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Enhancing biometric
identification using 12-lead ECG
signals and graph convolutional
networks
Maram Al Alfi*, Pedro Peris-Lopez* and Carmen Camara

Computer Science and Engineering Department, University Carlos III of Madrid, Madrid, Spain,
Introduction: The electrocardiogram (ECG) is a highly secure biometric modality
due to its intrinsic physiological characteristics, making it resilient to forgery and
external attacks. This study presents a novel real-time biometric authentication
system integrating Graph Convolutional Networks (GCN) with Mutual
Information (MI) indices extracted from 12-lead ECG signals.
Methods: The MI index quantifies the statistical dependencies among ECG leads
and is computed using entropy-based estimations. This index is used to
construct a graph representation, where nodes correspond to ECG features
and edges reflect their relationships based on MI values. The GCN model is
trained on this graph, enabling it to learn complex patterns for user
identification efficiently.
Results: Experimental results demonstrate that the proposed GCN-MI model
achieves 100% accuracy with a 5-layer architecture at a k-fold of 75,
outperforming conventional approaches that require less training data.
Discussion: This work introduces several innovations: the integration of MI indices
enhances feature selection, improvingmodel robustness and efficiency; the graph-
based learning framework effectively captures both spatial and statistical
relationships within ECG data, leading to higher classification accuracy; the
proposed approach offers a scalable and real-time biometric authentication
system suitable for applications in finance, healthcare, and personal device
access. These findings highlight the practical value of the GCN-MI approach,
setting a new benchmark in ECG-based biometric identification.
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1 Introduction

The global cost of data breaches has reached staggering figures in recent years, with

annual financial losses amounting to billions. These breaches expose sensitive

information, including financial records, personal credentials, and medical histories,

making traditional authentication methods such as passwords, PINs, and security

tokens increasingly vulnerable. Conventional security mechanisms struggle to provide

adequate protection as cyber threats become more sophisticated, leveraging phishing,

social engineering, and AI-driven attacks. This growing crisis has accelerated the

demand for biometric authentication systems, which leverage unique biological traits

that are inherently more secure and resistant to traditional attack vectors. However,

existing biometric technologies, such as facial recognition and fingerprint scanning, are

not immune to vulnerabilities. Spoofing attacks, sensor noise, environmental
01 frontiersin.org
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dependencies, and potential privacy concerns limit the reliability of

these modalities, necessitating the development of alternative

biometric modalities that offer higher resilience, accuracy, and

security. Electrocardiogram (ECG)-based authentication emerges

as a promising solution due to its physiological uniqueness,

internal nature, and resistance to forgery. Nevertheless, designing

effective ECG biometric systems remains challenging due to data

scarcity, inter-user variability, and computational efficiency

constraints. This study introduces a novel approach that

integrates Graph Convolutional Networks (GCN) with Mutual

Information (MI) indices to overcome these challenges and

significantly enhance the robustness of ECG-based

biometric authentication.

The most appropriate and adaptable biometric characteristics

include facial features, fingerprints, palm prints, voice,

electrocardiograms (ECG), and iris patterns (1). Each of these

modalities has its strengths and weaknesses. For instance, facial

recognition and fingerprint systems are widely adopted due to

their ease of implementation and the availability of standard

imaging devices. However, these methods are not without

limitations. They are susceptible to spoofing attacks, where

counterfeit replicas such as fake fingerprints or photos of faces

are used to bypass security measures. Additionally,

environmental factors, user behavior, or physical changes such as

aging, scarring, or injuries can degrade the accuracy and

reliability of these systems over time (2).

In contrast, ECG presents a compelling alternative as a

biometric modality. Unlike external traits such as fingerprints or

facial features, which can be replicated or influenced by external

conditions, ECG signals are internal physiological characteristics

inherently linked to an individual’s unique cardiac activity. This

makes ECGs significantly more difficult to forge or manipulate.

Furthermore, ECG-based systems are resilient to many

environmental and physical factors affecting other biometric

modalities. For example, while a fingerprint scanner might fail if

the user’s hands are dirty or injured, an ECG system can

continue to function reliably as it measures electrical activity

from within the body. These advantages position ECG as a

highly secure and robust biometric characteristic, particularly in

contexts where high levels of security and reliability are essential.

By addressing the limitations of traditional biometric systems

and meeting the growing demands for enhanced authentication

methods, ECG-based technologies are playing a pivotal role in

the evolution of biometric security systems.

A significant amount of research is currently being conducted

on machine learning and deep learning approaches for ECG-based

biometric detection (3). These advanced algorithms demonstrate

significant promise in improving the accuracy of biometric

authentication systems. Nevertheless, numerous studies have

encountered difficulties due to the limited data available—

primarily ECG beats gathered from the same participants—which

often restricts the models’ generalization and performance (4).

Convolutional neural networks (CNNs) are a common deep

learning technique. They are vital tools that significantly boost

diagnosis accuracy in many medical and biometric applications

(5). Feeding these networks with ECG signals that contain
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unique information about the heart’s electrical activity and

exhibit significant characteristics across multiple angles or leads

enhances the accuracy of arrhythmia detection (6).

According to Zhang et al. (7), graph convolutional networks

(GCNs) are a cutting-edge deep learning technique explicitly

designed to process and analyze graph-structured data, in

contrast to conventional convolutional neural networks (CNNs),

which are typically limited to processing grid-like structures,

such as pixel images. The complex relationships and interactions

between entities, represented as nodes, can be captured and

utilized by Graph Convolutional Neural Networks (GCNs). Using

a graph composed of these nodes and edges, complex real-world

events, such as social networks and molecular structures, as well

as the heart’s electrical activity as depicted in a 12-lead ECG (see

Figure 1), can be represented (6).

