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The diagnosis of skin diseases can be challenging due to their diverse

manifestations, while early detection of malignant skin cancers greatly improves

the prognosis, highlighting the pressing need for efficient screening methods. In

recent years, advancements in AI have paved the way for AI-aided diagnosis of

skin lesions. Furthermore, the COVID-19 pandemic has spurred the demand of

telemedicine, accelerating the integration of AI into medical domains,

particularly in China. This article aims to provide an overview of the progress of

AI-aided diagnosis in Chinese dermatology. Given the widespread use of public

datasets in the reviewed studies, we compared the performance of AI models in

segmentation and classification on public datasets. Despite the promising

results of AI in experimental settings, we recognize the limitations of these

public datasets in representing clinical scenarios in China. To address this gap,

we reviewed the studies that used clinical datasets and conducted comparative

analyses between AI and dermatologists. Although AI demonstrated comparable

results to human experts, AI still cannot replace dermatologists due to

limitations in generalizability and interpretability. We attempt to provide insights

into improving the performance of AI through advancements in dataset quality,

image pre-processing techniques, and integration of medical data. Finally, the

role that AI will play in the medical practice and the relationship between AI and

dermatologists are discussed. This systematic review addresses the gap in

evaluating AI applications in Chinese dermatology, with a focus on

dermatological datasets and real-world application.
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Introduction

Dermatologists rely heavily on visual features of skin lesions in their diagnostic process,

which can sometimes lead to errors, especially for inexperienced clinicians (1). Accurate

dermatological diagnosis builds on years of clinical practice. Studies comparing the

performance of different levels of Chinese dermatologists showed that the accuracy of

dermatologists with high levels of expertise was between 85% to 95%, while the accuracy of

dermatology residents ranged from 60% to 70% (2, 3). Because of the rarity of some

unique cutaneous diseases and the similarity between different skin lesions, the

misdiagnosis happened even in the tertiary care centers where expertise is anticipated to
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accrue quicker due to the high volume of cases presented (4–6).

What’s more, skin diseases were the seventh causes of global

disease burden in 2019, especially in the middle Sustainable

Development Index (SDI) level countries such as China (7, 8).

According to the Global Burden of Disease (GBD), skin and

subcutaneous diseases ranked fourth leading cause of disability

burden worldwide (9). Analysis based on GBD showed that the

burden of disability in China had been growing continuously in the

period of 1990 to 2019, with the prevalence of skin disease in the

general population increasing by 5.5% in the same period, affecting

many millions (8). Therefore, an objective, standardized and

efficient assistant tool for dermatologic diagnosis is in need.

Artificial Intelligence (AI) refers to a machine learning-based

system that simulates human cognition and can perform tasks

typically requiring human intelligence. These tasks include

learning from datasets, recognizing patterns, making decisions,

understanding natural language, and solving complex problems

(10). The application of AI in medical fields is rapidly growing,

including but not limited to prediction, diagnosis, treatment, and

long-term healthcare (11). Among all, the image diagnosis of AI

seemed to be one of the most promising applications, attracting a

growing interest from computer scientists and healthcare

providers (12). In recent years, an increasing number of studies

revealed the potential of AI in promoting the accuracy of skin

lesion classification, ranging from malignant skin cancers to

inflammatory skin diseases (13). However, although the future

looks promising, the use of AI in dermatological diagnosis still

faces challenges in everyday clinical practice, including dataset

biases, poor interpretability, and ethical issues (14, 15).

Telemedicine, as defined by the World Health Organization

(WHO), involves the delivery of health-care services over

distance (16). While it cannot fully replace conventional medical

care, telemedicine has been proved to be capable of improving

medical services in terms of diagnosis and treatment, which can

lead to reduced hospitalization rates and duration (17, 18).

Besides, telemedicine has the potential of expanding the medical

service to remote areas with poor access to high-quality medical

facilities (19). Complementing the provision of healthcare in

China, telemedicine is progressively emerging as an alternative of

conventional medicine in rural areas, being impactful with

limited resources (20). Lastly, during the COVID-19 pandemic,

conventional face-to-face care was severely affected, which

triggered the urgent need of developing and implementing

telemedicine (21).

Owing to the visual nature of dermatology, dermatological

telemedicine has embraced AI-based image identification as a

diagnosis support and screening tool (19). In addition, in the

pursuit of improving the classification of skin lesions, AI

applications have extended to dermatopathology, medical

metadata analysis, prognostic prediction, and biomarker

screening (22). However, despite the increasing interest in this

domain (Figure 1), few articles focus on the advancement of AI

integration in dermatology in China, where the prevalence of

skin diseases was 26.0% in 2019 (8). In this paper, we provide an

overview of Chinese research on the use of AI in dermatology,

focusing on machine learning models, datasets, and clinical

applications. In addition, the paper addresses the concerns and

challenges about the involvement of AI into dermatological

FIGURE 1

Number of publications on the subject of dermatology and artificial intelligence (2013-2023) registered in PubMed, demonstrating an exponential

growth in studies in this field.

Yu et al. 10.3389/fdgth.2025.1544520

Frontiers in Digital Health 02 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1544520
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


clinical practice in China. Furthermore, the relationships between

AI and dermatologist are explored, with the insights into the

future of the role that AI may play in dermatological practice.

Methodology

This systematic literature review followed the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) method (23). Databases in English (Pubmed and Web

of Science) and databases in Chinese (Wanfang and CNKI) were

searched using the keywords (“artificial intelligence” OR

“machine learning”) AND (“dermatology” OR “skin lesion”)

AND (“image diagnosis” OR “clinical application” OR

“segmentation”) AND (“China” OR “Chinese”) for papers from

January 2013 to April 2025. This starting point was chosen

because the first research in China using AI in dermatology was

published in 2013 (24). Exclusion criteria were as follows: (1)

conference articles, reviews, or editorials; (2) irrelevant to China;

(3) irrelevant to dermatology; (4) without use of AI; (5) no

access to full text.

