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Background: The worst outcomes of diabetic retinopathy (DR) can be prevented
by implementing DR screening programs assisted by AI. At the University
Hospital of Navarre (HUN), Spain, general practitioners (GPs) grade fundus
images in an ongoing DR screening program, referring to a second screening
level (ophthalmologist) target patients.
Methods: After collecting their requirements, HUN decided to develop a custom
AI tool, called NaIA-RD, to assist their GPs in DR screening. This paper introduces
NaIA-RD, details its implementation, and highlights its unique combination of DR
and retinal image quality grading in a single system. Its impact is measured in an
unprecedented before-and-after study that compares 19,828 patients screened
before NaIA-RD’s implementation and 22,962 patients screened after.
Results: NaIA-RD influenced the screening criteria of 3/4 GPs, increasing their
sensitivity. Agreement between NaIA-RD and the GPs was high for non-
referral proposals (94.6% or more), but lower and variable (from 23.4% to
86.6%) for referral proposals. An ophthalmologist discarded a NaIA-RD error in
most of contradicted referral proposals by labeling the 93% of a sample of
them as referable. In an autonomous setup, NaIA-RD would have reduced the
study visualization workload by 4.27 times without missing a single case of
sight-threatening DR referred by a GP.
Conclusion: DR screening was more effective when supported by NaIA-RD,
which could be safely used to autonomously perform the first level of
screening. This shows how AI devices, when seamlessly integrated into clinical
workflows, can help improve clinical pathways in the long term.
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1 Introduction

Diabetic retinopathy (DR) is the leading cause of vision loss

among the working-age population in developed countries (1),

but the worst outcomes can be prevented with early detection

and treatment. In fact, the implementation of DR screening

programs is recommended by the American Diabetes Association

(2) and the International Council of Ophthalmology (3).

DR screening is usually performed by trained personnel who

are not necessarily ophthalmologists. They grade (visualize and

assess) eye fundus photographs, called retinographies, which are

taken with a non-mydriatic digital camera. These graders look

for DR signs, such as hemorrhages, and refer (send) the patient

to an ophthalmologist if necessary. Their primary goal is to refer

patients who need evaluation by a specialist, who will then

decide if treatment or further follow-up is necessary.

Given this workflow, automated methods can bring a more

efficient and cost-effective DR screening (4, 5). Several AI-based

medical devices (CE-marked or FDA-approved) are available for

this purpose (6). These tools promise to eliminate or reduce the

burden of manual grading.

However, the performance of AI-based medical devices often

degrades when they are used outside the clinical sites from which

their data originated (7, 8). A recent study (8) compared seven

algorithms that were being used in clinics, and highlighted the

need for prospective, interventional trials for commercialized

products, as they measured a wide range of sensitivities (50.98%–

85.90%). These interventional studies are not required to obtain

a CE mark or FDA approval and are therefore very rare (9).

To make matters worse, AI-powered medical devices are often

negatively affected by their environment: task sharing, user

knowledge, infrastructure, integration, and socio-environmental

factors are challenges that hinder their success (10, 11). This

problem is exacerbated when the clinical protocol is already

established before it is supported by AI. Sometimes it is simply

not feasible to implement a generic AI tool into an ongoing DR

screening program.

This is the case at the University Hospital of Navarre (HUN).

This hospital in Spain has been offering a public DR screening

program since 2015, and has been working with us to support it

with AI. We collected HUN’s DR screening requirements and

found that none of the available CE-marked medical devices

could be used without significant limitations and risks. Therefore,

we developed a custom, AI-based DR screening tool for HUN:

NaIA-RD.

After validating the performance of NaIA-RD using two

private and six public datasets (12–17), we deployed it in July

2020, integrated into the Hospital Information System (HIS). It

has been used for routine DR screening for more than three

years. Using the data from this interventional prospective study,

we compared how DR screening was performed before and after

the deployment of NaIA-RD, measuring how the tool has

influenced clinical decisions.

This paper makes two significant contributions to the

literature: First, it measures the impact of an AI tool on real-

world clinical decisions. Most published prospective studies

typically compare the AI tool’s performance to that of manual

graders (18–25), or they evaluate the tool’s ability to reduce the

burden of manual grading (26), but they do not assess how the

tool has influenced clinician behavior. Second, this paper details

a novel procedure for combining DR grading models with retinal

image quality (gradability) models. Our proposed system selects

the most clinically suitable image (field of view) and consistently

provides independent DR and gradability scores. We found no

other work describing how to integrate both assessments into a

single AI system, although there are numerous publications

dedicated to each topic individually (27, 28).

This paper is organized as follows. First, Section 2.1 details the

DR screening process at HUN, before and after NaIA-RD’s

assistance, and Section 2.2 summarizes the hospital’s

requirements and how commercial AI devices do not meet them.

Section 2.3 details NaIA-RD’s development, from system design

to neural network training, calibration, interpretation, image

enhancement, and machine learning operations (MLOps). Then,

Section 3 reports the results: First, in laboratory settings (Sections

3.1–3.3) and last, in real clinical settings (Section 3.4). Section 4

discusses NaIA-RD’s performance, impact, and limitations. We

draw our final conclusions in Section 5.

2 Materials and methods

2.1 DR screening at HUN

In 2015 a DR tele-screening program was set up at HUN. Since

then, all patients assigned to the hospital and diagnosed with Type

2 diabetes have been scheduled for annual retinal imaging and

screening. Over these years, the number of patients screened has

steadily increased, reaching nearly 8,000 in 2023.

A team of four primary care general practitioners (GPs)—who

received specific training (29, 30)—have remotely assessed retinal

images using a centralized HIS. When they detected signs of

referable DR or the eye fundus was non-gradable due to

insufficient image quality, they referred (sent) the images

(grouped as a study) to a second screening level (an

ophthalmologist), who decided whether an on-site eye

examination was necessary.

The following subsections further explain this DR screening

protocol (Section 2.1.1) and how it has been supported by

AI (Section 2.1.2).

2.1.1 The DR screening protocol
Figure 1 shows the screening process of HUN using the

Business Process Model Notation (BPMN) standard. To model

this process, we visited nurses, GPs, and ophthalmologists at the

screening sites. Then, we validated our observations using

anonymized hospital data. In summary, DR screening at HUN is

performed in three main steps:

1. Image taking (nurse). A nurse usually takes two non-

mydriatic fundus images: a macula-centered (central) and

an optic-disc-centered (nasal) fundus field. However,
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additional images may be taken if necessary. These fundus

images are uploaded to a centralized Picture Acquisition

Server (PACS) as a study, which is composed of two eyes

(left and right), and will be assessed by a first screening

level. The nurse also measures the intraocular pressure.1 If

it is high, the nurse will refer the study directly to the

second screening level.

2. First screening level (GP). A trained GP visualizes the images,

grades DR following the International Clinical Diabetic

Retinopathy (ICDR) severity scale (31), and decides

whether the study should be referred to the second

screening level. They should refer a study if it is not

gradable or if it shows signs of more than mild DR (3).

Their primary goal is to refer patients who need to be

scheduled for an on-site eye examination.

3. Second screening level (ophthalmologist). An

ophthalmologist grades the referred study following the ICDR

scale (31)2 and determines if the patient needs an on-site eye

examination. This decision is based on the fundus images,

patient history, and glycemic (hemoglobin A1c) measurements.

If the second screening level determines that an on-site eye

examination is needed, the patient will leave the DR screening

program (a retina specialist will examine the patient and decide

if treatment or other outpatient care is needed). Otherwise, the

patient will be scheduled for the next year’s DR screening

imaging session.

Regarding the imaging protocol, Figure 2a shows an example of

a screened eye composed of the two non-mydriatic fundus images

that the nurse usually takes, which are often accompanied by a

composite image. The composite does not add any new clinical

information, as it is just a collage of the central and nasal

images. However, as we show in Figure 2b, there is no guarantee

that nurses will strictly follow this protocol. In fact, more images

are often included in difficult cases, as it is done in other

hospitals (11).