One of the key advantages of GCNs over CNNs is their

flexibility in handling irregular and non-Euclidean data, where

the relationships between data points are not arranged in a fixed

grid. CNNs typically rely on fixed square kernels to perform

convolutions, which are well-suited for image data but less

effective for more complex, irregular structures, such as graphs

(8). On the other hand, GCNs can apply convolutions to any

network structure, capturing interactions between closely located

nodes, even in non-uniform or randomly distributed locations.

This makes GCNs particularly beneficial for applications that

display data as graphs, enabling them to learn the underlying

structure more effectively.

In the context of this study, ECG data are modeled as a graph,

where each node represents one of the heart’s 12 leads, and the

edges capture the relationships or dependencies between these

leads. The electrical potential recorded by each lead is defined as

a time series, and knowing the relationships between these time

series is crucial for successfully authenticating individuals based

on their ECG patterns. Autocorrelation indices measure the

strength of correlation between a time series and its lagged copy,

thereby assessing these dependencies. Additionally, Pearson

correlation indices can be employed to evaluate the linear

relationships between the ECG signals recorded by different

leads, providing a more detailed understanding of the underlying

structures in the data (9). However, ECG signals often exhibit

both linear and nonlinear dependencies, which Pearson

correlation alone cannot fully capture. To address this, mutual

information (MI) is introduced as a complementary measure,

which utilizes entropy to quantify the amount of shared

information between two time series. Unlike Pearson correlation,

MI can detect linear and nonlinear relationships, making it a

powerful tool for analyzing the complex dependence structures

inherent in ECG data (10). By merging MI, the GCN can more

accurately capture the rich, multifaceted relationships between

the ECG leads, enhancing its ability to learn from the data and

improve the performance of the biometric identification system.

This study’s combination of GCNs and mutual information

creates a robust framework for modeling the interrelationships

between ECG leads. By treating the ECG signals as a graph and

using MI to define the edges between nodes, the GCN-based

model can leverage the shared information between the leads to
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FIGURE 1

The 12-lead ECG electrical activity is represented as a graph.

TABLE 1 Performance comparison of the proposed method with other approaches.

Method Dataset Parameter used # ECG Leads Accuracy (%) Ease of Spoofing
Barros et al. (11) PhysioNet Euclidean distance 1 80.00 High

Zhang et al. (12) PhysioNet Euclidean distance 2 97.60 High

Ibtehaz et al. (13) ECGID Cosine similarity 3 98.71 High

Prakash et al. (14) ECGID Euclidean distance 2 99.85 High

Agrawal et al. (15) PTBDB Pearson correlation 1 98.30 High

Wang et al. (16) ECGID Pearson correlation 2 98.25 High

Proposed method INCART MI 12 100.00 Low
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more accurately identify individuals based on their unique ECG

patterns. This approach improves the accuracy of the biometric

identification system. It provides a more comprehensive

understanding of the complex dependencies within the ECG

data, offering a significant advancement in the field of ECG-

based biometric authentication. A graph was constructed to

efficiently train the GCN to represent the interrelationships

between the ECG leads using the mutual information (MI) index,

which quantifies linear and nonlinear correlations. This graph-

based representation captures the intricate dependencies across

the 12 leads, allowing the GCN to learn from the shared and

complementary information inherent in the ECG signals.

By leveraging the GCN-MI model developed in this study,

individuals can be accurately identified and verified using their

unique biometric signatures derived from 12-lead ECG data. The

MI index is crucial in capturing the subtle patterns and

relationships between the leads, often missed by simpler models

that treat each lead independently. This enables a more

comprehensive and robust approach to biometric authentication,

allowing the system to differentiate between individuals with

greater precision.

Table 1 compares various methods for ECG-based user

authentication using different datasets and similarity measures.
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The results in Table 1 validate MI as the most effective

parameter for feature extraction and graph construction,

outperforming traditional measures such as Pearson correlation,

Euclidean distance, and cosine similarity, with 100% accuracy on

the INCART database. Its ability to capture complex

relationships in ECG signals justifies its selection in our

proposed method.

We can justify the use of MI in our proposed method by

the following:
1. Captures Nonlinear Dependencies: Unlike Pearson

correlation (used by Agrawal et al. and Wang et al.), which

measures linear relationships, MI captures both linear and

nonlinear dependencies, making it more effective for complex

ECG patterns.

2. Better Discriminative Power: Compared to Euclidean distance

(Barros et al.), which considers only spatial differences, MI

measures the amount of shared information between signals,

making it robust to amplitude variations and noise.

3. Improved Similarity Measurement: Cosine similarity (Ibtehaz

et al.) focuses on directional similarity but may not capture all

statistical dependencies in ECG signals. MI considers the
frontiersin.org
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probabilistic relationship, resulting in improved

classification performance.

4. Higher Accuracy on INCART DB: The 100% accuracy

achieved by using MI suggests its effectiveness in

constructing the adjacency matrix for deep learning-based

authentication, proving its superiority over previously

used metrics.

The primary contribution of this study lies in introducing the

GCN-MI approach as an innovative method for user

identification and authentication, specifically designed to

capitalize on the dense and interconnected structure of 12-lead

ECG data. Conventional biometric methods, such as fingerprint

or facial recognition, rely on external physical traits that can be

susceptible to spoofing and environmental disruptions (17). In

contrast, ECG signals offer a more profound, physiological-based

biometric feature that is more resistant to forgery or external

manipulation (18). By integrating MI-based graph convolution

into the ECG-based biometric system, this study enhances the

system’s ability to capture and utilize complex data relationships,

resulting in a more nuanced, reliable, and accurate identification

process. The implications of this approach would be far-reaching.