In total, 1394 publications were extracted from these four

databases to the EndNote citation manager. 146 duplicates were

excluded, leaving 1248 articles. According to the title and

abstract screening, 885 articles were removed as non-relevant.

Furthermore, 363 articles were reviewed by their full text, of

which 136 were excluded because of the following reasons: (1)

Review; (2) Topics irrelevant to China; (3) No AI used in the

methodology. Finally, a total of 227 articles were selected for the

present systematic review (Figure 2). The review of the articles

took place by two independent researchers (IOC and YJ) and

any contradicting opinions were resolved by a third independent

reviewer (ZK and HW). The selected articles were then divided

into two groups based on the datasets (public datasets or clinical

datasets) used to train the AI model.

Results

General study characteristics

In total, 227 articles were reviewed, comprising 25 Chinese and

202 English articles. Among these, 81 focused on single-disease

research, while 146 studied multiple skin diseases. Notably,

melanoma emerged as the most extensively studied disease in

single-disease research (n = 46), followed by acne (n = 9),

psoriasis (n = 5), vitiligo (n = 3), monkeypox (n = 3), actinic

keratosis (n = 2), and atopic dermatitis (n = 2). Only a minority

of researches investigating multiple skin diseases studied more

than 8 diseases (11/146, 7.5%), with one study analyzing up to

14 diseases. Regarding the objectives of AI models, 132 were

designed for classification, 66 for segmentation, and 10 for both

segmentation and classification. Additionally, 12 articles aimed at

predicting prognosis or treatment effects, 5 focused on screening

for biomarkers or medication targets, and 2 were dedicated to

image enhancement. According to the dataset used, the studies

were categorized into two groups. The group employing public

datasets comprised 151 studies (66.5%), while the group

employing clinical datasets included 76 studies (33.5%).

Performance of AI models in skin lesion
segmentation

Image segmentation serves as the foundational and pivotal step in

medical image analysis (25). Accurate segmentation is vital for both

training AI models and ensuring correct classification (26).

According to a previous commentary on medical image

segmentation, evaluation metrics employed in this sector include the

Dice Similarity Coefficient (DSC), Intersection-over-Union (IoU,

also known as Jaccard Index), sensitivity, specificity, and accuracy

(27). Given the variance in AI performance across different datasets,

a quantitative analysis of different AI models should be conducted

on the same dataset (28, 29). ISIC 2018 dataset was chosen due to its

more uniform sample distribution, making it suitable for both

training and testing AI algorithms (30). Consequently, inclusion

criteria for evaluating AI models in segmentation were listed as

follows: trained and tested on the ISIC 2018 dataset, encompassing

all the 5 evaluation metrics above, and addressing all the 7 diseases

in ISIC 2018. Out of 66 articles focused on segmentation, a total of

17 studies met these inclusion criteria.

Among the studies included in this sector, CNN emerged as the

most frequently utilized model (13/17, 76.5%), followed by

Transformer (4/17, 23.5%) and Attention Network (2/17, 11.8%).

Inspired by the structure of the animal visual cortex, CNNs are

deep learning algorithms well-suited for processing image data,

making them widely used in medical imaging fields such as

dermatology, radiology, and pathology (48). A notable study

introduced a CNN model with a multi-scale design, incorporating

a Spatial Adaptation Module to minimize the loss of spatial

location information and a Multi-scale Decoding Fusion Module

to integrate information across different layers. Overall, this model

design prevented the loss of crucial data during segmentation,

resulting in more precise segmentation outcomes (43).

Despite the outstanding performance of CNN models in skin

lesion segmentation, traditional CNN models often struggle to

effectively capture contextual information (49). In light of this,

Bahdanau et al. introduced a neural machine translation model

with an attention mechanism, enabling the model to concentrate

on relevant parts of the input sentence, thereby enhancing

translation quality (50). Building on this concept, Attention

Networks were subsequently used in biomedical image

segmentation to gather contextual information across both long

and short distances (51). Dong Y et al. proposed an Attention

Network incorporating a combination of feedback fusion blocks

and attention mechanism blocks to aggregate feature mapping.

The model exhibited improvements compared to state-of-art

models without any data augmentation (32).

Transformer, an algorithm that builds on attention mechanisms,

was developed to address the limitations of CNN in modeling

sequential data (49). Initially applied to Natural Language Processing

(NLP) tasks, Transformer has since been utilized in multi-organ

Yu et al. 10.3389/fdgth.2025.1544520

Frontiers in Digital Health 03 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1544520
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


segmentation, exhibiting competitive results to state-of-the-artmethods

(52, 53). It is worth noting that Transformer has a better parameter

efficiency, which can be particularly advantageous on the devices

with limited computational resources (54). He X et al. proposed a

Fully Transformer Network, yielding improved sensitivity and

specificity. With its linear computational complexity, the model

required fewer computing and memory resources, surpassing CNN

models in computational efficiency (35). Additionally, Transformer

can also work together with CNN, Chen W et al. introduced a fusion

module that combines the strengths of Transformer in extracting

global information and those of CNN in extracting local information,

resulting in superior segmentation outcomes (40). To overcome the

limitations of traditional Transformer and CNNs in challenging

lesions, Fan C. et al. applied adaptive spatial-channel attention to

reduce Transformer self-attention complexity and preserve spatial-

channel interactions, while enhancing local feature extraction via

cross-space multiscale attention. Ultimately, their model

outperformed CNN/Transformer hybrids in datasets with irregular

lesions and noisy backgrounds (47) (Table 1).