This screening protocol is based on the guidelines published by

the International Council of Ophthalmology in 2017 (3). Many

other DR screening programs around the world follow the same

or similar guidelines (32–37), but each program has its own

characteristics. For example, the NHS Diabetic Eye Screening

Program (36) adds an arbitration grading step in case of

disagreement between first- and second-level graders and always

performs two-field mydriatic photography. Closely related, the

Scottish DR Screening Program uses a microaneurysm

detection software prior to manual grading and performs

single-field non-mydriatic photography (34). On the other hand,

the Singapore Integrated Diabetic Retinopathy Program

centralizes a single human level of screening and is piloting

FIGURE 1

BPMN diagram of the process of screening a patient at HUN. Tasks are represented with squares, diamonds represent bifurcations, and circles
represent start and end events. Patients appointed for an on-site eye examination abandon the DR screening program until an ophthalmologist
decides otherwise.

1Intraocular pressure is measured for safety reasons, as ocular hypertension

usually does not show any findings in fundus images.
2The ophthalmologist overrides the grade of the GP.
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SELENA+,3 a Deep Learning system that fully automates the first

screening level (38–40).

2.1.2 AI assistance
Since July 2020, the DR screening protocol has been assisted by

NaIA-RD. However, the screening protocol has not changed with

the AI. In this new setting, GPs review the screening proposal of

NaIA-RD before assessing the images, while the rest of the

screening steps remain the same. NaIA-RD has enabled the

following advanced features:

• The HIS shows NaIA-RD’s motivated screening proposal for

each study. This proposal is a referral (due to DR or non-

gradable fundus) or non-referral recommendation. When the

proposal is accepted, the clinical report is

generated automatically.

• The HIS study worklist can be sorted by NaIA-RD’s outputs,

either by referability (a single probability score) or by category

(non-referable, referable DR or non-gradable).

• Lesions detected by NaIA-RD are highlighted on the image

when the AI recommends a referral due to DR.

• The original fundus image is enhanced by NaIA-RD.

2.2 Motivation for a custom AI development

When the use of AI to assist in DR screening at HUN

was first considered, we gathered the requirements for a

tool that could effectively support the process and

explored CE-marked products that might meet these needs.

However, we found none that fulfilled the criteria. As

a result, HUN opted to develop NaIA-RD as an in-house

AI solution. This section outlines the reasoning behind

this decision. Section 2.2.1 describes the requirements, and

Section 2.1.2 summarizes the commercial medical

devices considered.

2.2.1 Requirements
We met diverse stakeholders from the hospital to collect a

broad set of goals, expectations and restrictions: clinicians,

ophthalmologists, nurses, IT engineers and managers were

interviewed. For brevity, a detailed list of the collected

requirements is provided in the Supplementary Material.

However, they can be summarized as follows. The AI

tool should:

• Be compatible with the current DR screening protocol, patient

groups and cameras, while allowing for future inclusion of

Type I diabetic patients and new camera models.

• Assist with the fundus image assessment task of the first

screening level, enabling task automation and worklist

prioritization in the HIS through data-level integration.

• Support workflow orchestration, as well as monitoring of disease

prevalence and retinal image quality.

• Offer interpretability and image enhancement features to

facilitate human assessment.

FIGURE 2

Two sample studies (left eyes only) from the DR screening program of HUN. Note that some fundus fields are often redundant. (a) Sample eye study
composed by central, nasal and composite fundus fields. (b) Sample eye study composed by repeated fundus fields: central, nasal, central, OD down,
no OD, and OD up (OD refers to Optical Disc).

3SELENA+ official web page: https://www.synapxe.sg/healthtech/health-ai/

selena/
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2.2.2 Commercial medical devices
Following the requirements, we first explored the acquisition of

a commercial solution. We evaluated six Class IIa CE-marked

devices: IDx-DR,4 EyeArt,5 Retmarker,6 OpthAI,7 RetCad8 and

SELENA+. A detailed comparison of these devices is provided in

the Supplementary Material. Note that we discarded products

with insufficient public information, those requiring a non-

standard 45� field camera, or those self-certified as Class

I medical devices.

According to this comparison, we could not find any Class II

CE-marked device that met the requirements without significant

limitations and risks:

• No tool fully supported the current patient population and

imaging protocol (including cameras and study format).

• Few tools offered a data-level integration API, and those that

did, lacked a detailed gradability (image quality) score.

• Few tools provided interpretable results or enhanced

fundus images.

As a consequence, HUN decided to request to the competent

governmental units9 the development of NaIA-RD, whose details

we present in the following sections.

2.3 Development of a custom AI tool for DR
screening

In this section we describe the technical design of NaIA-RD,

including its neural networks, datasets, calibration,

interpretability, image enhancement and MLOps. For brevity, a

summary of the development project life cycle can be found in

the Supplementary Material.

2.3.1 Architecture
We designed NaIA-RD as a modular system consisting of three

neural networks and a software component that orchestrates them.

The neural networks are the following:

1. Field Classifier: Identifies the field of view of a fundus image

(described in Section 2.3.1.1).

2. Gradability Classifier: Determines if a fundus image is gradable

(described in Section 2.3.1.2).

3. DR Classifier: Determines if a fundus image shows referable DR

(described in Section 2.3.1.3).

A software component we call Orchestrator uses these neural

networks to generate a DR screening proposal in response to an

incoming eye screening request from the HIS. The request

consists of a list of fundus images belonging to the same eye.

Figure 3 summarizes this architecture.

At runtime, the Field Classifier is executed to identify the

fundus images that are the most similar to the central and nasal

fundus fields. Then, the Gradability and DR Classifiers are

executed: While DR is evaluated in both the central and nasal

fields, gradability is only evaluated in the central field, as it is the

most representative for assessing DR gradability (28, 41). If the

eye screening request is formed by a single image, the

Orchestrator assumes that it is a central fundus field, and

evaluates both DR and gradability on that image.

The Orchestrator will return a referral proposal if either central

or nasal DR output is positive10 (more than mild DR is detected) or

if the central fundus field image is not gradable. The Orchestrator

will return a non-referral proposal in all other cases. This behavior

is consistent with international guidelines for DR screening, as a

non-gradable eye fundus should always be referred (3).

Note that the Orchestrator always assesses DR even if an image

is classified as non-gradable. Thus, the output scores of DR and

Gradability Classifiers (which are independent of each other), are

always included in the screening proposal.

2.3.1.1 Field classifier

The Field Classifier is a neural network that classifies each fundus

image into 7 custom categories, listed in Table 1 and previously

illustrated in Figure 2. We chose these categories because they

adequately describe all images taken since the start of the

screening program. Our categories do not require a distinction

between the right and left eye (laterality), as the ETDRS imaging

protocol does (42). In fact, the laterality of the eye is included as

a tag in the DICOM file, so there is no need to use a model to

identify the laterality of each fundus field.

NaIA-RD uses the Field Classifier assuming that all the images

of the request belong to the same eye. However, it does not impose

any restriction on the imaging protocol: it works with any number

of fundus images, ignoring non-standard ones. When multiple

central and nasal fields are taken in an eye, this method usually

selects the best quality image per category, as they resemble the

most to the ideal fundus field.

2.3.1.2 Gradability classifier

The Gradability Classifier is a neural network that classifies a

central fundus field image as gradable/non-gradable, returning

also a gradability score. This model produces a gradable

(negative) output if at least 80% of the eye fundus is visible (28).

The gradability score is always included in NaIA-RD proposals

as an image quality measurement.4IDx-DR: https://www.healthvisors.com/idx-dr/
5EyeArt: https://www.eyenuk.com/en/products/eyeart/
6Retmarker: https://www.retmarker.com/morescreening/
7OpthAI: https://www.ophtai.com/en/
8RetCad: https://retcad.eu/
9The Navarre Public Health Service and the Health Technology Services of

the Government of Navarre are the official IT service of HUN.

10If both central and nasal fundus fields show DR signs, the Orchestrator will

return the most severe DR scores.
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2.3.1.3 DR classifier

The DR Classifier is a neural network trained as a binary classifier

to detect more than mild DR signs based on the ICDR scale. It

assesses DR as referable/non-referable, classifying the fundus

image as referable if it shows more abnormalities than just

microaneurysms (31).

This model returns a negative output when the input image

is deemed non-referable due to DR. This can occur if the

fundus is barely visible in a non-gradable image. However, if

a single hemorrhage is detected in a poor quality image, the

DR Classifier will produce a positive output. For this reason,

the DR score returned by this model is always included in

NaIA-RD proposals as a measure of the DR signs present in

the eye.

2.3.2 Training techniques
All three neural networks mentioned above (Field Classifier,

Gradability Classifier, and DR Classifier) are ResNet34

Convolutional Neural Networks (43). We trained all of them

using fast.ai v1 library (44), which provides a powerful

wrapper of Pytorch. Each model uses square images of different

sizes: 150 px, 400 px and 700 px for Field, Gradability and DR

Classifiers, respectively. We used a common preprocessing step

for all models: finding and cropping the eye fundus

circumference before the image is resized. We used standard

opencv library functions for this task.

