of a video before and after
OpenPose analysis; (C) the steps for calculating spatiotemporal gait variables using the PKMAS software; and (D) the pipeline for calculating
spatiotemporal gait variables using pose estimation.
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with the recorded video. Spatiotemporal gait parameters were

derived through the following steps: (1) review the video for

movement that did not match the participant’s spontaneous self-

paced gait, such as running, jumping, crawling, or stopping, and

manually mark the corresponding sensor activations for

exclusion, and (2) run the PKMAS software to generate mean

spatiotemporal gait parameters for each trial (Figure 1C).
Video review

Review criteria were developed to verify that retrospectively

recorded gait videos were compatible with video-based gait

analysis. In PKMAS, videos were used for manual review when

cleaning data and the angle, tilt, or distance of the camera

relative to the gait mat did not affect variable calculation.

However, these are important factors for video-based pose

estimation. The purpose of developing review criteria was to

ensure consistency between videos recorded at different time

points so that spatiotemporal gait parameters could be accurately

calculated. Criteria included camera angle, camera frame, camera

distance, and pass quality (further detail on each provided

below). When discussing these criteria, we use “footfall” when

referring to the contact of a single foot with the mat, “pass”

when referring to a group of consecutive footfalls moving in a

single direction (toward or away from the camera), and “trial”

when referring to the full collection of passes in a video

recording. At least two passes fulfilling all four criteria were
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needed to calculate average spatiotemporal gait parameters for a

trial. Any passes that did not meet one or more of these criteria

were not analyzed or included in variable calculation.

Camera angle
To fulfill the camera angle criterion, the camera must have

been placed parallel with the mat to show a centered, frontal

view of the participant. This placement was necessary because

our software used to calculate spatiotemporal gait parameters is

optimized for purely frontal and/or sagittal views (19). Thus, a

video in which the camera is angled in other directions may not

yield accurate variables.

Camera frame
The camera frame criterion required a non-obstructed view of

the participant’s full torso and lower limbs. For example, a person

entering the field of view between the camera and the participant

would cause an occlusion and preclude accurate tracking of the

participant. Furthermore, the pixel height of the participant’s

torso was a necessary variable for generating spatiotemporal gait

parameters, which was the motivation for requiring a view of the

participant’s full torso and lower limbs. Passes containing brief

camera obstructions could still be used so long as at least 5

consecutive steps had an unobstructed view of the participant.

Camera distance
To meet the camera distance criterion, we had to identify a

frame in the video with a known distance from the camera to
frontiersin.org
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the participant, which is a necessary variable for calculating

spatiotemporal gait parameters from frontal videos. This was

possible because the gait mat and camera were set up in a

standardized and consistent manner per protocol, with a known

measured distance from the camera to the start and end of the

gait mat. Thus, a video met the camera distance criterion if it

contained a frame where the participant was at the beginning or

end of the mat.

Pass quality
The pass quality criterion was created to ensure comparability

between spatiotemporal gait parameters generated using PKMAS

and those derived from pose estimation outputs. In PKMAS,

data were cleaned by reviewing the video and manually marking

activated sensors for exclusion if they were not part of the

participant’s spontaneous self-paced gait. A pass met the pass

quality criterion if it contained five or more consecutive steps

that had not been excluded during data cleaning. Any trials with

a corrupted or missing video file did not satisfy the pass quality

criterion by default. To guarantee that no discarded gait data was

included in videos used for pose estimation, each pass was

exported from PKMAS as a separate video containing only the

first to last foot contact.
Video-based gait analysis

Openpose analysis
As a preliminary step, the video files exported from PKMAS

were converted from .wmv to .avi using Shutter Encoder, a free

video conversion software. This step was necessary to ensure

compatibility with both OpenPose (the freely available human

pose estimation algorithm used in this study), and the custom

software used to calculate spatiotemporal gait parameters. Shutter

Encoder was also used to adjust the contrast and brightness of

some videos that had poor lighting, which helped improve the

quality and accuracy of pose estimation.

Frontal plane gait videos were then processed in Python

software running OpenPose analysis locally through Anaconda

Navigator. We employed the BODY_25 model to overlay and

track 25 keypoints corresponding with various anatomical

landmarks onto persons detected within the video frame (17).

These include nose, neck, eyes, midpoint between eyes, ears,

shoulders, elbows, wrists, hips, knees, ankles, heels, big toes, and

small toes. The resulting OpenPose analysis yielded (1) a video

file displaying a visual representation of the keypoints overlaid

upon the original video as shown in Figure 1B and (2) JSON

files containing the time series data for pixel coordinates

associated with each keypoint in the video.

Analysis of spatiotemporal gait parameters
Spatiotemporal gait parameters were calculated using a custom

MATLAB codebase created by researchers to generate

spatiotemporal gait parameters from OpenPose keypoints (28).