Performance of AI models in multi-disease
classification of skin lesions

Previous studies have demonstrated the potential of deep

learning algorithms in binary classification of skin lesions,

FIGURE 2

PRISMA graph for the systematic review.
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achieving performance comparable to or superior to that of

dermatologists (55, 56). However, these methods are not directly

translatable to the multi-class classification requirements of

clinical settings (57). To extend the application of AI into

real-world scenarios, the ability of AI models in multi-disease

classification should be evaluated.

HAM10000 dataset encompasses 7 common skin diseases,

including Melanoma, Melanocytic nevus (MN), Basal cell

carcinoma (BCC), Actinic keratosis (AK), Benign keratosis

(BKL), Dermatofibroma (DF), and Vascular lesion (VASC) (58).

The Test 3 dataset of ISIC 2018 includes HAM10000, with only

minor changes (59). To assess the efficacy of AI models in multi-

disease classification, we reviewed and included 13 articles

focusing on multi-classification trained and tested on ISIC 2018

or HAM10000. Classification evaluation metrics such as accuracy,

sensitivity, specificity, F1-score, and Area Under the ROC Curve

(AUC) were employed. Additionally, the learning strategies

adopted in these articles were highlighted (Table 2).

The majority of studies reviewed in this sector adopted transfer

learning strategy (11/13, 84.6%). Transfer learning is a machine

learning approach that involves reusing an AI model pre-trained

for a specific task on a new domain (69). With the advantages

such as shorter training time, smaller dataset, and reduced

inductive bias, transfer learning is getting increasingly popular in

medical fields (70, 71). The application of transfer learning

strategy has also extended to AI-CAD of skin lesions. Jain

S et al. assessed 6 transfer learning networks on HAM10000

dataset and demonstrated that the Xception Net, pre-trained on

the ImageNet dataset, achieved the highest accuracy of 0.905

(72). In China, Qin Z et al. developed a framework using a skin

lesion style-based generative adversarial network (GAN) model

to generate high quality images, which were then utilized to train

another pretrained CNN model (ResNet 50) as the classifier. The

image augmentation significantly promoted the performance of

CNN model, achieving the highest accuracy of 0.952 among the

articles reviewed (60). Instead of using CNN models, He X et al.

TABLE 1 A summary table of the performance of AI models in skin lesion segmentation.

Study Year Model DSC IoU SEN SPE ACC

Lei B et al. (31) 2020 GAN 0.885 0.824 0.953 0.911 0.933

Dong Y et al. (32) 2021 Attention Network 0.912 0.840 0.899 0.981 0.968

Bai R et al. (33) 2022 CNN 0.915 0.853 0.926 0.980 0.976

Dong Y et al. (34) 2022 CNN and Transformer 0.908 0.836 0.906 0.979 0.967

He X et al. (35) 2022 Transformer 0.898 0.828 0.962 0.975 0.966

Hu K et al. (36) 2022 Attention Network 0.896 0.831 0.931 0.947 0.957

Jiang Y et al. (37) 2022 CNN 0.934 0.879 0.962 0.950 0.956

Wang RX et al. (38) 2022 CNN 0.905 0.843 0.911 0.972 0.965

Zhang Z et al. (39) 2022 CNN 0.935 0.882 0.952 0.966 0.959

Chen W et al. (40) 2023 CNN and Transformer 0.908 0.843 0.919 0.973 0.969

Han Q et al. (41) 2023 CNN 0.914 0.859 0.930 0.977 0.963

Jiang Y et al. (42) 2023 CNN 0.935 0.881 0.950 0.968 0.959

Jiang Y et al. (43) 2023 CNN 0.936 0.885 0.950 0.966 0.957

Liu LZ et al. (44) 2023 CNN 0.902 0.832 0.909 0.977 0.944

Yu Z et al. (45) 2023 CNN 0.902 0.836 0.907 0.967 0.967

Zhang W et al. (46) 2023 CNN 0.908 0.835 0.886 0.983 0.961

Fan C. et al. (47) 2025 CNN and Transformer 0.942 0.892 0.953 0.990 0.979

Bold values indicate statistically significant values.

SEN, sensitivity; SPE, specificity; ACC, accuracy; GAN, Generative Adversarial Network.

TABLE 2 A summary table of the performance of AI models in multi-disease classification of skin lesions.

Study Year Model ACC SEN SPE F1 AUC TL EL

Gong A et al. (28) 2020 CNN 0.926 0.484 0.978 0.491 0.918 Y Y

Qin Z et al. (60) 2020 CNN 0.952 0.743 0.966 Y N

Iqbal I et al. (57) 2021 CNN 0.888 0.888 0.957 N N

Shan P et al. (61) 2022 CNN 0.893 Y N

Yao P et al. (29) 2022 CNN 0.875 0.819 0.980 Y N

He X et al. (35) 2022 Transformer 0.927 0.857 0.936 0.897 Y N

Liu Z et al. (62) 2023 CNN 0.873 0.873 0.980 N N

Wang G et al. (63) 2023 CNN 0.912 0.951 0.889 Y Y

Wang L et al. (64) 2023 CNN 0.841 Y N

Yue G et al. (65) 2023 CNN 0.860 0.754 0.872 Y N

Zhou S et al. (66) 2023 CNN 0.934 0.724 0.925 0.644 Y N

Hu Z et al. (67) 2024 CNN 0.940 0.917 0.982 0.91 0.993 Y N

Wan Z et al. (68) 2025 LLM 0.578 0.63 Y N

Bold values indicate statistically significant values.