We initially loaded all the models with pretrained ImageNet

weights, and progressively increased image size in each training

iteration using progressive resizing (45). We also used

fast.ai’s Batch Normalization, Weight Decay, MixUp and

LabelSmoothing as regularization techniques. Additionally, we

used several random image augmentations, such as: brightness

and contrast adjusting, rotating, warping and cropping.

We chose the best models based on their performance on the

validation sets. The weights were saved at the end of each epoch

when a maximum metric value was reached. For DR and

Gradability Classifiers, we used the Area Under the Receiver

Operating Characteristic Curve (AUROC, also known as AUC)

metric, as a binary classifier metric that does not require a

decision threshold. We obtained an AUC value of 0.979 for the

DR Classifier, and an AUC value of 0.982 for the Gradability

Classifier. For the Field Classifier, which is a multi-class model,

we used the Cohen kappa metric rather than the AUC. This is

due to kappa’s superior simplicity for assessing multi-class

classification problems (46). We obtained a Cohen kappa value

of 0.976 in Field Classifier’s validation set.

FIGURE 3

Components of NaIA-RD.

TABLE 1 Field selection model categories and their frequency (OD refers
to optical disk).

Category Description Frequency Samples
Central ETDRS field 2, centered on the

macula.

29.5% 28,634

Nasal ETDRS field 1, centered on the

optical disk.

29.5% 28,749

OD up The image is centered on the

inferior arcade, and the optical disk

is visible.

0.5% 489

OD down The image is centered on the

superior arcade, and the optical

disk is visible.

0.5% 482

No OD Optical disk is not visible. 3.9% 3,769

Temporal Temporal to the macula, while at

least a portion of the optical disk is

visible.

1.7% 1,626

Composite Composition of multiple fields. 34.4% 33,464
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Then, we calibrated DR and Gradability Classifiers as we

explain in Section 2.3.4. Using the calibrated outputs, we chose

the decision thresholds that maximized the arithmetic mean of

the recalls of the positive and negative classes. We found a best

threshold of 0.1 for the DR Classifier, which gave a sensitivity of

90.29% and a specificity of 95.92% on the validation set; and a

threshold of 0.5 for the Gradability Classifier, which gave a

sensitivity of 85.78% and a specificity of 96.07% on the

validation set.

2.3.3 Datasets
We used 10 datasets to develop NaIA-RD, both public and

private, which are summarized in Table 2. The following

subsections describe them, organized by the task they attempt to

solve (field, DR, or gradability classification). The Gold Standard

dataset, which we consider to be the clinical reference standard

for NaIA-RD, is also presented.

2.3.3.1 Field classification

We used a private dataset to train, validate, and test the Fundus

Field Classifier neural network. We classified more than 96,000

HUN images into one of the 7 fundus fields listed in Table 1.

We detail the obtained test metrics in Section 3.1.

2.3.3.2 DR classification

We used the following public and private datasets to train, validate

and test the DR classification model:

1. Private datasets: We created a private dataset (DR dataset),

labeled by our engineering team, to train and select the best

DR Classifier model (validation). We ensured that its 25,928

images were labeled as referable/non-referable based on

visible DR signs, strictly following the ICDR grading standard

(31). In addition, the DR Classifier was carefully tested using

the Gold Standard dataset (Section 2.3.3.4).

2. Public datasets: We used 4 popular public datasets to train and

test the DR Classifier: EyePACS from the Kaggle 2016

competition (12, 48, 49), APTOS from the Kaggle 2019

competition (13), Messidor-2 (14, 47) and IDRiD (15).

Additionaly, we used the OIA-DDR dataset (16) for external

validation, meaning that its images were used only to test the

generalizability of the model.

We trained the DR Classifier jointly using the aforementioned

public and private datasets, excluding the Gold Standard and

OIA-DDR. Figure 4 shows that most of this training set comes

from EyePACS, while private data is only 17.65% of the total.

These datasets involve diverse patient populations, cameras and

imaging conditions. Using multiple datasets for training DR

classifiers is a common approach (27). However, we chose the

DR Classifier with the best AUC in our private validation subset

(0.979), as it represented the target data distribution.

We also tested the DR Classifier using the same public datasets

we used for training. Specifically, we used the public test sets of

EyePACS Kaggle 2016 and IDRiD. As we could not find any

defined test set, we used a random 50% sample of APTOS

Kaggle 2019 and Messidor-2 datasets. Since we found some

incorrect labels in the APTOS dataset, we relabeled some mild

DR images (9%) as moderate DR (referable), according to the

ICDR severity scale (31).

Finally, we evaluated DR Classifier’s generalization capabilities

using the OIA-DDR dataset, which was totally excluded from the

training process. OIA-DDR is formed by 13,000 labeled fundus

images of 9,500 patients, which were taken in 147 hospitals using

42 different fundus camera models (Topcon D7000, Topcon

NW48, Nikon D5200, Canon CR 2 and others). All images were

labeled by four professional graders. The authors propose a

random 30% of this data as a test set, from which we excluded

346 images labeled as non-gradable. Our final test set consisted

of 3,759 images, where 1,690 were labeled as referable (45%). We

used the non-gradable images to assess the Gradability Classifier,

as we explain in Section 2.3.3.3.

All these public datasets follow the ICDR severity scale for DR

grading, with DR grades ranging from 0 to 4 (0—No DR, 1—Mild,

2—Moderate, 3—Severe, 4—Proliferative DR). We binarized them

as referable/non-referable DR, considering more than mild grades

(grade > 1) as referable.

TABLE 2 Summary of datasets used for NaIA-RD development. Note that the Gold Standard was used to test multiple components. Also, some datasets
are not used for training, validation, or testing. For example, OIA-DDR and EyeQ datasets are used for testing only.

Dataset Source Components Classes Image quantity

Train Valid Test
Fundus field Private Field classifier 7 36,317 29,968 29,928

Gradability Private Gradability classifier 2 8,744 8,592 –

DR Private DR classifier 2 17,336 8,592 –

Gold standard Private NaIA-RD 3 – – 984

DR classifier

Gradability classifier

EyePACS (Kaggle) (12) Public DR classifier 2 77,787 – 10,906

APTOS (Kaggle) (13) Public DR classifier 2 1,831 – 1,831

Messidor-2 (14, 47) Public DR classifier 2 872 – 872

IDRiD (15) Public DR classifier 2 413 – 103

OIA-DDR (16) Public DR classifier 3 – – 4,105

Gradability classifier

EyeQ (17) Public Gradability classifier 2 – – 16,249
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We detail the obtained metrics in Section 3.3, while in Section 4

we compare them with the results published in other works.

2.3.3.3 Gradability classification

We used the following public and private datasets to train, validate

and test the gradability classification model:

1. Private datasets: We created a dataset consisting of more than

17,000 images from HUN (gradability dataset) to train and

validate the Gradability Classifier. We labeled each image as

gradable or non-gradable under close expert supervision.

2. Public datasets: To test the Gradability Classifier with external

data, we used two public datasets that were totally excluded

from training and validation: OIA-DDR (16) and EyeQ (17).

We trained and chose the best performing Gradability Classifier

model using our private dataset. Our grading criteria were based

on fundus visibility: a gradable fundus image should allow

localization of small hemorrhages, especially in the macular area.

We considered image focus, clarity, artifacts, macular visibility,

and the gradable area, which had to reach 80% of the image

(28). Our labellers were allowed to make brightness and contrast

adjustments in order to ignore easily fixable image quality issues.

Note that both the gradability and DR classifiers share the same

validation images, but the gradability training set is a subset of

the DR training set. We respected these partitions to avoid any

system-level bias.

Later, we evaluated the generalization capabilities of the

Gradability Classifier using the OIA-DDR test set (16). OIA-

DDR is a large public dataset introduced in Section 2.3.3.2. This

dataset consists of 346 non-gradable and 3,759 gradable images

in which a DR severity grade has been assigned. Therefore, we

used the non-gradable category to obtain a binarized dataset

suitable for external validation.

Nevertheless, OIA-DDR is not specifically designed to assess

retinal image quality. For this purpose, we used the Eye Quality

Assessment Dataset (EyeQ) (17). In EyeQ, two experts labeled

28,792 retinal images from the EyePACS (Kaggle) (48) image set

in three categories: good, usable, and reject. The reject category

indicates that the image is not suitable for a reliable diagnosis.