Leveraging this existing pipeline allowed for fast, intuitive

calculation of variables that have been reliably captured in other
Frontiers in Digital Health 05
populations. Upon selecting the appropriate video and JSON

files, the following steps were followed to generate gait

parameters: (1) select an anchor point to choose the individual

that should be tracked when multiple persons are present, (2)

correct identification of right and left shoulders and ankles that

had been mis-identified by OpenPose, (3) inspect the automatic

placement of right and left footfalls on a sinusoidal graph and

make corrections when necessary, (4) select a reference frame

and input the distance from the camera to the participant at that

frame, and (5) repeat steps 1–4 for each pass in the trial and

average the outputs (Figure 1D).
Statistical analysis

We compared PKMAS and OpenPose variables using the

absolute difference of the means for velocity, step length, and

step time. In this study, velocity is defined as the speed of the

participant in meters per second and step time is the time

between footfalls in seconds. Step length was determined slightly

differently between PKMAS and OpenPose, with the former

measuring the distance between the center of two footfalls in

centimeters and the latter relying on the distance travelled by the

torso between footfalls. Spatiotemporal gait parameters were

compared between PKMAS and OpenPose through Pearson

correlations. Two-tailed p values were computed with 95%

confidence intervals. A Bland-Altman analysis was used to assess

the agreement between OpenPose and PKMAS by comparing the

difference (OpenPose – PKMAS) to the average of each data

point (29). The absolute difference of means was reported for

velocity, step length, and step time. As videos were captured with

a frequency of 30 Hz, all variables were reported with a precision

of one centimeter or ten milliseconds.
Results

Participants completed four passes on an instrumented gait

mat with simultaneous video recordings of the frontal plane,

where one pass constitutes walking from one end of the mat

to the other. 128 videos were analyzed out of 192 total

videos. Common reasons for excluding videos were the

camera not being positioned parallel with the gait mat, low

participant adherence to the data collection protocol, and

missing or corrupt video files (see methods for full details on

exclusion criteria).

Our analysis included 112 unique participants who had autism

(n = 77), typical development (n = 15), TSC (n = 13), non-autism

developmental concerns (n = 6), or 22q deletion (n = 1). The

average age across all time points was 30 months, and all children

were between the ages of 14 and 65 months (Table 1).

Developmental data from the Mullen Scales of Early Learning was

included for 99 participants who had testing administered on the

same day as the gait assessment (n = 91) or within 3 months of

the gait assessment (n = 8). Data was excluded for 13 participants

who either did not complete the Mullen (n = 3) or had the Mullen
frontiersin.org
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TABLE 1 Participant demographics.

Group Participants Trials Age (months) Height (cm) Weight (lb)

n (%) Male (%) female (%) n (%) Mean (sd) Mean (sd) Mean (sd)
Total 112 (100.0%) 74 (66.1%) 38 (33.9%) 128 (100.0%) 30 (8) 92.41 (7.28) 30.53 (5.22)

Autism 77 (68.8%) 57 (50.9%) 20 (17.9%) 91 (71.1%) 29 (7) 92.48 (6.50) 30.42 (4.76)

Typically developing 15 (13.4%) 7 (6.3%) 8 (7.1%) 15 (11.7%) 33 (11) 92.83 (8.82) 31.34 (6.11)

TSC 13 (11.6%) 5 (4.5%) 8 (7.1%) 15 (11.7%) 28 (13) 90.20 (10.48) 29.51 (6.98)

Developmental concerns 6 (5.4%) 4 (3.6%) 2 (1.8%) 6 (4.7%) 31 (6) 94.83 (5.35) 31.60 (5.32)

22q deletion 1 (0.9%) 1 (0.9%) 0 (0.00%) 1 (0.8%) 43 (0) 99.00 (0) 37.40 (0)

Displays the number of unique participants, trials, and average age in months. As some participants were assessed at multiple timepoints, means and standard deviations for age, height, and

weight have been calculated based on the number of total trials.

TABLE 2 Overview of participants’ developmental level.

Group Visual reception Receptive language Expressive language Fine motor Early learning
composite

n Mean (sd) Mean (sd) Mean (sd) Mean (sd) Mean (sd)
Autism 72 39.56 (16.98) 34.26 (16.43) 35.25 (16.17) 37.15 (14.36) 76.46 (25.79)

Typically developing 13 59.62 (7.332) 56.54 (9.171) 54.31 (10.09) 49.23 (9.82) 109.7 (13.40)

TSC 8 26.38 (9.023) 25.75 (7.778) 26.00 (6.188) 29.38 (10.78) 59.13 (10.37)

Developmental concerns 6 52.33 (16.32) 52.33 (7.891) 45.33 (12.14) 51.50 (16.26) 101.0 (15.49)

Overview of average developmental level for each diagnostic group, as determined by the Mullen Scales of Early Learning. The 22q deletion category is excluded from this table due to not

having Mullen data available. Means and standard deviations for T-scores are reported.
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administered greater than 3 months from the date of their gait

assessment (n = 10). The gross motor subscale was not

administered to participants older than 36 months and is thus

excluded from our analysis due to missing data. A summary of

the visual reception, fine motor, expressive language, receptive

language, and early learning composite scores can be seen in Table 2.