ACC, accuracy; SEN, sensitivity; SPE, specificity; F1, F1-score; TL, transfer learning; EL, ensemble learning.
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adopted the Transformer model. Following segmentation, they

further applied their Transformer Network to classification. By

pre-training their model on the segmentation dataset, they

managed to enhance the classification accuracy from 89.6% to

92.7% (35). In light of the promising potential of large language

models (LLMs) in medical fields, Wan Z et al. compared the

performance of two LLMs (ChatGPT-4 and LLaVA-1.6) in skin

disease identification. Although LLMs exhibited lower accuracy

compared to state-of-the-art Transformers, they were less biased

across different sex and age groups (68).

Ensemble learning, another machine learning approach, involves

combining multiple learning algorithms to improve performance

(73). With the potential to ensemble the strength of different AI

models, the application of ensemble learning has extended to skin

lesion diagnosis (74). For instance, Zillur et al. employed this

strategy by combining five deep CNN models to classify skin

lesions on ISIC 2019 and HAM10000. They proposed a weighted

average ensemble learning model, achieving the recall

outperforming the other existing systems (75). Among the 11

studies reviewed, 2 utilized ensemble learning methods. Gong

A et al. employed the strategy of maximizing individual advantage

and block-integrated voting. By integrating binary classification

voting of CNN models, the ensemble model outperformed

individual CNN in multi-disease classification tasks. Notably, they

also used GAN to create a more balanced training dataset (28).

In the other study, Wang G et al. combined two network models

for feature fusion and incorporated a multi-receptive field module

to capture pathological features. The ensemble network achieved

classification performance comparable to that of state-of-art

models (63). However, it is important to note that ensemble

learning demands significant computing resources and can result

in long response time, making it challenging to implement on

portable devices (76). To address this issue, Yan P et al. designed

a model combining a new loss function and cumulative learning

strategy. This non-ensemble model demonstrated performance

comparable to that of ensemble models with lower computing

burden and less computing time (29).

Public datasets used in AI training

The preparation of dataset stands as the primary and

fundamental step of AI training (77). The quality of the dataset

is important to the establishment of AI models, especially to

segmentation and classification tasks (78). The appropriate

selection of dataset can greatly enhance the ability and

generalizability of AI models (79). Among the 144 studies

trained on public datasets, ISIC 2018 is the most commonly

used dataset (58/144, 40.3%), followed by ISIC 2017 (57/144,

39.6%), ISIC 2016 (35/144, 26.4%), PH2 (33/144, 22.9%), ISIC

2019 (13/144, 39.6%), and HAM 10000 (12/144, 8.3%). Some of

the articles used more than one dataset. The ISIC datasets,

provided by the International Skin Imaging Collaboration

(ISIC), are widely used resources in dermatology imaging

research (80). These datasets were established for the public

benchmark challenges on dermoscopic image analysis held

annually from 2016 to 2020 (81). The HAM10000 dataset, also

known as “Human Against Machine with 10,000 training

images,” comprises a comprehensive collection of dermoscopic

images, which are included in ISIC 2018 (82). The PH2 dataset,

named after the Hospital Pedro Hispano (PH) where it was

compiled, consists of dermoscopic primarily used in research

related to CAD of melanoma (83) (Table 3). More features of

the most frequently used public datasets are listed below:

The feature extraction ability of CNNs builds on large and

balanced dataset. However, the challenge of insufficiency and

uneven distribution poses a significant obstacle in AI training (28).

The size of these public datasets varies greatly, form 200 images

for PH2 to 33,569 images for ISIC 2019. Generally, AI models

trained in small dataset are more easily challenged by radical bias

(56, 87). Furthermore, the distribution of each skin disease within

the dataset can impact the performance of AI models. Class

imbalance occurs when one class is much more abundant than the

other classes, leading to biased model training, misleading

performance metrics, and reduced generalization (88). As shown

in the table above, all the public datasets encounter the challenge

of class imbalance, which may lead to diminished effectiveness

(81). To address this issue, Li Z et al. used data augmentation to

expand the images of minority classes and weighted random

sampling method to avoid oversampling (89). Qian S et al.

adopted an adaptive loss-weighted cross-entropy of specific

categories to address significant imbalances across different

categories of skin lesion images (90). Additionally, Qin Z adopted

a skin lesion style-based GAN to augment the data, resulting in an

improvement of accuracy from 0.944 to 0.952 (60).

The quality of dataset plays a crucial role in training AI models

for skin lesion segmentation and classification (91). Inaccurate data

can lead to impaired model performance and poor reproducibility

(92). Biases present in datasets finally result in bias in AI models

(93). Within public datasets, ground truth data are provided to

identify the edges of skin lesions. However, in ISIC 2016, only

binary classification of malignant or benign is provided, which

offers limited practical value since not all malignant diseases are

melanoma (81). Additionally, it has been reported that a number

of images in ISIC 2017 were given incorrect ground truth

information (94). The presence of pathologic verification in

datasets significantly impacts the reliability of AI classification

TABLE 3 Table of public datasets used in AI training.

Dataset Year Data Size Reference

PH2 2013 40 Melanoma, 160 Nevus (83)

ISIC 2016 2016 248 Malignant; 1029 Benign (84)

ISIC 2017 2017 521 Melanoma; 386 seborrheic keratosis;

1,843 benign nevi

(80)

ISIC 2018 2018 2594 for segmentation, 10003 for

classification (1110 Melanoma, 6698 MN,

514 BCC, 130 AK, 1097 BKL, 115 DF, 142

VASC, and 197 SCC)

(85)

HAM

10000

2018 1113 Melanoma, 6705 MN, 514 BCC, 327

AK, 1099 BKL, 115 DF, and 142 VASC

(82)

ISIC 2019 2019 4522 Melanoma, 12875 MN, 3323 BCC,

867 AK, 2624 BKL, 239 DF, 253 VASC, 628

Squamous cell carcinoma (SCC)

(86)
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(95). However, not all of the images in public datasets have

corresponding pathologic diagnosis. The rate of pathologic

verification of ISIC 2017 was only 26.3%, compared to 53.3% of

HAM 10000 (82).