Therefore, we binarized the EyeQ test set based on this category,

resulting in 3,215 non-gradable and 13,029 gradable images.

2.3.3.4 Gold standard

The Gold Standard is a private dataset we created to evaluate

NaIA-RD as a black box prior to its deployment. It is labeled by

expert ophthalmologists from HUN. We used it as a clinical

FIGURE 4

Source of the data used to train the DR classifier.
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reference standard to evaluate the overall DR screening capabilities

of the system, as well as two of its key components: DR

and Gradability classifiers. We report the obtained metrics

in Section 3.2.

To create this dataset, we first agreed with HUN to measure an

expected sensitivity of 80% with a confidence interval (CI) width of

10% and a confidence level of 95%. Given an estimated prevalence

of referable eyes of 7%, we calculated a required dataset size of

1,265 eyes to measure the expected sensitivity (50, 51). However,

we decided to reduce the required labeling effort by artificially

increasing the prevalence (but maintaining the same statistical

properties), resulting in a dataset size of 492 eyes with a

prevalence of 18% referable eyes.

Therefore, we selected a sample of 492 eyes (retinographies,

which we will refer to as eyes for simplicity) using anonymized

clinical records (from March 2019 to August 2019), ensuring a

prevalence of 18% of referable eyes. These eyes belonged to 205

different patients,11 66% males and 34% females (sex assigned at

birth), with a mean age of 64.25 years (SD 14.87) at the time of

the study. We excluded all these patients from all training and

validation sets of NaIA-RD.

Three ophthalmologists from the hospital labeled each eye.

Each expert provided a blind, independent label (non-referable,

referable due to non-gradable fundus or referable due to DR),

following the ICO guidelines and the ICDR scale as grading

standard (3, 31). For each eye, the expert visualized all the

fundus images taken by the nurse during the imaging session,

along with an enhanced version created using the image

enhancement technique detailed in Section 2.3.6. After labeling

was completed, we discarded eyes that had received three

different votes (no consensus). 3 eyes were discarded by this

procedure, resulting in a final Gold Standard dataset of 489 eyes.

We deployed NaIA-RD in a simulated production

environment, obtaining its output for each eye of the dataset.

Each eye was composed of the same real-world fundus images

that the experts had labeled. Using this procedure, we compared

the returned screening proposals with the expert labels and

evaluated NaIA-RD in three different tasks: DR screening, DR

classification, and gradability classification.

Task 1: DR screening. We evaluated NaIA-RD for binary DR

screening (refer/not refer), without taking the motivation into

account (DR or non-gradability). We compared the performance

of NaIA-RD in three different ways using this data:

1. Compared with the consensus of 3 ophthalmologists. The

main goal of the Gold Standard was to compare NaIA-RD

with the best possible clinical judgement, so we compared

NaIA-RD’s proposal per eye with the simple majority label of

the experts (refer/not refer). As 3 ophthalmologists had

graded all the eyes, no ties were possible.

2. Compared with a single ophthalmologist. We also wanted to

compare NaIA-RD with an ophthalmologist performing the

screening alone. To do this, we obtained the metrics of each

Gold Standard labeler using the majority label of the other

two ophthalmologists as the ground truth. We used NaIA-

RD’s outputs to break ties. Then, we compared NaIA-RD’s

metrics with those of each ophthalmologist.

3. Compared with first-level screening GPs in real-world

settings. We compared both NaIA-RD proposals and GP

decisions in the screening program with the majority label of

the ophthalmologists. DR screening decisions had been made

per patient, involving both eyes, so for this comparison we

used the positive class (refer) if one of the eyes was

considered referable (both the Gold Standard and NaIA-RD

provided a label per eye). Due to missing data in clinical

records, we had to use a subset of the Gold Standard for this

comparison. The final dataset consisted of 122 screening

decisions involving 244 eyes.

Task 2: DR classification. We evaluated NaIA-RD for

referable/non-referable DR classification without considering

gradability. Our goal was to test the DR Classifier model isolated

from the Gradability Classifier model. Therefore, we first

discarded eyes graded as non-gradable by simple majority (15

eyes), and we finally used the resulting majority label as the

ground truth. We did not find any ties using this procedure. We

binarized NaIA-RD outputs considering a positive class only if

NaIA-RD outputted referable due to DR.

Task 3: Gradability classification. Analogously, we evaluated

NaIA-RD for gradable/non-gradable classification without

considering DR. Eyes with a non-gradable simple majority vote

were taken as non-gradable (15 eyes), otherwise they were taken

as gradable. We binarized NaIA-RD outputs considering a

positive class only if NaIA-RD outputted referable due to

non-gradability.

2.3.4 Calibration
Models whose scores are to be used for human decision making

or automation should be calibrated (52). This is the case for NaIA-

RD, where the output scores will be interpreted by clinicians and

the HIS. Therefore, we calibrated both the DR and Gradability

classifiers, while the Field Classifier did not need this feature. We

have addressed model calibration as the next step after selecting

the best model [this is called post-hoc calibration (52)].

To train two separate DR and Gradability calibrators, we first

tried using their respective training sets, but they performed

poorly. So, we used their entire validation sets for this purpose.

We chose the Beta Calibration (53) technique for the DR

classifier, and Isotonic Regression (54) for the Gradability

Classifier, based on systematic cross-validation experiments on

the validation sets. The estimated calibration error, mean

calibration error and Brier Score of the uncalibrated models were

11When we randomly selected an eye for the Gold Standard, we added the

corresponding fellow eye (if present) to complete an entire study. We will

use the term study to refer to an object formed by fundus images of two

fellow eyes. Following this procedure, some patients were represented in

the Gold Standard with multiple studies due to the random nature of eye

selection, but we ensured that the same study was not included twice.
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0.017248, 0.299778, 0.023504 (DR) and 0.114798, 0.278866,

0.063906 (Gradability), respectively (mean values), and the

calibrated models obtained mean values of 0.005958, 0.155110,

0.021976 (DR) and 0.010228, 0.116718, 0.045477 (Gradability),

respectively. More details along with calibration curves are

included in the Supplementary Material.

Unfortunately, presenting two separate calibrated probabilities

in a screening proposal may be difficult to interpret. It would be

more convenient to combine the DR and gradability scores into a

single number. Additionally, the DR and gradability scores should

be self-explanatory, meaning it should not be necessary to know

the decision threshold to understand them. For example, it would

be counterintuitive to suggest a referral for possible DR with only

a 10% probability (where the DR referral threshold is set to 0.1).

Therefore, the scores returned by NaIA-RD are not the calibrated

probabilities directly. Instead, given a new decision boundary t0,

NaIA-RD returns a transformed referral score s, where s , t0 is

given for non-referral proposals, and s � t0 for referrals. We used

t0 ¼ 0:5 in order to make the screening score more intuitive. Given

a probability p, a threshold t and a decision boundary t0, we have

defined a transformation function f (p, t, t0) as follows:

f p, t, t0ð Þ ¼
t0 � 1þ p�t

1�t

� �

, if p . t

t0 � 1þ p�t
t

� �

, otherwise

�

This transformation has the property of preserving the order of the

input probabilities p, applying a different linear transformations for

each case. After transforming the DR and gradability scores, NaIA-

RD generates a single DR screening score, using the highest

transformed value from both classifiers in its proposal.

2.3.5 Interpretability
The DR classifier generates heatmaps for positive predictions to

improve interpretability. We understand model interpretability as

the intuitive mapping between inputs and outputs, as described in

(55). Therefore, we used a technique called Integrated Gradients

(56) to be able to highlight small lesions on the input image. This

technique provides an accurate mapping of input image pixels

without modifying the original neural network by approximating

the integral of the gradients of neural activations. Integrated

Gradients was successfully used for DR screening interpretability

in (57). The authors concluded that heatmaps can increase the

confidence and accuracy of human graders, but also their grading

time, so heatmaps should only be used for positive DR predictions.

NaIA-RD uses this attribution technique to provide

interpretability: First, the Integrated Gradients algorithm is applied

to obtain an attribution mask (Gauss-Legendre integral

approximation method is executed for 20 forward steps using the

captum library12). Then, the attribution mask pixels are clustered

using the OPTICS algorithm (58) (sklearn’s OPTICS class is

used, with an epsilon maximum distance between two cluster points

of 23 and a min_samples minimum cluster size of 4). Finally,

NaIA-RD returns the center coordinates and radios of the clusters,

which the HIS overlays on the image as standard DICOM

circumference annotations. These circumferences usually highlight

DR signs such as hemorrhages. In Figure 5 we show an example

that illustrates this process.