By demonstrating that incorporating complex inter-lead

relationships via MI can significantly improve the accuracy of

biometric systems, the study paves the way for deploying more

secure and reliable applications in critical sectors. For instance,

in the financial industry, where secure user identification is

crucial, ECG-based biometric authentication can provide an

additional layer of protection against identity theft and fraud.

Similarly, ECG-based identification can be used in healthcare to

securely verify patients, ensuring that medical records and

treatment plans are accurately matched to the correct individual.

In personal security, ECG-based biometrics could offer a more

secure alternative to accessing sensitive systems or information.

Ultimately, this study demonstrates the advantages of

incorporating complex data relationships into biometric

authentication systems. By focusing on the intricate connections

within 12-lead ECG data, the GCN-MI approach represents a

significant advancement in biometric identification, offering a

more accurate and secure solution. This creates new

opportunities for developing sophisticated biometric systems that

can be applied in real-world situations, thereby enhancing

security and reliability in various sectors and applications.

The primary contributions of this work are summarized

as follows:

1. Innovation in the design approach: This study introduces a

novel GCN-MI framework, which models the statistical

dependencies between ECG leads using Mutual Information

(MI) indices. This significantly enhances biometric feature

selection and reduces feature redundancy.

2. Theoretical advancements: Information-theoretic justifications

support the integration of MI indices into the GCN

architecture, demonstrating their effectiveness in capturing

both linear and nonlinear dependencies within ECG signals

and improving user differentiation.
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3. Optimization and computational efficiency: The proposed

system utilizes an efficient adjacency matrix construction

based on mutual information (MI) values, thereby

significantly reducing computational complexity compared to

traditional deep learning-based ECG authentication methods.

4. Enhancements in model architecture and performance: The

GCN-MI model outperforms conventional ECG biometric

techniques, achieving 100% accuracy with a 5-layer

architecture at k-fold 75 while requiring less training data.

The framework offers a scalable and real-time biometric

authentication solution suitable for finance, healthcare, and

secure access system applications.

These contributions establish a new benchmark for ECG-based

biometric identification, demonstrating the practical applicability

of GCN-MI in high-security authentication scenarios.
2 Related work

Recent research on ECG-based authentication has made

significant advancements, leveraging deep learning techniques to

address traditional challenges such as poor generalization, noise

susceptibility, and dataset limitations. These studies primarily

explore two major categories: (A) conventional machine learning

techniques [Hammad et al., 2019; (2, 19)] and (B) deep learning-

based methods (20, 21).

The application of machine learning for human authentication,

mainly using ECG signals, is gaining momentum [Hammad et al.,

2019; (22, 23)]. However, this approach has revealed several

shortcomings that limit its effectiveness: poor generalization to

unseen data, susceptibility to noise and artifacts in ECG signals,

and the need for large datasets to achieve reliable performance.

For example, manual feature extraction is sometimes necessary in

traditional machine learning algorithms, which may not fully

capture the complexity of ECG data, leading to reduced accuracy

in real-world scenarios (24). Similarly, deep learning models,

though more robust in feature learning, are computationally

expensive and can suffer from overfitting, especially when trained

on small datasets (25). Furthermore, variability in ECG signals

due to physiological conditions, electrode placement, and

emotional state presents an ongoing challenge, necessitating more

sophisticated models or hybrid approaches that combine the

strengths of multiple techniques (26).

In the following sections, we provide a detailed description of

the latest research in this field.
2.1 Traditional machine learning approaches

Traditional machine learning techniques such as Support Vector

Machines (SVM), k-nearest Neighbors (k-NN), and Random Forests

have been widely used in ECG-based authentication [Hammad, M.,

Luo & Wang, 2019; (2, 19)]. These models typically rely on

handcrafted feature extraction techniques, such as heart rate

variability analysis, wavelet transforms, and statistical feature

selection. While these methods can achieve reasonable accuracy,
frontiersin.org
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they are often constrained by their reliance on manual feature

engineering, susceptibility to noise, and limited scalability to large

datasets. Furthermore, they struggle to capture the complex spatial

and temporal relationships within ECG signals (24), resulting in

performance degradation when applied across diverse subjects

and datasets.
2.2 Deep learning-based methods

Deep learning has significantly advanced ECG-based

authentication by enabling automatic feature extraction and high-

performance classification. The primary architectures used in this

domain include Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), Graph Convolutional

Networks (GCNs), Transformers (27), and Generative

Adversarial Networks (GANs) (28). Each approach offers distinct

advantages and limitations:

2.2.1 Convolutional neural networks (CNNs) for
feature extraction

CNNs have been widely adopted in ECG classification and

biometric authentication because they can extract spatial features

from raw ECG signals without requiring manual feature

engineering (29). These models capture local dependencies and

morphological variations in ECG waveforms by leveraging

convolutional layers. However, CNNs are limited in modeling

long-term temporal dependencies, as they primarily focus on

spatial feature extraction, making them less effective for tasks

requiring sequential analysis (2).

2.2.2 Recurrent neural networks (RNNs) for
temporal dependencies

RNNs, particularly Long-Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU) networks have demonstrated strong

performance in ECG authentication by effectively capturing short

—and long-term dependencies in time-series data. Unlike CNNs,

which primarily focus on local feature extraction, RNN-based

models learn sequential dependencies in ECG waveforms,

making them suitable for applications where variations in

heartbeat over time play a crucial role in classification (30, 31).