Thus, the generalization of AI models remains a significant

concern in the application of AI in medical fields (96). Most of

the studies reviewed in this article tested their models on the

same dataset where they were trained, which may not reflect

the performance in real-world contexts. Models trained in one

dataset could show lower performance when tested on another

dataset because of the differences in image settings (2). The

performance of AI models relies on these details, and even

minor deviations have the potential to cause considerable bias

(97). Therefore, data pre-processing and image normalization

are crucial to reduce the interference of deviations in datasets

(28). For example, Tao S et al. converted the dermoscopic

images provided by ISIC 2017 dataset from RGB format to

HSV format, which is less influenced by the changes in

external lighting. As a result, their model trained on ISIC 2017

exhibited great trans-dataset effectiveness when tested on PH2

(98). Despite the progress made by researchers, the application

of these AI-CAD tools is still under question, and their

performance should be evaluated extensively in real-

world scenarios.

Performance of AI-aided skin lesion
classification on clinical datasets

It is worth noting that none of these public datasets mentioned

above collect data from Asian countries (99). Previous researches

have demonstrated that AI models may not achieve favorable

results when transferred to a dataset collected from a population on

which the AI models were not trained (100). Consequently, AI

models trained on public AI datasets may not adequately address

clinical needs in China. In addition to public datasets, many

Chinese researchers opt to train and test their models on the

dataset developed in local hospitals, collected via dermoscopy,

camera, or smartphone. The comparison between AI and clinical

physicians is widely discussed and has garnered intensive attention.

In 2019, a comparative study was performed between 139 state-of-

art machine learning algorithms and 511 dermatologists worldwide,

demonstrating that the performance of AI classifiers surpassed that

of experts with more than 10 years of experience (101). In this

section, we include the articles that (1) were performed on self-

developed clinical datasets; (2) focused on skin lesion classification;

and those that (3) included a comparison between AI models and

dermatologists. Further details are listed in Table 4 below.

Among the 15 studies included, 13 articles used a CNN model,

while one article employed Support Vector Machines (SVM) and

TABLE 4 Summary table of the performance of AI-aided skin lesion classification on clinical datasets.

Study Year Disease Algorithm Type of image Performance of AI Performance of
dermatologists

Chang W et al. (24) 2013 Melanoma SVM Conventional

Photographs

ACC = 0.906 SEN = 0.856,

SPE = 0.876

ACC = 0.833, SEN = 0.859,

SPE = 0.853 (NS)

Xie B et al. (102) 2019 BCC and MN CNN Conventional

Photographs

ACC = 0.92 ACC = 0.895 (NS)

Huang K et al. (103) 2020 BCC and Seborrheic

Keratosis

CNN Conventional

Photographs

ACC = 0.856 SEN = 0.857

SPE = 0.857

TPR = 0.845, FPR = 0.114 (SP)

Li C et al. (104) 2020 11 Skin Diseases CNN Dermoscopic and

Conventional

Photographs

ACC = 0.764 ACC = 0.634 (NS)

Wang S et al. (105) 2020 4 Skin Diseases CNN Dermoscopic Image SEN = 1.000, SPE = 0.605 SEN = 0.872, SPE = 0.838 (NS)

Yang Y et al. (106) 2021 6 PSLs CNN Conventional

Photographs

SEN = 0.932, SPE = 0.989 SEN = 0.908, SPE = 0.982 (NS)

Yang Y et al. (107) 2021 Psoriasis and other

papulosquamous skin

diseases

CNN Dermoscopic Image SEN = 0.869, SPE = 0.956 SEN = 0.732, SPE = 0.912 (SP)

Zhang L et al. (2) 2021 Vitiligo CNN Conventional

Photographs

F1 = 0.968, SEN = 0.972,

SPE = 0.962

F1 = 0.893, SEN = 0.811,

SPE = 0.999 (SP)

Zhao Z et al. (3) 2021 Rosacea and Acne CNN Conventional

Photographs

ACC = 0.890, PRE = 0.867 ACC = 0.913, PRE = 0.881 (SP)

Zhu C et al. (108) 2021 14 Skin Diseases CNN Conventional

Photographs

ACC = 0.928, SEN = 0.835,

SPE = 0.941

ACC = 0.921, SEN = 0.685,

SPE = 0.955 (NS)

Guo L et al. (109) 2021 Vitiligo CNN Conventional

Photographs

ACC = 88.66%,

SEN = 88.00%, SPE = 89.36%

ACC = 92.78%, SEN = 97.33%,

SPE = 87.94% (NS)

Ding H et al. (110) 2022 6 PSLs CNN Conventional

Photographs

PRE = 0.956, SEN = 0.962,

SPE = 0.952

PRE = 0.994, SEN = 0.987,

SPE = 0.981 (NS)

Ge L et al. (111) 2022 Acne, Rosacea, and

Dermatitis

GBM Dermoscopic Image ACC = 84.4% ACC = 35.5% (RD)

Yu Z et al. (112) 2022 Scalp Psoriasis and

Seborrheic Dermatitis

CNN Dermoscopic Image SEN = 0.961, SPE = 0.882 SEN = 0.745, SPE = 0.882 (SP)

Zhu X et al. (113) 2022 7 Nail Diseases CNN Dermoscopic Image SEN = 0.930, SPE = 0.785 SEN = 0.678, SPE = 0.766 (SP)

ACC, accuracy; SEN, sensitivity; SPE, specificity; F1, F1-score; PRE, precision; TPR, ture positive rate; PR, faux positive rate; NS, not specified; SP, senior physician; RD, resident doctor; SVM,

support vector machines; GBM, gradient boosting machine.
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another used Gradient Boosting Machine (GBM). The skin diseases

included in these studies ranged from single-disease classifications

such as Melanoma to multiple-disease classifications of up to 14

diseases. 5 studies trained their model only with dermatologic

images, while 9 studies trained their models with conventional

images. Additionally, one study trained their model with both

dermatologic images and conventional images. 6 studies claimed that

their models achieved results comparable to those of experienced

senior dermatologists. 8 studies claimed that the performance of

their models was comparable to those of dermatologists, although

the raters were not detailed. One study claimed their models

achieved results significantly superior to those of resident doctors.