2.3.6 Image enhancement
In addition to the DR screening proposal, NaIA-RD provides

an enhanced image of the eye fundus to ease human

interpretation. In particular, it returns two enhanced central and

nasal images per request, and the HIS stores them in the

DICOM study. In this way, clinicians can benefit from image

enhancement using any DICOM viewer.

In Figure 6 we show an example of how NaIA-RD enhances a

challenging fundus image. The enhanced image is computed in

three steps:

1. The eye fundus is cropped from the original image.

2. The dynamic range of the image is linearly extended after

clipping intensity values below 1% and above 99%

percentiles, respectively.

3. Contrast is further increased applying Contrast Limited

Adaptive Histogram Equalization (CLAHE) (59, 60) in each

RGB channel. We use opencv’s createCLAHE function

for this last computation.

We have found that extending the dynamic range (step 2)

before applying CLAHE (step 3) gives better results than

applying CLAHE first.

2.3.7 MLOps
NaIA-RD was developed in Python, with each component

providing a REST API and running in its own Docker container

(see Figure 3). All code was written in Jupyter notebooks, using

the nbdev
13 library to implement a literate programming

paradigm (61). We extensively unit tested all code and

components, and a sanity check job was run periodically to notify

if any significant deviation was detected in the last month’s data.

3 Results

In this section we evaluate NaIA-RD using the datasets we

introduced in Section 2.3.3. The performance of NaIA-RD is

compared with that of experts, and its ability to generalize is

assessed. These results were important to HUN, as the decision

to deploy NaIA-RD was based on them.

Additionally, this section presents the before-and-after study

we conducted. This study compares the screening decisions made

at HUN before (retrospectively) and after (prospectively) the

12Captum library: https://captum.ai/api/integrated_gradients.html 13
nbdev library: https://nbdev.fast.ai/
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deployment of NaIA-RD, measuring its real-world impact on

clinicians and patients.

When appropriate, we report the area under the ROC curve

(AUC), the sensitivity and the specificity, as similar works do

(18, 22, 26, 62–64). We also use the Cohen kappa score to

measure agreement (65). All confidence intervals are calculated

with a 95% of confidence level using bootstrapping (66).

3.1 Field classification

The Field Classifier obtains a weighted multi-class AUC of

99.62% on the test set (20,858 fundus images that were not used

for optimization nor model selection).

3.2 Gold standard

As described in Section 2.3.3.4, we used our private Gold

Standard to evaluate NaIA-RD on three different tasks: DR

screening, DR classification, and gradability classification. Table 3

shows the overall results of NaIA-RD on these tasks, while

Tables 4, 5 provide a deeper comparison between NaIA-RD and

individual ophthalmologists as well as first-level screening GPs.

The most relevant results for each task are summarized below.

Task 1: DR screening. The following comparisons are

performed:

1. Compared with the consensus of 3 ophthalmologists.

According to the first row of Table 3, NaIA-RD achieves a

FIGURE 5

Annotation process of NaIA-RD using Integrated Gradients, as a mechanism of increasing interpretability. NaIA-RD provides pixel attributions as
circumference coordinates, which the HIS stores in the DICOM object as standard DICOM annotations. (a) Original image. (b) Pixel attribution. (c)
Annotations.

FIGURE 6

Example of fundus image enhancement by NaIA-RD. Notice how two hemorrhages near the macula are more visible in the enhanced image. Another
smaller bleedings are also more evident in the inferior arcade. (a) Original. (b) Enhanced.
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sensitivity and specificity greater than 92%, with a Cohen kappa

of 0.81 [strong agreement (65)].

2. Compared with a single ophthalmologist. In Table 4 we can

observe that NaIA-RD is the only grader with sensitivity and

specificity above 91%, and its Cohen kappa score (0.818) is higher

than the kappa score of the two thirds of the ophthalmologists.

3. Compared with first-level screening GPs in real-world

settings. Table 5 shows a significantly lower sensitivity with a

much wider confidence interval for GPs (26.6%–63.3%) than

for NaIA-RD (83.3%–100%). Cohen kappa scores show a

weak agreement (0.432) for GPs, while NaIA-RD shows a

moderate-strong agreement (0.794).

Task 2: DR classification. The second row of Table 3 shows

that the performance of NaIA-RD on this task is superior to its

performance on Task 1: DR screening (the obtained AUCs are

0.986 and 0.979, respectively).

Task 3: Gradability classification. The third row of Table 3 shows

a gradability classification specificity of 97.2% (95.5–98.5). However,

only 15 eyes (3%) were graded by the ophthalmologists as non-

gradable: this resulted in a wide confidence interval for the sensitivity

measurement (26.6–80.0), revealing a limitation of this dataset.

3.3 External validation

3.3.1 DR classification
Table 6 shows the results of the DR Classifier over the test

partitions of several public datasets. The obtained AUCs range

from 0.957 to 0.999. Note that the public test sets of EyePACS,

IDRiD, and OIA-DDR can be used directly for comparison with

previous works. In the discussion section (Section 4.1), we make

this comparison. However, recall from Section 2.3.3.2 that some

EyePACS and IDRiD partitions were used for training, so these

metrics should be used with caution.

TABLE 3 NaIA-RD metrics on different tasks using our private Gold Standard. Ground truth labels are obtained as the majority label of three
ophthalmologists. For the DR classification task, non-gradable images are excluded. All confidence intervals are calculated with a 95% of confidence
level using bootstrapping (66).

ID Task Target question Ground truth
positives

Kappa AUC Sensitivity Specificity

1 DR screening Is referable to the ophthalmologist? 27.61% 135/489 0.818 0.764–0.869 0.979 0.969–0.989 92.5% 88.1–96.3 92.4% 89.5–94.9

2 DR classification Are there observable signs of more

than mild DR?

25.3% 120/474 0.852 0.801–0.901 0.986 0.977–0.993 91.6% 86.6–95.8 95.2% 92.9–97.2

3 Gradability

classification

Is non-gradable for DR screening? 3% 15/489 0.423 0.229–0.602 0.754 0.684–0.822 53.0% 26.6–80.0 97.2% 95.5–98.5

TABLE 4 DR screening performance comparison per ophthalmologist vs. the majority label of the other two ophthalmologists of the Gold Standard and
NaIA-RD. All confidence intervals are calculated with a 95% of confidence level using bootstrapping (66).

Reader Ground truth positives Kappa Sensitivity Specificity
Ophthalmologist 1 28.66% 141/489 0.835 0.781–0.89 89.4% 84.2–94.3 94.7% 92.2–96.8

Ophthalmologist 2 30.47% 149/489 0.805 0.753–0.861 78.4% 71.4–84.6 98.2% 96.8–99.4

Ophthalmologist 3 27.81% 136/489 0.789 0.736–0.844 93.3% 88.9–97.1 90.0% 86.9–92.3

NaIA-RD 27.61% 135/489 0.818 0.764–0.869 92.5% 88.1–96.3 92.4% 89.5–94.9

TABLE 5 First-level screening general practitioners (GPs) and NaIA-RD metrics on a subset of the Gold Standard. Real-world screening decisions from
four different GPs are used as labels. Each screening decision involves two eyes (right and left eye). All confidence intervals are calculated with a 95% of
confidence level using bootstrapping (66).

Reader Ground truth positives Kappa Sensitivity Specificity
GPs 24.59% 30/122 0.432 0.241–0.626 43.2% 26.6–63.3 94.4% 89.1–98.9

NaIA-RD 24.59% 30/122 0.794 0.674–0.913 93.6% 83.3–100.0 91.3% 85.3–96.7

TABLE 6 NaIA-RD metrics on external datasets assessing DR classification.

Dataset Reference Test partition Size Relabeled AUC Kappa
EyePACS (Kaggle) (12, 48, 49) Public test set 10,906 No 0.964 0.818

APTOS (Kaggle) (13) 50% random 1,831 Yesa 0.999 0.962

Messidor-2 (14, 47) 50% random 872 No 0.988 0.877

IDRiD (15) Public test set 103 No 0.991 0.879

OIA-DDR (16) Public test set without non-gradable images 3,759 No 0.957 0.760

aWe relabeled 165 images (9%) from mild to moderate DR using the ICDR (31) scale.
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On the contrary, OIA-DDR was totally excluded from training.