The absolute difference of means between OpenPose and

PKMAS was 0.04 m/s (sd = 0.10 m/s) for velocity, with 95%

limits of agreement ranging from −0.23 to 0.14 m/s. The

absolute difference of means for step length was 0.03 m

(sd = 0.04 m) with 95% limits of agreement ranging from −0.10
to 0.05 m. For step time, the absolute difference of means was

0.01 s (sd = 0.02 s) with 95% limits of agreement ranging from

−0.04 to 0.02 s (Figure 2). Statistically significant positive

correlations were found between OpenPose and PKMAS for

velocity (r = 0.87, p < 0.0001), step length (r = 0.79, p < 0.0001),

and step time (r = 0.96, p < 0.0001).
Discussion

We found that markerless video-based gait analysis using pose

estimation is feasible and produces valid gait data in children with

and without NDDs. Additionally, we were able to demonstrate that

meaningful gait data could be ascertained from children with a

large range of developmental abilities. As we hypothesized, our

results demonstrate a strong agreement between OpenPose and

PKMAS for velocity, step length, and step time, which were

characterized by statistically significant correlations. We now

review in detail the comparison of gait parameters derived in

PKMAS compared to OpenPose.
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Step time showed the highest agreement with PKMAS when

calculated using pose estimation, with an absolute mean

difference of 0.01 s and a Pearson correlation coefficient of 0.96.

Velocity and step length also showed high agreement with

PKMAS, albeit to a lesser degree than step time. The absolute

mean difference for velocity and step length were 0.04 m/s and

0.03 m, respectively, with Pearson correlation coefficients of 0.87

and 0.79. Both variables could have been affected by factors that

influenced the accuracy of step length calculation using pose

estimation. The codebase used to calculate spatiotemporal gait

parameters after performing pose estimation measured step

length as the distance travelled by the torso between consecutive

bilateral heel strikes. Conversely, in PKMAS these variables are

measured from the center of each footfall. Previous studies

employing the same analysis methods also found that videos

with a sagittal view of overground walking were more accurate

for calculating step length compared to frontal-plane videos that

were used in this study (19). It is also possible that there was

greater variability in calculating step length resulting from both

methodological and developmental considerations in the

pediatric participant population. Due to body and foot size,

children are represented by fewer pixels within the frame of a

video. Consequently, small deviations in keypoint tracking can

have a greater impact on step length calculation compared to

adult populations (30). This interpretation is supported by

previous findings that pose estimation is less accurate at

determining step length when a participant is further from the

camera, which is a similar effect to a participant being physically

smaller in size (19). As velocity is a function of both step time

and step length, it follows that any improvements to step length

accuracy would in turn improve accuracy for velocity.
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FIGURE 2

Comparison of spatiotemporal gait parameters between OpenPose and PKMAS. Displays Pearson correlations and bland altman plots (difference vs.
average) for velocity, step length, and step time. Pearson correlations include a line of identity and Bland Altman plots include average difference and
95% confidence intervals, represented by dashed and dotted lines, respectively. All plots are grouped by participant diagnosis.
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A major strength of the present study is the evaluation of gait

in a sample of children between the ages of 1 and 5 years. From our

review of the literature, very few studies comparing spatiotemporal

gait variables obtained from a pose estimation model to an

established methodology have included children younger than six

and none have included children younger than three, which is a

critical period in gait formation and development. Prior studies

have demonstrated that different pose estimation models

(KAPAO, Detectron2) are able to detect significant differences in

gait characteristics based on age or diagnosis, with one preprint

including children as young as three in their sample (31, 32).

Another study compared gait characteristics generated with

OpenPose to 3D motion capture data of typically developing

children to predict Duchenne muscular dystrophy with up to

97% accuracy (33). We identified only three studies that directly

compared OpenPose or a similar pose estimation model to an

established methodology (3D motion capture) for gait analysis in

children as young as three, all of which found significant

correlations or non-significant differences between methods

(23, 34, 35). Thus, our findings contribute to a growing body of

work demonstrating the utility of video-based gait analysis using

pose estimation in pediatric populations while providing the first

evidence that valid results can be obtained from the initial onset

of gait (Table 3).