In 2013, Chang W et al. conducted the first AI-CAD research in

China, employing SVM, a machine learning method used for

classification and regression tasks, to eliminate the least informative

features. The model achieved an accuracy comparable to that of

clinicians. However, it was still limited to binary classification of

benign or malignant lesions (24). Huang K et al. utilized a large-scale

Xiangya Derm dataset established by Xiangya Hospital, consisting of

107,565 clinical images encompassing 541 types of skin diseases (114).

Focusing on the binary classification of BCC and SK, they compared

the performance of InceptionResNetV2 with that of dermatologists,

demonstrating that the model was comparable to the average of 13

general dermatologists (103). Zhu C. et al. conducted a study using a

self-developed dataset consisting of 13,603 dermoscopic images

covering 14 diseases. They employed a fine-tuned EfficientNet-b4

model and received comparable results compared to 280

dermatologists of all levels on the classification task of 8 diseases (19).

In addition to comparing AI with dermatologists, some

researchers are exploring deep learning models as assistants to

dermatologists. Shen Y et al. developed a deep learning model to

classify 22 common skin diseases, achieving a top-1 accuracy of

45.05%. They further developed an online dermatology diagnosis

application based on the JAMA CLEAR dermatology guidelines.

The AI diagnostic tool achieved a 63.04% acceptance rate among

physicians across 18 tertiary hospitals (115).

In recent years, the application of Vision-Language Models

(VLMs) has attracted growing attention in the field of medical

diagnosis. The advantage of VLMs lies in their ability to integrate

multimodal information from complex medical image data,

making diagnoses more accurate and comprehensive (116). To

explore the use of VLMs in dermatological diagnosis, Zhou J et al.

developed SkinGPT by combining a pretrained vision transformer

with an LLM through learning from over 50,000 skin disease

images and clinical experiences of dermatologists. When working

alongside dermatologists, 80.63% of the diagnoses of SkinGPT

were considered useful, indicating that VLM can alleviate the

burden on dermatologists by offering rapid suggestions (117).

Use of AI in dermatology other than skin
lesion diagnosis

Due to the shortage of experienced pathologists in fundamental

hospitals in China, the pathological diagnosis of rare skin diseases

can be challenging (118). AI-based diagnosis has emerged as a

potential solution to this issue (119). Zheng T et al. established a

deep reinforcement learning model to detect melanoma cells from

whole-slide histopathology images (WSI). Due to the lack of

available annotations in WSI datasets, the researchers adopted

weakly supervised learning, which does not require detailed

annotation. The model finally achieved an accuracy, sensitivity and

specificity of 0.966, 0.991 and 0.984, respectively (120). Wu H et al.

applied pre-trained CNN models to the diagnosis of

Extramammary Paget’s disease (EMPD) using pathological images

from a self-developed dataset. The model achieved an accuracy,

sensitivity and specificity of 0.950, 0.923 and 0.9792, respectively

(121). Jiang S et al. extended the AI- assisted pathological diagnosis

to the classification of 11 types of skin diseases and achieved an

accuracy of 86.8%, outperforming existing CNN models (122).

AI can be employed in predicting the prognosis of skin disease.

Xue Y et al. developed a prediction model to estimate the probability

of anti-melanoma differentiation associated gene 5 (MDA5)

antibody, which is a biomarker associated with unfavorable

outcomes in juvenile dermatomyositis (JDM) patients. The model

was established using Stepwise logistic regression, least absolute

shrinkage and selection operator (LASSO) regression, and random

forest (RF) method based on clinical records and auxiliary

examinations, achieving an AUC of 0.975 (123). Li W et al.

established a SVM model to evaluate the risk types of melanoma

using mRNA, miRNA, and DNA methylation data, indicating

promising ability to identify different risk subgroups (124).

Additionally, AI can be used in predicting the recurrence of skin

disease. Cao C et al. introduced an RF model to estimate the

recurrence rate of dermatofibrosarcoma protuberans (DFSP) based

on MRI images. The model achieved the best concordance index

score of 0.875, which is superior to Ki67 index (an independent

predictor of recurrence) (125).

Finally, AI can serve as a valuable tool in screening for biomarker

of skin diseases or new therapeutic targets. For instance, Liu J et al.

developed a machine learning model using cuproptosis-related

genes to elucidate their role in the metastasis of melanoma. This

model successfully predicted the overall rates of melanoma patients

and identified seven key genes, along with 98 potential drugs (126).

Song J et al. screened ten pyroptosis-related genes using RF model,

revealing the significance of pyroptosis in psoriasis and suggesting

potential therapeutic targets. This model demonstrated promising

results in external validation, with an AUC of 0.852, and unveiled

the involvement of metabolic enhancement and the MAPK

signaling pathway (127). Similarly, Xing L et al. introduced RF and

LASSO methods to screen for psoriasis biomarkers among 33

differentially expressed methylated genes, identifying GJB2 as the

potential target gene for the treatment of psoriasis (128).

AI application in the market

In recent years, an increasing number of AI-aided medical

applications have emerged in the market, particularly in China,

and some have successfully made their way into clinical settings

(129). Many of these applications are accessible via smartphones,

facilitating widespread adoption of AI diagnosis (22). The five
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most used, AI-aided skin lesion diagnosis tools in China are shown

on the Table 5 below.