However, RNNs have certain drawbacks, including high

computational costs and difficulty training over long sequences,

which can limit scalability and real-time applicability.

2.2.3 Graph convolutional networks (GCNs) for
graph-structured ECG data

GCNs have emerged as a promising deep learning technique

for ECG-based biometric authentication due to their ability to

process non-Euclidean structured data, such as the complex

interdependencies among multiple ECG leads (32, 33). Unlike

CNNs and RNNs, which assume a grid-like or sequential data

structure, GCNs model the statistical dependencies between ECG

leads as graph structures, allowing the network to capture spatial

and statistical relationships within ECG signals. Studies such as

our proposed GCN-MI method demonstrate that GCNs enhance
Frontiers in Digital Health 05
classification accuracy and generalization capabilities in ECG

biometric authentication by leveraging mutual information (MI)

indices to define graph edges.
2.2.4 Emerging technologies: transformers and
GANs in ECG processing

Recent advances in deep learning have led to the exploration of

Transformers and Generative Adversarial Networks (GANs) in

ECG-based authentication.

A. Transformers: Unlike CNNs and RNNs, Transformers utilize

self-attention mechanisms to capture long-range dependencies

in ECG signals, thereby enhancing model interpretability and

robustness (34, 35). Their parallel processing of entire ECG

sequences makes them more computationally efficient than

traditional sequential models.

B. GANs: Generative Adversarial Networks have been applied to

generate synthetic ECG signals, improving model training

and generalization when working with limited datasets. These

models have been instrumental in mitigating data scarcity

issues by augmenting ECG datasets with realistic synthetic

samples (36–38), enhancing the robustness of

authentication models.

3 Proposed methodology

The proposed framework for human authentication leverages

the use of Graph Convolutional Networks (GCNs) built on the

Mutual Information (MI) of 12-lead ECG, along with advanced

machine learning techniques, to model and analyze multi-lead

ECG signals, ensuring robust individual authentication. The

methodology has been structured into three phases, as illustrated

in Figure 2: (1) Pre-processing of the data; (2) Construction,

training, and tuning of the model; and (3) Model Validation.

The study employed the St. Petersburg Institute of

Cardiological Techniques’12-lead Arrhythmia database (https://

physionet.org/content/incartdb/1.0.0), which comprises 75 ECG

recordings from 32 individuals, each lasting 10 s and sampled at

257 Hz, which generated 462,600 data points per lead. The

following is an illustration of the methodology phases:
3.1 Data pre-processing

Pre-processing is crucial for improving the quality of ECG

signals by removing various types of noise that can obscure

critical features necessary for human authentication. ECG signals

are prone to several noise sources, including power line

interference, motion artifacts, electrode contact noise, baseline

wandering, and muscle contractions (39). The goal is to ensure

that the pre-processed data is high quality and used effectively in

downstream modeling. We implemented the sequential denoising

technique proposed by Zheng et al. (39) To eliminate the

following noise from the raw ECG data:

1.1. Power Line Interference (PLI): PLI is a familiar noise artifact in

biomedical signals resulting from 50/60 Hz interference from
frontiersin.org
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FIGURE 2

Block diagram for ECG-based 12-lead model for person identification using a GCN networks.
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electrical sources. This type of noise is particularly problematic

for ECG signals, which typically lie in the 0.5 Hz to 50 Hz

range (40). A Butterworth low-pass filter was applied to

remove high-frequency noise above 50 Hz, preserving the

relevant ECG signal while effectively reducing PLI.

1.2. Baseline Wandering: Baseline wandering arises from slow,

Low-frequency drifts caused by respiration or subject

movement. This drift can obscure important ECG features,

notably the P, QRS, and T waves. A locally estimated

scatterplot smoothing (LOESS) filter addresses this. LOESS

adapts to the local trends of the data, ensuring that baseline

drift is smoothed out without distorting the essential

waveform characteristics (39).

1.3. Motion Artifacts and Muscle Noise: Motion artifacts result from

subject movements, while muscle contractions introduce high-

frequency disturbances into the ECG signal. A Non-Local Means

(NLM) denoising algorithm was used to suppress these types of

noise. NLM works by averaging similar patterns within the

signal, making it particularly effective for preserving ECG

waveform details while eliminating spurious noise (39). Results

(see Figure 3) demonstrate the effectiveness of the pre-processing

methods on the I03, I24, and I68 datasets, respectively. The

signal in blue indicates considerable noise in the raw ECG time

series. After denoising, the ECG signals become more

straightforward to interpret and more suitable for further

modeling, as evident in the corresponding red signals in the figure.
3.2 Model construction, training, and tuning

Following data cleaning, we build a graph-based model of the

ECG signals and train a Graph Convolutional Network (GCN) to

identify and authenticate individuals. GCNs, or graph

convolutional networks, are among the most popular and
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effective varieties of neural networks, also known as graph neural

networks. Graph Neural Networks (GNNs), specifically designed

for graph-based data, were first introduced in 2009 (41).

Graph data structures are composed of entities called nodes (or

vertices) and relationships between them, known as edges. Unlike

grid-like data (such as photos, where pixels have a defined two-

dimensional structure), graphs offer a flexible framework that

enables the encoding of complex relationships and data points.

GNNs’ versatility makes them perfect for domains where

connections between entities are essential, such as knowledge

graphs, biological networks, social networks, and

recommendation systems (42).