In this dataset, NaIA-RD obtained an AUC of 0.957, a Cohen

kappa of 0.76 (moderate agreement), and a sensitivity and

specificity of 93% and 84%, respectively.

3.3.2 Gradability classification
On the OIA-DDR test set, the Gradability Classifier obtained

an AUC of 0.928, a Cohen kappa of 0.213 (minimal agreement),

and sensitivity/specificity of 100% and 62%, respectively. When

assessing the EyeQ test set, the Gradability Classifier obtained an

AUC of 0.938, Cohen kappa of 0.63 (moderate agreement), and

sensitivity/specificity of 87% and 86%, respectively.

3.4 Before-and-after study

Four trained GPs worked as the first DR screening level of

HUN from March 2015 to December 2023. They visualized

NaIA-RD’s proposals since the 1st of July 2020, when NaIA-RD

was deployed. We have compared their screening decisions with

the screening proposals of NaIA-RD, both before

(retrospectively) and after (prospectively) they started using

NaIA-RD. Clinical decisions and NaIA-RD grades were available

as electronic health records. For the period prior to the

deployment of NaIA-RD, we obtained the corresponding AI

grades by calling NaIA-RD’s API.

The mean patient age at the time of the eye study was 66.70

years (SD 12.65) before NaIA-RD was deployed, with 60.67%

males and 39.32% females (sex assigned at birth). After NaIA-

RD was implemented, the demographics remained very similar,

with a mean age of 66.84 years (SD 13.33) and 60.48% males

and 39.51% females.

The volume of data that supports this study is illustrated in

Figure 7, with a histogram of the number of screened studies14

per year. This number has increased since the start of the

screening program in 2015, with the exception of 2023, when the

number of screened patients slightly decreased. A NaIA-RD

grade is available for the majority of the screened studies (81%

before deployment and more than 99% after), but some NaIA-

RD grades are missing due to image retrieval errors (3,685

grades in total).

Using this data, we have examined the evolution of the DR

screening program over time. We have analyzed the

following aspects.

3.4.1 Referral decisions vs NaIA-RD proposals
To examine the relationship between decisions and AI grades in

terms of volume, in Figure 8a we compare the percentage of studies

that GPs referred to the second screening level with the percentage

that NaIA-RD graded as referable. Prior to its deployment in

2020, NaIA-RD would have proposed to refer slightly more

studies than those referred by GPs (median15 difference of 2.74%).

However, this proportion increases in 2020 and afterwards

(median difference between proposals and actual referrals of

9.16%). We observe an anomaly in 2020 and 2021, when the

proportion of referral proposals by NaIA-RD reaches 34.1% and

35%, respectively. Importantly, this anomaly only affects NaIA-

RD: it did not lead to an increase in referral decisions by GPs,

even though they were supported by NaIA-RD after July 2020.

The anomaly ends in 2022, when the proportion of NaIA-RD

referral proposals decreases to 24.6% (2017 level), and reaches a

minimum in 2023 (18% studies). GPs’ decisions also show this

trend, as they refer fewer studies in 2022 and 2023 than ever before.

3.4.2 Non-gradable vs. referable DR
To try to explain the 2020-2021 anomaly, we have used the

outputs of NaIA-RD to compare the evolution of the disease and

the image gradability. Figure 8b shows the percentage of referable

studies due to possible DR and the percentage of referable studies

due to non-gradability. While the proportion of possible DR

studies has remained quite constant over time (between 11.6% and

17.2%), the proportion of non-gradable studies increases notably

in 2020 and 2021 (from 12.2% in 2019 to 20.9% in 2021), while

this proportion drops to historical minimums in 2023 (7%).

3.4.3 Patients requiring on-site eye examination
To analyze the detection capability of the DR screening program,

Figure 8c shows the annual proportion of screened studies that

resulted in an on-site eye examination. These eye exams were

appointed by the second screening level, if the patient needed it,

after the first-level screening GP (or the nurse due to high

intraocular pressure) had referred the study. Patients left the DR

screening program when this appointment occurred (see Section

2.1 for more details). Note that the appointment proportion is

calculated relative to the total number of studies screened.

We observe that the appointment proportion decreases from

2015 to 2019, reaching a minimum of 2.58%. However,

coinciding with the deployment of NaIA-RD, this trend was

broken in 2020, with a peak of 9.29% in 2021, consistent with

the observed non-gradability anomaly. In 2022 and 2023, despite

the fact that the first screening level referred fewer studies than

ever before (see Figure 8a), the second screening level appointed

more patients for eye examinations than in 2018-2019, achieving

eye examination rates similar to the early years of the screening
14We will define a study as an object consisting of digital retinographies,

where each eye is represented by multiple fundus images. NaIA-RD grades

each eye separately, and the global NaIA-RD screening proposal is

referable if either eye is referable. Both the first and second screening

levels made their decisions after visualizing both eyes (the entire study).

See Section 2.1 for more details.

15We used the median instead of the mean to minimize the influence

of outliers.
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program. Specifically, the mean on-site eye examination proportion

increased 1.5 times (from 3.08% to 4.65%), while 13.3% fewer

patients were referred (mean referral rate) in 2022–2023

compared to 2018–2019.

3.4.4 Agreement between GPs and NaIA-RD
To analyze the influence of NaIA-RD on clinical decisions,

Figure 9a shows the Cohen’s kappa between first-level screening

decisions and NaIA-RD outputs, a metric that measures the level

of agreement between both. Note how the level of agreement

more than doubles after the system was deployed (going from a

kappa score of 0.2 in 2019 to a kappa score of 0.48 in 2023). To

delve deeper, Figure 9b shows the kappa score per first-level

screening GP. We observe that some GPs had different screening

criteria compared with others—they screened random studies

from the same patient population, so we attribute these

differences to screening criteria. Criteria differences occur

particularly between two groups of GPs: 1, 4 and 2, 3.

Interestingly, almost all GPs (except GP 4, who left the screening

program in 2021 with few screened studies) clearly increased

FIGURE 8

Evolution of the DR screening program of the HUN over time. (a) Referral decisions vs. NaIA-RD proposals. (b) Non-gradable vs. referable DR (NaIA-RD
outputs). (c) Percentage of patients scheduled for on-site eye exam.

FIGURE 7

Graded study quantity comparison: GPs vs NaIA-RD.
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their agreement with NaIA-RD’s proposals after its deployment.

We would like to highlight the behavior of GP 1, who changed

from an increasingly divergent agreement (reaching a minimum

kappa score of 0.05 in 2019) to a much higher and constant level

of agreement (kappa scores between 0.20–0.32) since the

deployment of NaIA-RD. Anyway, GP 1’s agreement was still

minimal after this change.

3.4.5 NaIA-RD metrics compared to appointed
on-site eye examinations per GP

To further explore the impact of NaIA-RD, in Table 7 we

compare NaIA-RD’s post-deployment metrics (2020–2023) with

the proportion of referrals and appointed on-site eye

examinations for each first-level screening GP. We obtained

NaIA-RD’s positive agreement (PA), negative agreement (NA)

and Cohen’s kappa for each GP. PA and NA measure the

proportion of NaIA-RD’s referral and non-referral proposals that

are agreed by the GP, respectively. Each row of this table takes

the corresponding GP’s decisions as the ground truth. The last

three columns show the number of screened studies by each GP

and two proportions: the rate of referred studies and the rate of

studies that resulted in an on-site eye examination appointment.

Both proportions are calculated relative to the total number of

studies screened by each GP.

Data show that GPs who agreed more with NaIA-RD (Cohen’s

kappa) identified a higher proportion of patients that were

appointed for an on-site eye examination. For example, GP 3,

with a kappa of 0.812 and an appointment rate of 13.3%, more

than triples the appointment rate of GP 1, who shows a kappa of

0.307 and an appointment rate of 3.8%. However, with more

than 10,543 screened studies, GP 1 has screened almost as many

studies as the rest of the GPs combined, which explains the weak

kappa values shown in Figure 9a. Finally, we observe high NAs

for all GPs (0.946 or more), indicating that most of the NaIA-

RD’s non-referral proposals are followed. On the other hand,

compared with GPs 2 and 3, the low PA of GPs 1 and 4 suggest

a less sensitive referral criterion. This has resulted in lower

referral rates, but also lower rates of patients appointed for on-

site eye examinations. The global PA and NA are 0.493 and

0.981, respectively, with a global Cohen’s kappa of 0.554.