AIDERMA, Youzhi AI, and VoxelCloud DermX are capable of

detecting multiple skin lesions, covering most of common skin

diseases. Among them, VoxelCloud DermX stands out for having

the broadest range of skin disease classifications. Most the

diagnosis tools above are accessible only to clinical doctors,

which does not meet the demand of self-diagnosis by patients.

VoxelCloud DermX is open to public and can serve as a

screening tool for skin malignant cancer. However, no large-scale

research has been performed to evaluate the performance of

VoxelCloud DermX in real world scenarios. Following diagnosis,

both AIDERMA and VoxelCloud DermX provide continuing

education, treatment guidance, and auxiliary consultation (129).

Notably, none of these AI applications have been widely adopted

in clinical frontlines, indicating that the use of AI-CAD tools is

still in its early stages in China. Further evaluation of reliability is

necessary through large-scale clinical trials.

Discussion

Challenges of integration of AI into clinical
settings

With the increasing interest in telemedicine following the

COVID-19 pandemic, self-diagnosis on AI diagnosis platforms has

garnered significant attention when conventional medical care was

out of reach (133). However, it’s worth noting that most of the

frequently used pubic datasets and some of the clinical datasets

consist only of dermoscopic images collected and processed

exclusively by dermatologists, which may not reflect real-world

scenarios. Dermoscopy, a widely used technique in dermatology,

provides dermatologists with a detailed view of skin lesions in high

resolution, significantly improving diagnostic accuracy (134). AI

models also tend to perform better when trained on dermoscopic

images compared to conventional photographs (104). However, for

the dermatologists in restricted-resources areas and general

practitioners who have limited access to dermoscopy, using AI-

CAD with dermoscopy may not be realistic. If AI tools are only

trained and tested with dermoscopic images, their effectiveness on

conventional datasets may be questionable. Meanwhile, many

clinical datasets use cameras, including smartphones, to capture

clinical pictures (135, 136). For example, YOLOv5 model has

shown good performance on untrained datasets consisting of

images taken by smartphone (110). These practices highlight the

potential of AI in smart device-based self-diagnosis.

Due to the opacity of the process, deep learning models have

long been regarded as a black box, casting doubt on its

integration into real-world applications (137). To address this

issue, future AI models should be more transparent and

explainable. To improve the interpretability, Wang S et al.

introduced the interpretability modules into their multimodal

CNN model, providing diagnosis along with the visual analysis

for explanations (138). Huang K et al. performed the evaluation

methods to explore the interpretability of their model. They

compared the Gradient-weighted Class Activation Mapping

(Grad-CAM) and Local Interpretable Model-Agnostic

Explanations (LIME), which are able to highlight the regions of

image that lead to the decision of CNN models. Their findings

demonstrated that their model was interpretable, with LIME

showing more accurate results in localizing the responsible region

in AI diagnosis compared to Grad-CAM (103).

Machine learning algorithms are built on data. Therefore, any

biases present in the training dataset can result into biases in the

model (139). These biases may stem from underrepresentation of

certain patient subgroups within the dataset (140). For example,

most of the AI skin lesion diagnosis models have been trained on

datasets composed of individuals with light skin tones.

Consequently, these models tend to perform significantly worse

when tested by the skin lesion images from individuals with dark

skin compared to those with light skin (119). However, the

sharing of data across centers raises concerns regarding data

privacy, as these datasets may contain sensitive patient

information. One possible solution to this dilemma is federated

learning, a machine learning strategy that allows AI models to be

trained across different datasets without exchanging the data itself

(13). So far, federated learning has shown promising results in

various fields such as radiology and oncology, offering a potential

option to address bias while protecting patient privacy (141).

Methods to improve the performance of AI
in clinical application

The quality of images greatly influences the training and

performance of AI models (142). Datasets often contain images

from diverse sources, indicating the necessity of image pre-

TABLE 5 Summary table of AI-aided medical applications in the market, in China.

Name Year Disease Accessibility Highlight Reference

AIDERMA 2018 85 skin diseases Only to doctors The first comprehensive skin disease diagnosis platform in China, with an accuracy

of 86% for 85 skin diseases and 95% for 34 common skin diseases

(129)

Youzhi AI 2018 Multiple skin diseases Only to doctors Based on one of the biggest skin lesion datasets in China, with an accuracy of 0.912

in binary classification of benign and malignant skin tumors and 0.814 in multi-

classification of skin diseases

(104)

AIDDA 2020 Psoriasis, Eczema, and

Atopic Dermatitis

Only to doctors Trained on 4,740 clinical images, with an overall accuracy, sensitivity and

specificity of 0.958, 0.944 and 0.972, respectively

(130).

VoxelCloud

DermX

2020 143 skin diseases Open to public The top1, top3, and top5 diagnostic accuracies of the models are 71%, 89%, and

94%, respectively

(131)

SkinTeller 2023 Psoriasis Only to doctors Designed to evaluate the Psoriasis Area and Severity Index (PASI), achieving

results better than the average of dermatologists

(132)
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processing. Image pre-processing involves cropping, rescaling,

contrast enhancement, noise reduction, and removal of artifacts.

Cropping refers to the process of selecting a square region with

the skin lesion in the center to minimize possible interference

(143). To enhance the training of CNN models, manual cropping

of clinical images was performed by Yang Y et al., resulting in a

model with comparable sensitivity and specificity to expert

dermatologists (106). Given the variation in image resolutions

due to diverse data sources, Iqbal I et al. rescaled the images to

64*64 pixels with inter nearest interpolation, which also alleviates

the computational burden (57). Contrast stretch is employed to

enhance contrast between diseased and normal skin regions

(144). Due to the electronic noise brought by the digital camara,

the interference of environmental factors, and the movement of

patients, noise removal is necessary to image pre-processing. Hu

L et al. adopted the Wang-Mendel algorithm, a fuzzy logic-based

technique, to generate denoised images (145). Moreover, human

hair may appear as an interference in skin lesion pictures (146).