GCNs expand the fundamental convolution mechanism of

Convolutional Neural Networks (CNNs) to graph data. When

convolution operations are performed on fixed grid structures, such

as images, conventional CNNs assume grid consistency and spatial

locality. GCNs adapt convolutional processes to graph designs,

whereby nodes, representing discrete entities or data points, and

edges, representing links between nodes, do not follow a

predetermined grid structure and may have varying connectivity

(43). This modification enables GCNs to handle non-Euclidean

data, making them suitable for a wide range of applications. The

primary objective of the convolution operation in Graph

Convolutional Networks (GCNs) is to capture local neighborhood

information surrounding each node in the graph. This successfully

creates a feature representation that includes the node’s properties

and the information from its neighbors.

This iterative procedure, called neighbor aggregation or

message passing (Figure 4), builds a multi-hop neighborhood

representation that captures progressively more contextual

information with each layer. It achieves this by having each node

collect information from its immediate neighbors in one layer

and then from the neighbors of neighbors in later layers.

The formal representation of a graph is G = (V, A). Individuals

in a social network, molecules in a chemical complex, or medical
frontiersin.org
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FIGURE 3

ECG time series for datasets (I03, I24, and I68) respectively before and after denoising.

Al Alfi et al. 10.3389/fdgth.2025.1547208

Frontiers in Digital Health 07 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1547208
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 4

Neighbor aggregation process of GCN.
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symptoms in a network can all be represented by a set of nodes (or

vertices) denoted as V. Depending on the context, a feature vector

that describes each node is often associated with it. A N × f matrix.

Where N is the number of nodes and f is the number of features,

can be used to represent this (43).

Each row represents a node in the matrix, and each column

represents a feature. A is the adjacency matrix, an N ×N matrix

that encodes node connections. The strength of the link is

indicated by the weight of any edge held by A (i, j) between

nodes I and J. A (i, j) = 0 without an edge. Both weighted graphs,

in which the edges have varying strengths or significance, and

unweighted graphs, in which the edges are either present or

absent, can be represented by this matrix. A key component of

GCNs is the adjacency matrix A, which specifies the connections

within the network and determines how information should be

transferred between nodes during the convolution process (42).

For example, A would record friendships, track relationships, or

engage with others in a social network, enabling the GCN to

disseminate information about individuals via their social ties.

GCNs have many significant applications. They have been

extensively utilized in domains including:

A. Social Network Analysis: GCNs can discover influential nodes

or forecast relationships in networks like Facebook or Twitter.

B. Biological networks: GCNs facilitate the analysis of intricate

biological networks, including disease-gene correlations or

protein-protein interactions. This enables the classification of

different types of diseases and the prediction of likely

disease pathways.

C. Recommendation Systems: GCNs model user-item interactions

by better understanding user preferences and item relationships.

The convolutional technique is extended from grid-like data (such

as pictures) to irregular, structured data (graphs) by graph

convolution. Nodes in a graph can have different numbers of

neighbors and an irregular arrangement, unlike standard grids,

where each pixel has a defined position and neighbors. To conduct

convolution on graph data, a GCN must compile data from the node
Frontiers in Digital Health 08
and its linked neighbors, representing the node’s local neighborhood.

The convolution operation on graphs is typically achieved through a

polynomial filter based on the adjacency matrix A, capturing

information from a node’s neighborhood up to a certain distance.

The following is the filtering function represented as a polynomial of

the adjacency matrix A (see Table 2 for definitions of variables

in Equation 1):

H ¼ h0I þ h1Aþ h2A
2 þ h3A

3 þ . . .þ hkA
k (1)

After convolution, this formula applies a filter matrix H to the vertices

(nodes) to create new node representations. The identity matrix,

denoted as I, represents self-connections; each node considers

its attributes.

The scalar coefficients hi regulate the impact of neighbors at

various hops or distances. For instance, h1 controls the neighbors

immediately adjacent to it, h2 controls the neighbors two steps

away, and so forth. In the graph, each node can incorporate

information from neighbors k steps away by the adjacency

matrix Ak, which is raised to the power of k (42). This

polynomial filter defines a weighted combination of adjacency

matrix powers, where each power corresponds to a specific

distance from the node. For example:

A: Immediate neighbors (1-hop neighbors)

A2: 2-hop neighbors (neighbors of neighbors)

A3: 3-hop neighbors, and so on.

By combining information from these different distances, the GCN

creates a multi-scale representation of each node, capturing local and

global graph structures. After constructing the filter matrix H, it is

applied to an input vertex matrix Vin (the initial feature representation

of the nodes) to produce an output matrix Vout, as follows (see

Table 3 for definitions of variables in Equation 2):

Vout ¼ HV in (2)
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TABLE 2 Definitions of variables in Equation (1).

Symbol Description Type
H Filter matrix that results from the convolution

operation.
N ×N
matrix

h0, h1, . . . , hk Scalar coefficients that control the participation of
neighbors of a vertex in the convolution
operation.

Scalars

I Identity matrix, representing the vertex itself
without propagation.

N ×N
matrix

A Proximity (adjacency) matrix representing
connections between vertices in a graph.

N ×N
matrix

Ai i-th power of the adjacency matrix A,
representing the number of steps of a vertex.

N ×N
matrix

k Degree of the polynomial filter, determining the
maximum number of steps for neighborhood
propagation

Positive
integer

N Number of vertices in the graph (dimension of
the adjacency matrix and filter matrix).

Integer

TABLE 3 Definitions of variables in Equation (2).

Symbol Description Type
Vin Input vertex matrix (initial feature representation of

nodes). Each row corresponds to a node’s features.
N � Fin
matrix

H The filter matrix is constructed from the graph
structure [as defined in Equation (1)].

Scalars

Vout Output vertex matrix (updated feature representation
of nodes after filtering).