When considering applications for pose estimation, it is useful

to consider accuracy relative to minimum clinically important

difference (MCID). However, it is important to note that reliable

MCIDs for spatiotemporal gait parameters have not been clearly

defined in the literature, especially in children. Previous studies

have reported the MCID for velocity to be between 0.04 and

0.1 m/s in older adults, and 0.08 m/s in adults with Parkinson’s

(36–38). It is known that younger children have greater gait
TABLE 3 Related works.

Reference Developmental group Mean
age (sd)

Sample
size

Present study Autism, developmental concerns,
TSC, 22q deletion, typically
developing

2.5 (0.67) 128 V
ti

(23) Cerebral palsy 11.00 (5.90) 1,792 V
fl

(31)a Typically developing 6.70 (2.70) 198 E
o
sw

(32) 16p11.2 mutation,
typically developing

9.90 (3.27)
9.67 (4.00)

15
12

G

(33) Duchenne muscular dystrophy,
typically developing

– (–)
9.38 (–)

55
21

V
ti
a

(34) Typically developing 13.00 (–) 20 Jo
a

(35) Developmental hip dysplasia,
typically developing

6.08 (2.22)
6.22 (2.02)

10
18

E
o

Comparison of findings in the present study with other studies applying markerless methods to g

some cases as this was how it was reported in the corresponding study. Means or standard devi
aThe article is a pre-print.
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variability (39), which would suggest that a higher MCID for

velocity is likely needed when assessing pediatric populations. In

our sample, the mean difference for velocity was below 0.1 m/s

in 65% of trials, with a sample mean of 0.04 m/s and limits of

agreement ranging from −0.23 to 0.14. While these results are

promising within the context of existing research on MCID for

spatiotemporal gait parameters, further research is needed to

clearly establish MCID thresholds in pediatric populations.

Comparison of gait analysis methodologies in a larger sample

may aid in accomplishing this goal.

There were some limitations in the present study which should

be considered when interpreting the results. As previously

mentioned, our study was a retrospective analysis of frontal gait

videos. Thus, we were unable to test different camera angles and

compare the accuracy of spatiotemporal gait parameters.

Prospectively designed studies can optimize data collection for

video-based pose estimation by simultaneously capturing frontal

and sagittal videos. As this was a single-site study, we are also

unable to speak to comparability of results across locations that

may have varying recording conditions. Future studies with

larger sample sizes conducted across several locations could

further expand our understanding of the variability of pediatric

gait and how measurement using pose estimation models

compared to other methods may accurately account for this

variability. Lastly, the present study was not designed to prescribe

an optimal method of markerless video-based gait analysis in

young children. Many pose estimation models are available (16),

and further efforts should explore multiple methods and

compare results to determine the protocol that yields

highest accuracy.

Our results show that video-based gait analysis using pose

estimation can provide reliable and valid gait data in toddlers
Gait features
analyzed

Methods
used

Key findings

elocity, step length, step
me

OpenPose vs.
Instrumented gait
mat

Significant correlations ranging
from 0.79 for step length to
0.96 for step time

elocity, cadence, knee
exion, gait deviation index

OpenPose vs. 3D
motion capture

Significant correlations ranging
from 0.73 for velocity to 0.83
for knee flexion

xtension, flexion, and range
f motion for hip and knee,
inging angle

KAPAO Detected significant differences
in gait features between age
groups

ait synchrony, balance Detectron2 Detected significant differences
in gait synchrony and balance
between groups

elocity, step length, stride
me, cadence, flexion of hip
nd knee

OpenPose, 3D
motion capture

97% prediction accuracy of
Duchenne muscular dystrophy

int angles of hips, knees,
nd ankles

OpenPose vs. 3D
motion capture

Differences were non-
significant for the knees, but
significant for hips and ankles

xtension, flexion, and range
f motion for hip and knee

KAPAO vs. 3D
motion capture

No significant differences
between methods

ait analysis in children. Age and sample size are listed separately by developmental group in

ations listed as — were not reported.
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with and without NDDs. This tool is promising for improving

access to developmental research, as data collection can be

completed with accessible video recording devices and minimal

data collection methods (e.g., measurement of distance from

camera to starting point, demonstration of walking trials).

Additionally, these methods can be employed in more

naturalistic environments such as a participant’s home. It follows

that video-based gait analysis presents fewer barriers compared

to other gait assessment methodologies, as it is low cost, does

not require participants to travel to a controlled clinic or lab

setting, and does not use wearable markers that could pose

challenges for some participants. Furthermore, our results

demonstrate that the methods used in this study are feasible and

accessible for children with a large range of developmental

abilities to complete, which increases our understanding of gait

in those with a range of developmental abilities. These

advantages open possibilities for using repeated measures to

increase our knowledge of how gait ability changes over time in

pediatric populations and improve clinical screening tools,

particularly in those with NDDs where motor impairments are

highly prevalent.
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