To remove the hair, Z. Al-Huda et al. used morphology top-hat

to create the hair mask, followed by inpainting TELEA algorithm

to fill in the masked area (144).

In clinical settings, dermatologists make the diagnosis based

on not only the visual characteristics of skin lesions but also

medical information such as age, gender, symptoms, and body

site (103). However, public datasets often lack or have

insufficient medical data, limiting the generalization and

interpretability of AI models. To address this gap, metadata-

rich clinical datasets should be developed (99). Cai G et al.

proposed a model incorporating two encoders: a Transformer

model to extract visual features and a Soft Label Encoder to

embed medical data. By fusing these features using a Mutual

Attention block, they demonstrated that adding metadata

improved accuracy from 0.75 to 0.816 on ISIC 2018 compared

to models using only images (135). Ou C et al. introduced a

CNN model to extract visual features from smartphone images

and a multi-layer perceptron model to extract metadata

features. They found that including metadata significantly

enhanced model performance, increasing accuracy from 0.616

to 0.768 (147). Similarly, Chen Q et al. developed a model

combining clinical images and medical data using feature

fusion and attention mechanisms. Integration of metadata

improved accuracy from 0.716 to 0.804, highlighting the

effectiveness of multimodal data fusion strategies in improving

AI model performance (136).

Medical data are often high-dimensional and complex, making

comprehensive feature extraction from clinical information

challenging. The introduction of VLM into the medical field has

enabled the integration of textual and visual data (148). For rare

disease cases with limited labeled images, VLMs can be trained

using few-shot or zero-shot learning approaches (116). In

addition, VLMs generate human-readable reasoning for AI-

generated diagnoses, making them suitable as health advisors for

providing preliminary diagnoses (117). Although our review

indicates that the application of VLMs in Chinese dermatology is

still in its early stages, VLMs hold great potential as interpretable

diagnostic tools in the medical imaging domain.

AI assisted diagnosis

While there are concerns about AI potentially replacing human

dermatologists, our research indicates that AI still cannot entirely

replace them due to various reasons such as ethical concerns,

limited disease spectrum coverage, technical limitations,

insufficient interpretability, and unaddressed biases. The

impressive performance of AI in experimental settings using

specific high-quality datasets may not accurately reflect its real-

world ability (79). However, AI can still serve as an assistant

diagnosis tool to alleviate the burden of dermatologists or

enhance the diagnostic accuracy of general practitioners who are

not specialized in dermatology.

In general, the dermatologists regard the AI more as an

assistant tool rather than a potential rival. According to an

international survey conducted in 2019, the majority of the

dermatologists (77.3%) agreed that AI would bring innovation to

dermatology, while only a minority (5.5%) believed human

dermatologist would be replaced by AI (149). Another survey

including 1,228 dermatologists across China demonstrated that

most of the participants (95.36%) believed that AI should serve

as an assistant in diagnosis and treatment. Furthermore, a

significant proportion (64.17%) of participants thought that AI

should first be implemented in secondary hospitals in China (150).

Several studies have already demonstrated that AI could assist

clinical doctors to make better decisions in the diagnosis of skin

lesions. Instead of the competition between AI and human, Ba

W et al. focused on the potential collaboration of dermatologists

and CNN models in skin lesion diagnosis. They found that AI-

assisted dermatologists achieved a higher accuracy in the

classification of multiple skin diseases, with an improvement of

accuracy from 0.628 to 0.766. The dermatologists with less than

10 years of experience benefited more from the assistance of AI

(151). Another study using CNN models to improve the

performance of three unexperienced doctors in the classification

of psoriasis and seborrheic dermatitis, achieving an improvement

of AUC from an average of 0.571 to 0.805 (112).

Limitations

Meta-analysis couldn’t be conducted due to diverse

methodologies across studies and absence of specific evaluation

metrics. As we wanted to focus on the application of AI in clinical

setting, not all of the algorithms were introduced in detail. We

extracted data from Web of Science, pubmed, CNKI, and

Wanfang, but no gray literature was included. Clinical trials were

not included as no AI-based skin lesion diagnosis tools were

known to have undergone clinical trials in China. Certain skin

conditions such as burn wounds and diabetic foot ulcers were not

included because they were related to clinics and specialties other

than dermatology. As this study concentrated on AI use in

Chinese dermatology, some articles of international collaborations

were excluded if neither the first author nor the corresponding

author was Chinese and conducting work in China. The majority

of studies reviewed trained their model on public dataset.
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However, as most of the public datasets are not China-centric, these

studies may not specifically reflect the application of AI in China. To

address this discrepancy, we also included and evaluated diagnostic

tools trained in Chinese clinical datasets, but these datasets often

lack clarity and accessibility.

Conclusion and prospective

Our study offers an overview of the ongoing progress in AI

within the field of dermatology in China. While AI has

demonstrated comparable performance to human experts in

diagnosing multiple skin diseases, its clinical implementation

remains at an early stage due to limitations in generalizability and

interpretability. Large-scale clinical trials are warranted to further

validate its efficacy in real world. However, the potential of AI in

dermatology is promising. Given China’s shortage of medical

resources and the significant clinical burdens faced by physicians,

AI technology is viewed as a solution to address healthcare

disparities in remote areas. As a useful assistant to physicians, AI

has the potential to enhance the quality of medical care, reduce

costs, and alleviate the burden of dermatologists.
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