N � Fout
matrix

N Number of nodes in the graph (i.e., vertices). Integer

Fin Number of input features for each node. Integer

Fout Number of output features for each node (same as Fin
in this case).

Integer
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This matrix multiplication combines node features based on the graph

structure, allowing each node to have a representation that reflects its

features and those of its connected neighbors. In practical terms, this

operation enables each node to “learn” from its surroundings, making

GCNs powerful tools for tasks that require a contextual understanding

of relationships within the data (41).

The critical innovation in our model is the use of mutual

information (MI) to capture dependencies between different

leads formed by the 12-lead ECG data, enabling the construction

of an adjacency matrix used in graph convolutional neural

network (GCN) training.

Mutual Information: Mutual Information (MI) serves as the

basis for understanding the connections between multiple ECG

leads. The notion of entropy is where Mutual Information (MI)

first appeared. Uncertainty regarding the combination of two

random variables (X, Y) is expressed in (3) by their joint

entropy (41).

H[X, Y] ¼ �
X

x[X,y[Y

Pr[X ¼ x, Y ¼ y] � log Pr[X ¼ x, Y ¼ y]

(3)

where:

• H[X, Y]: The joint entropy, measuring the uncertainty or

information contained in the joint distribution of X and Y.
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• ΣΣ: Summation over all possible values of X and Y.

• Pr[X = x, Y = y]: The joint probability of X = x and Y = y.

• Log: The logarithm, typically based on 2 in

information theory.

Uncertainty of a random variable (X ) that continues after (Y ) is

known is expressed in (4) by its conditional entropy concerning Y:

H[XjY] ¼ �
X

x[X,y[Y

Pr[X ¼ x, Y ¼ y]

� log Pr[X ¼ xjY ¼ y] (4)

where:

• H[X|Y]: The conditional entropy that tells us the remaining

uncertainty in X, given that we already know Y.

Pr[X ¼ xjY ¼ y]: The Conditional probability of X = x given

Y = y.
3.2.1 Model construction
To construct the GCN-MI model, we first compute the

Mutual Information (MI) matrix from ECG signals, which is

then transformed into the adjacency matrix used by the Graph

Convolutional Network (GCN). The step-by-step process is

as follows:
3.2.1.1 ECG signal preprocessing
• The raw ECG signals undergo bandpass filtering (0.5–40 Hz) to

remove noise.

• Each ECG segment is normalized using Z-score normalization

to ensure sample consistency.

• Feature extraction is performed using wavelet transforms to

capture time-frequency representations.

3.2.1.2 Computation of the MI matrix
An MI measures the information shared by two random variables,

such as the signals from two leads. It quantifies the information one

lead provides about another and records linear and non-linear

correlations. The formula (5) is used to determine the MI

between two ECG leads, X and Y (see Table 4 for definitions of

variables in Equation 5):

I X; Yð Þ ¼
X

x[X;y[Y

Pr X ¼ x;¼ y½ �

� log Pr X ¼ x;Y ¼ y½ �
Pr X ¼ x �Pr� ½Y ¼ y½ �

� �
(5)

This computation yields an MI matrix (Figure 5) that provides a

pairwise representation of the inter-lead relationships.

Each element in this matrix quantifies the information shared

between a pair of leads, forming the foundation for the adjacency

matrix in the GCN.
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3.2.1.3 Conversion of the MI matrix into an adjacency
matrix
• A threshold τ is applied to remove weak connections (see

Equation 6):

Aij ¼ Mij, if Mij . t
0, otherwise

�
(6)

• The adjacency matrix A is symmetrically normalized using:

Â¼D�1=2AD�1=2 (7)

where:

A: Represents the connections between nodes in a graph.

D: is the degree matrix of A.

D
�1
2 , Which scales each node’s connections based on its degree.

3.2.1.4 Graph convolutional network (GCN) construction
The GCN model includes:

• Nodes represent ECG feature vectors from different time steps.

• Edges are established based on the MI matrix thresholding.

• Three graph convolutional layers, each using a ReLU

activation function.
TABLE 4 Definitions of variables in Equation (5).

Symbol Description
I (X; Y) Mutual information represents the amount of information

shared between X and Y.P
x[X,y[Y Summation over all possible values of X and Y.

Pr [X = x, Y = y] The joint probability of X = x and Y = y.

log Logarithmic function (typically base 2), measuring the amount
of information in bits.

Pr[X = x]·Pr
[Y = y]

Product of marginal probabilities of X = x and Y = y.

Pr [X¼x, Y¼y]
Pr[X¼x]� Pr[Y¼y] Pointwise mutual information, comparing the joint probability

with the product of marginals.

FIGURE 5

A single individual’s cardiac lead mutual information displayed in a 12 × 12 m
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• A dropout layer (p = 0.5p = 0.5p = 0.5) is applied to

prevent overfitting.

• The final layer outputs class probabilities

• using SoftMax activation.

• Themodel is trained using theAdam optimizerwith a learning rate

of 0.001, and the loss is computed using categorical cross-entropy.

This process’s pseudocode is described in Algorithm 1, and

Figure 6 shows an instance of a built graph via connection (MI)

between the 12 leads.

The GCN-MI model consists of multiple graph convolutional

layers that process ECG signals structured as a graph, where

edges are defined by Mutual Information (MI) relationships. The

overall structure is outlined below:

(1) Input Layer: In this layer, A matrix consisting of 75 batches

belonging to 75 persons each of (2,570 × 12) rows (where 12

represents the ECG leads, and 2,570 is the number of

extracted features per lead) and an adjacency matrix
atrix.