3.4.6 Error analysis
Due to the observed low PA, an expert ophthalmologist blindly

labeled a sample of false positives of the 2020-2021 period, creating

what we call a false positive dataset. In Figure 10 we detail the study

selection process we followed to create it. We wanted to review the

most difficult and meaningful studies (potentially mild cases), so

we selected studies that had been graded by the GP as mild non-

proliferative DR. The ophthalmologist classified 93% of the

studies as referable (306 out of 328), matching NaIA-RD’s

proposals. Thus, GPs correctly contradicted NaIA-RD’s referral

proposals in only 7% of the studies.

FIGURE 9

Level of agreement between first-level screening general practitioners (GPs) and NaIA-RD’s grades. (a) Level of agreement between NaIA-RD and all
GPs. (b) Level of agreement between NaIA-RD and each GP.

TABLE 7 NaIA-RD metrics compared to appointed on-site eye examinations per general practitioner (GP). All GPs took their decision after viewing NaIA-
RD’s proposal, once NaIA-RD was in use.

GP PAa NAb Kappa Studies Referred On-site eye examsc

1 0.234 0.999 0.307 10,543 6.3% 3.8%

2 0.612 0.980 0.664 6,902 16.7% 8.8%

3 0.866 0.946 0.812 5,089 29.2% 13.3%

4 0.291 0.985 0.322 428 11.7% 6.1%

aPA, Positive agreement. NaIA-RD proposes referral and the GP refers.
bNA, Negative agreement. NaIA-RD proposes non-referral and the GP does not refer.
cOn-site eye exams: Proportion of screened studies that resulted in an on-site eye examination appointment by the second screening level. A higher value represents a higher sensitivity of the

GP for detecting target patients.
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After reviewing a sample of NaIA-RD’s false positives, we

analyzed all false negatives from 2020–2023 period, which were

only 180 studies (less than 1% of the 22,962 total screened)—

studies that NaIA-RD did not propose to refer but the GP

referred. The second screening level had graded these false

negatives according to the ICDR scale (31), with the following

results: 83.33% (150) were classified as “no apparent

retinopathy,” 6.67% (12) as “mild non-proliferative DR,” 1.11%

(2) as “moderate non-proliferative DR,” 0.56% (1) as “severe

non-proliferative DR,” 0% (0) as “proliferative DR,” and 10.66%

(29) as “not gradable.” An ophthalmologist reviewed the one

study that was graded as severe and could not find any DR signs

on the images. Therefore, we attributed the grade to a data error.

3.4.7 NaIA-RD as first screening level
To assess whether NaIA-RD could reduce current human

supervision, we analyzed what would have happened if it had

performed the first level of screening autonomously—without GP

supervision—since 2020. During this period, 22,962 studies were

screened in HUN, and 14.62% were referred by GPs assisted by

NaIA-RD. NaIA-RD would have referred 26.85% of these, 1.84

times the current referred study quantity. However, the studies

that NaIA-RD deemed non-referable would not have required

human grading, which were the 73.15%, and the referable studies

would have been visualized only once (and not twice as in the

current setup). Overall, it would have allowed a 4.27 times

workload reduction (6,125 study visualizations instead of 26,318

current visualizations).

4 Discussion

We have found that NaIA-RD is a sensitive DR screening tool

that has had a positive influence on the trained GPs who have

screened patients from March 2015 to December 2023 at HUN.

Our before-and-after study shows that these GPs are more

capable of identifying patients who require on-site eye

examinations since they started using NaIA-RD (see Figure 8c).

In fact, GPs were unable to identify a single case of sight-

threatening DR missed by NaIA-RD since its deployment. This

suggest that NaIA-RD could be safely and effectively used for

autonomous, first-level DR screening at HUN.

In this section we will discuss the performance of NaIA-RD in

laboratory settings (Section 4.1), its impact on the screening

program of HUN (Section 4.2), the convenience of buying or

developing such a system (Section 4.3), and the limitations of

this work (Section 4.4).

4.1 NaIA-RD’s performance

With a Cohen’s kappa of 0.818, NaIA-RD shows a strong

agreement with the majority label of three ophthalmologists

according to our private Gold Standard, a metric comparable to

the performance of a single ophthalmologist. A subset of this

dataset also shows (retrospectively) that NaIA-RD is clearly more

sensitive than a trained GP working in real world settings.

In terms of Gold Standard sensitivity and specificity, NaIA-RD

achieved values of 92.5% (95% CI, 88.1–96.3%) and 92.4% (95% CI,

89.5–94.9%), respectively. These results clearly exceed the

superiority endpoints of 85.0% and 82.5% proposed by Abràmof

et al. in (18) for a DR screening medical device, as discussed by

the authors with the FDA.

The goal of NaIA-RD is to improve the clinical pathway for DR

screening at HUN. Therefore, it is not expected to be the most

accurate DR screening tool that could be used in any other

hospital. However, we have tested it on several public datasets

dedicated to DR grading and retinal image quality assessment.

Results suggest that NaIA-RD correctly assesses retinal images

from diverse data distributions and patient populations.

With respect to DR assessment, we have tested NaIA-RD on

EyePACS (Kaggle) (12, 48), APTOS (Kaggle) (13), Messidor-2

(14), and IDRiD (15), obtaining AUCs above 0.96 in all of them.

These results do not seem to be far from the state of the art: For

example, using an ensemble of five models trained on the Kaggle

EyePACS training set, Papadopoulos et al. (67) achieve an AUC

of 0.961 on the public test set of Kaggle EyePACS, and 0.976 on

Messidor-2. Trying to replicate the well-known work of Gulshan

et al. (68) using only public data, Voets et al. (69) obtained an

AUC of 0.951 on the Kaggle EyePACS public test set and 0.853

on Messidor-2 with an ensemble of ten Inception-V3 models.

Voets et al. argued that they struggled to reproduce the original

FIGURE 10

Study selection process to create a false positive dataset.
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algorithm due to differences in the datasets used. Note that NaIA-

RD was trained and tested on a subset of these datasets, so these

metrics should be compared with caution. To test the

generalization capabilities of the DR Classifier, we used OIA-

DDR, which was completely excluded from training. An AUC of

0.957 and a sensitivity and specificity of 93% and 84% were

obtained, but we could not find any other work with

comparable results.

Regarding gradability assessment, we evaluated NaIA-RD’s

generalization capabilities using OIA-DDR (16) and EyeQ (17).

On OIA-DDR, the Gradability Classifier achieved perfect

sensitivity, correctly identifying all non-gradable images, albeit

with a 38% false positive rate. However, it demonstrated higher

specificity on EyeQ, with sensitivity and specificity values of 87%

and 86%, respectively. Recall that EyeQ, unlike OIA-DDR, is a

dataset specifically designed to assess retinal image quality.

While we explored alternative retinal image quality datasets like

DeepDRiD (70) and DRIMDB (71), they proved unsuitable for our

purposes. DeepDRiD offered a potentially relevant overall quality

class but suffered from inconsistent labeling, an issue

acknowledged by its authors (70). DRIMDB, on the other hand,

provided cropped retinal images, incompatible with NaIA-RD.

These results show that NaIA-RD is more sensitive than

specific for both DR and gradability assessment. This behavior

ensures safety in a tool intended to be used as a first-level

screening device. However, we also value its performance as

competitive: in a recent multicenter study (8), the best

performing AI device had 80.47% and 81.28% of sensitivity and

specificity on an external dataset (a performance comparable to

human graders).

4.2 NaIA-RD’s impact

We have presented a before-and-after study showing the

impact of NaIA-RD on a real screening program. Results show

that NaIA-RD has influenced the decisions of the first-level

screening GPs, biasing them towards system’s proposals. We

interpret this bias as desirable, as GPs with a higher level of

agreement with NaIA-RD were better at identifying patients who

needed an on-site eye examination by a specialist (they were

more sensitive). In fact, the rate of on-site eye examinations

increased since the use of NaIA-RD, breaking a downward trend

in the pre-NaIA-RD period (2015–2019 years in Figure 8c).