FIGURE 6

12-lead ECG-based graphs constructed from MI matrices.
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(12 × 12 represented relationships between ECG leads based

on mutual information (MI), was fed into the GCN as the

input, where each entry (i,j) corresponds to the MI value

quantifying the dependency between lead i and lead j in the

12 × 12 adjacency matrix, this matrix serve as the GCN’s

structural backbone, encapsulating the underlying

dependencies and correlations between ECG leads. This

study generated the adjacency matrix via the R program and

utilized MI values to define graph edges that capture

intricate relationships between cardiac leads. An R program

is a script or set of instructions written in the

R programming language, a popular open-source language

and environment specifically designed for statistical

computing, data analysis, and visualization. In our study, we

constructed the first layer as a 2D convolutional layer with

64 filters, a kernel size of (1, 1), strides of (1, 1), and no

padding (valid). Then, we used the ReLU activation function

described in (9) to extract low-level features from the graph.

Preprocessing: Each ECG feature undergoes Z score normalization

before entering the GCN

Algorithm 1 GCN-MI model construction

1. ECG Signal Preprocessing:
Fronti
• Apply bandpass filtering (0.5–40 Hz) to remove noise.
• Normalize each ECG segment using Z-score normalization.
• Extract features using wavelet transforms for time-

frequency representation.

2. Computation of the MI Matrix:
• MI quantifies shared information between ECG leads, capturing linear
and non-linear correlations.

• Compute MI using:

I X; Yð Þ ¼
X

x[X;y[Y

Pr X ¼ x;¼ y½ �: log Pr X ¼ x;Y ¼ y½ �
Pr X ¼ x :Pr� ½Y ¼ y½ �

� �

• Construct an MI matrix, where each entry represents MI between two
ECG leads.
3. Conversion of MI Matrix into an Adjacency Matrix:

• Apply threshold τ to remove weak connections:

Aij ¼ Mij , if Mij . t
0 otherwise

�

• Normalize adjacency matrix using:

Â¼D�1=2 AD�1=2
Where D is the degree matrix.
4. Graph Convolutional Network (GCN) Construction:
• Nodes represent ECG feature vectors from different time steps.
• Edges are created based on MI thresholding.
• Use three graph convolutional layers with ReLU activation.
• Apply dropout layer (p =0.5) to prevent overfitting.
• Final layer outputs class probabilities using SoftMax activation.
• Train model using Adam optimizer (learning rate = 0.001) and

categorical cross-entropy loss.
(2) Graph Convolutional Layers: Convolutional layers are critical

in GCN, especially in image and signal processing tasks. In

our study, multiple layers were used to extract features from
ers in Digital Health 11
ECG data, enabling the model to learn discriminative

patterns associated with individuals’ unique heart rhythms.

The convolution operation is defined as:

H(lþ1) ¼ s(D�1=2 AD�1=2H(l)W(l)) (8)

where:

- A is the adjacency matrix,

- D is the degree matrix,

- H(l) is the node feature matrix at layer l,

- W(l) are the learnable weights and

- σ is the activation function.

A sequence of graph convolutional layers progressively

enhances the network’s ability to recognize complex patterns and

relationships between ECG leads. In each layer, the GCN

processes information from neighboring nodes and produces new

feature representations by weighing the connections in the graph.

The model aggregates more global patterns with each successive

layer, helping it understand local dependencies (from

neighboring nodes) and global dependencies (across more distant

nodes). The output of each convolution layer is given to the next

layer. As (44) described, including two to three convolutional

layers can help capture deeper GCN insights. In our study, the

output of the convolutional layer was flattened and passed

through 13 dense layers, each consisting of 64 neurons, and the

ReLU activation function (7) was used to learn higher-level

representations.

(3) Activation Functions: Each graph convolutional layer is

followed by a ReLU activation function to introduce non-

linearity, which is crucial for learning complex, non-linear

patterns in ECG data.

ReLU activation is defined as:

f (x) ¼ max(0, x) (9)

If the input x > 0, the output is x itself.

If the input x≤ 0, the output is 0.

where:

x refers to the raw output from the graph convolutional layer

before applying the ReLU activation. The ReLU activation

function lets the GCN on significant signal variations by zeroing

out non-informative features (negative values). This helps the

model differentiate between subtle, nuanced relationships and

identify meaningful patterns that distinguish authentic and non-

authentic samples.

(4) Output Layer: The final output layer is a single dense neuron

with a sigmoid activation function (8), mapping the output to

a probability range of [0, 1] for binary classification. In the

proposed method, the output layer of the GCN was

designed to perform the final classification task by

converting extracted features into a probabilistic score,

determining the likelihood that an ECG sample corresponds
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TABLE 5 The parameters of the GCN network with 13 hidden convolution
layers and the MI adjacency matrix.

Parameter Value
Epochs 600

Learning Rate 0.9889

Hidden Layers 13 with 64 neurons each

Dropout 0.2
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to a particular individual. It received input from the final

graph convolutional layer, which produces high-level feature

representations of the graph, with nodes representing the 12

ECG leads and edges weighted by mutual information

(MI) values.

The layer consists of a trainable weight matrix that maps the feature

dimensions to the output space, and a sigmoid activation function

was applied to generate a probability score between 0 and 1. The

sigmoid function is defined as in Equation 10:

s(x) ¼ 1
1þ e�x

(10)

where:

• x is the input to the function.