Nevertheless, prospective results show that some first-level

screening GPs such as 1 and 4 (for whom NaIA-RD shows low

PAs in Table 7) could have improved their sensitivity by more

frequently following NaIA-RD’s referral proposals. These GPs

minimized the amount of studies that the second screening level

received, but they were less able to identify patients who should

have been referred compared with other GPs. The impact of

these decisions is relevant, as GP 1—who only followed the 23%

of referral proposals (PA 0.234)—screened almost as many

studies as the rest of the GPs combined. We discarded a

malfunction of NaIA-RD with a false positive analysis dataset, in

which an expert ophthalmologist labeled a sample of the

contradicted referral proposals: the expert agreed with NaIA-RD

in 93% of the studies. Given that NaIA-RD was correct most of

the time, we hypothesize that the observed variability in GP

behavior may stem from a lack of standardized DR screening

protocols and varying levels of trust in NaIA-RD and AI-

based tools.

On the other hand, NaIA-RD’s non-referral proposals were

consistently accepted by GPs (high NAs on Table 7), with only

180 non-referral proposals (<1% of the total screened) not

followed. Among these, only 2 undetected moderate DR cases

were found. NaIA-RD has not missed any worse DR case since

its deployment (at least cases that GPs did refer). This high

sensitivity raises the question of whether total human supervision

is necessary. It appears that NaIA-RD could safely perform the

first level of screening autonomously, similar to other

commercial devices such as IDx-DR, EyeArt, Retmarker (26) or

SELENA+ (39). In this scenario, NaIA-RD would refer non-

gradable and more than mild DR studies directly to the second

screening level, reducing the study visualization workload by

4.27 times.

The before-and-after study also shows how GPs lowered their

image quality requirements when there was an abnormal

proportion of non-gradable fundus images in 2020 and 2021:

they tried to find DR signs even in images that they had

previously considered as non-gradable. We interpret this flexible

behavior as a normal human adaptation to new circumstances

(possibly related to COVID-19 pandemic), which avoided an

excess of work in the second screening level. We believe that this

illustrates how subjective fundus gradability assessment is, and

how interesting a dynamic gradability adjustment feature may be

for a DR screening algorithm. Also, this finding seems to justify

the need for grading DR even when the image quality is poor, a

feature that very few commercial devices offer.

4.3 Buy or develop?

In Europe, any medical device is subject to the EU 2017/745

regulation16 and the specific laws of the country where it is

developed (in Spain it is regulated by the Royal Decree 192/

202317). Any AI-based software that makes clinical

recommendations must be approved by a Notified Body before it

can be used for any purpose other than research. There are two

ways to obtain this authorization: a CE mark, which allows the

device to be marketed, or an in-house authorization, which is

restricted to local use. The latter option is a valid regulatory

pathway in Europe under certain circumstances. According to

EU 2017/745, this allows healthcare institutions to manufacture

16EU 2017/745: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?

uri=CELEX:32017R0745&from=ES#d1e1058-1-1
17Royal Decree 192/2023: https://www.boe.es/boe/dias/2023/03/22/pdfs/

BOE-A-2023-7416.pdf
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medical devices for internal use if no equivalent device is

commercially available.

We recommend considering a custom development if the

healthcare institution has the required resources and does not

find a commercial device that satisfies their requirements.

However, the complexity of such development should not be

underestimated: the access to target domain knowledge, data,

software and IT infrastructure are essential. Dedicated AI and

software development teams are needed, who must work closely

with clinicians and the hospital. The regulatory work is also

unavoidable, even in the case of an in-house authorization.

4.4 Limitations

This work has some important limitations and knowledge gaps

that need to be considered.

First, we have measured NaIA-RD’s performance on the target

data distribution only at eye level, not at image level. We could not

measure how performance differed between macula-centered and

optic disc-centered fundus images. The private Gold Standard

does not provide a label per fundus image, but rather a label per

eye. DR screening is performed at patient level, so the before-

and-after study does not provide this separate measurement either.

Second, the comparison between NaIA-RD and a single

ophthalmologist in the Gold Standard may be biased. We only

had three ophthalmologists available for labeling, so when we

compared each ophthalmologist’s label to the other two, we used

the grade of NaIA-RD to break ties.

Third, we could not test the performance of the Gradability

Classifier using an adequate private dataset. Due to the low

prevalence of bad quality images, the private Gold Standard is

not appropriate for measuring the sensitivity of the eye fundus

Gradability Classifier. Therefore, we tested it using

external datasets.

Fourth, we did not test NaIA-RD’s performance in population

subgroups, nor did we perform a systematic bias analysis. Although

the overall results are promising, such an analysis should be

performed to discard any bias due to imaging site, sex, gender,

age or pre-existing patient conditions.

Fifth, with respect to the generalization ability of NaIA-RD, it

should be noted that the DR Classifier was trained on a subset of

the most popular public datasets (see Figure 4). Therefore, its

metrics may be biased when evaluating these datasets. On the

other hand, the metrics we obtained evaluating OIA-DDR and

EyeQ (which were not used in training) are promising, but

further testing is needed to assess the generalization capabilities

of NaIA-RD’s models.

Sixth, our comparison of commercial devices is based solely on

public information available prior to 2024—we did not contact any

vendors. The lack of a detailed public database of CE marked

devices in Europe did not facilitate our research (72). We

therefore advise against using our product overview as a

purchasing guide.

Seventh, due to the lack of a control group in our before-and-

after study, we cannot conclusively attribute the observed

improvements in the DR screening program solely to NaIA-RD.

It is possible that other factors influenced the change in GP

behavior. A different type of clinical study, such as a randomized

controlled trial, may have provided stronger evidence.

Eighth, we did not compare NaIA-RD with other commercial

devices in terms of accuracy. This comparison was beyond the

scope of this work: our goal was to provide a capable (not the

most accurate) AI tool for DR screening at HUN (not other

hospitals) that met the requirements that commercial devices

did not.

Ninth, due to copyright and privacy concerns, this work does

not publish any code or dataset. Although this fact limits its

reproducibility, we believe that other researchers can use this

work to develop their own in-house AI medical device—given

that they have their own data.

This work also leaves some important questions unanswered.

First, we weren’t able to assess patient benefit: Did patients have

better DR outcomes after NaIA-RD was in use? A randomized

controlled trial seems necessary to answer this key question. In

addition, we could not clarify why there are some first-level

screening GPs who contradict the system much more than others.

5 Conclusion

We have presented an AI-powered medical device, called

NaIA-RD, customized to the needs of a hospital (HUN). We

have detailed the entire development process with a level of

detail that should allow other researchers to follow our approach

using their own data. We have proposed a novel system design

that combines DR grading and retinal image quality in a single,

flexible AI device. We have measured its performance on private

and public datasets, achieving competitive metrics, and assessed

its real-world impact with a before-and-after study that is

unprecedented in the literature.

We have found that NaIA-RD increased the sensitivity of the

GPs who conformed the first screening level: these clinicians

were influenced by the AI tool, increasing the proportion of

patients who were scheduled for eye examination by the second

screening level—which were the target patients to be detected.

However, GPs showed a very heterogeneous screening criteria,

and NaIA-RD did not influence them equally.

We have also observed that GPs adapted their DR screening

decisions to seasonal anomalies, such as a sudden deterioration

in image quality. When this occurred, GPs lowered their

standards for fundus gradability. This clinical adaptability implies

that there is a friction between best practices, which are strictly

followed by AI tools, and their real-world applicability. To

address this issue, it appears that DR screening tools should be

adjustable to local needs. Calibrated decision thresholds should

help achieving this to some extent, as long as AI tools separate

disease from image quality assessment.

In spite of their lack of context awareness, we conclude that AI

tools can improve and homogenize DR screening, while reducing

the burden of manual grading: NaIA-RD could safely be used to

perform first level screening autonomously, reducing the
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workload by up to 4.27 times, at the expense of receiving more

studies in the second screening level (1.84 times more).

Therefore, our future work will be directed towards reducing the

level of supervision of NaIA-RD, accompanied by new features to

facilitate the task of the second screening level. In our opinion,

an AI-generated ICDR (31) grade should be useful to automate

clinical reports in a supervised manner.

We believe NaIA-RD exemplifies how an AI medical device can

drive long-term clinical improvements. Its seamless integration

into the clinical workflow appears to be a key factor in its

success—potentially as important as its accuracy. Healthcare

institutions should be aware that commercial AI tools are

typically designed to work with specific patient populations,

cameras, and imaging protocols, offering limited options for

adaptation and customization. This can lead to challenges when

incorporating them into existing clinical workflows. In such

cases, developing an in-house solution may be a good alternative,

provided the institution has the necessary resources.
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