• e is the base of the natural logarithm (approximately 2.718).
3.2.2 Model training and tuning
The GCN-MI model’s training process follows a supervised

learning approach. The model learns from labeled ECG feature

matrices derived from the 12-lead ECG signals according to the

following specifications:

• Dataset: The model was trained using the St. Petersburg

Institute of Cardiological Techniques 12-lead Arrhythmia

Database, which contains 75 ECG recordings from 32

individuals, each sampled at 257 Hz.

• Input Representation: Each ECG recording was transformed

into a feature matrix of size (12 × 2,570), with 12 leads as

graph nodes and an adjacency matrix derived from

MI computations.

• Optimization Algorithm: The model was trained using the

Adam (Adaptive Moment Estimation) optimizer, which was

chosen because:

• It adapts learning rates for each parameter dynamically.

• It effectively handles sparse gradients, making it suitable

for graph-based data.

• Loss Function: The Binary Cross-Entropy (BCE) loss function

optimized the model. BCE is a commonly used loss function

for binary classification problems, ensuring that the predicted

probabilities match the accurate class labels.

The BCE loss function is defined as in Equation 11:

L ¼ �1
N

XN
i¼1

[yi log(pi)þ (1� yi) log(1� pi)] (11)

where:

• N is the number of samples.

• yi is the ground truth label.

• pi is the predicted probability for sample i.

Table 5 shows the hyperparameters tuned through

experimental validation to achieve optimal model convergence.
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3.2.2.1 Model validation
We implemented a rigorous validation strategy to evaluate the

proposed GCN-MI model’s performance and generalization

capability. This process ensures that the model is optimized for

the training dataset and maintains high accuracy on unseen data.

A. Dataset Splitting Strategy:

The dataset was randomly split into 70% training, 15%

validation, and 15% test sets. The validation set was used for

hyperparameter tuning, while the test set provided an unbiased

assessment of the model’s ability to generalize.

B. Leave-One-Out Cross-Validation (LOO-CV):
• Each ECG sample is used as a test set once, while the

remaining samples are used for training.

• Ensures the model is tested on all data points without

data leakage.
C. K-Fold Cross-Validation:
• The dataset was split into K = {60, 65, 70, 75} folds.

• Each fold is used as a test set, while the remaining (K− 1)

folds are used for training.

• Helps assess the model’s generalization performance across

different subsets of data.

• Ensuring that a particular dataset partitioning did not

bias results.
D. Evaluation Metrics:

The model’s performance was assessed using multiple

classification metrics, including:

1. Accuracy: Overall classification correctness.

2. Precision, Recall, and F1-score: Evaluating the ability to

classify individual ECG signals correctly.

3. Area Under the ROC Curve (AUC): Measures the model’s

ability to distinguish between users.

E. Equal Error Rate (EER): is the error value when the false

rejection rate and the false acceptance rate are equal.

F. Statistical Robustness and Significance Testing:

We computed 95% confidence intervals (CIs) for accuracy and

F1-score to confirm the statistical significance of the model’s results.

Additionally, we performed paired t-tests between different k-fold

validation runs to verify the reliability of the reported improvements.

G. Impact of Model Complexity on Generalization:

As detailed in the Results section, we analyzed the impact of

varying the number of layers (5, 10, 15) in the GCN-MI model.

We examined the performance across different k-fold values (60,
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65, 70, 75), confirming that the model maintains high accuracy

across various configurations.

While these validation methods provide strong evidence of the

model’s robustness, explicit cross-subject prediction—where the

model is trained on one set of individuals and tested on an

entirely different set—was not separately evaluated in this study.

However, given that LOO-CV ensures that each sample is

excluded from training at least once, it inherently simulates

cross-subject scenarios to some extent. Future research could

further strengthen the assessment by employing a leave-one-

subject-out (LOSO) validation, where all individuals are excluded

during training to test true cross-subject generalization. Despite

this, our results indicate that the GCN-MI model can accurately

distinguish subjects across multiple data splits, reinforcing its

potential for real-world biometric authentication.

Proposed model’s architecture drawing: We present a

drawing of the proposed model’s architecture, which effectively

handles user authentication using Electrocardiogram (ECG)

signals by leveraging Graph Convolutional Networks (GCNs) and

deep learning techniques, as shown in Figure 7.
4 Results

In this study, multiple graph convolutional layers, which are

the core of the GCN model, were employed to aggregate
FIGURE 7

Architecture of the proposed GCN-MI model.
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information from neighboring nodes (leads) before and after

noise suppression and progressively extract more features. The

best network configurations were identified through experiments

with various convolutional layers, specifically the GCN-MI-5,

GCN-MI-10, and GCN-MI-15 models. The performance of the

proposed model is shown in Table 6.

To evaluate the proposed model’s effectiveness, we analyzed its

accuracy, precision, recall, F1 score, ROC-AUC, and EER and

compared performance across various models.

1. Performance Metrics for Biometric Authentication:

The formulas for quantifying measurements are listed below:

• Accuracy: a standard evaluation metric in classification tasks

that measures the proportion of correctly classified instances

out of the total instances. It is defined as in Equation 12:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(12)

• Precision (P): Measures how many predicted positive samples

are positive. It is defined as in Equation 13:

P ¼ TP
TP þ FP

(13)
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TABLE 6 Identification performance of the proposed model with 5, 10, and 15 layers before and after noise suppression.

Accuracy (%)

Fold GCN-5 (Denoised) GCN-10 (Denoised) GCN-15 (Denoised) GCN-5 (Noisy) GCN-10 (Noisy) GCN-15 (Noisy)
Fold 75 100 100 100 100 100 90.66

Fold 70 97.14 98.57 97.14 97.08 98.57 93.57

Fold 65 98.46 96.92 98.46 96.92 96.15 93.07

Fold 60 94.16 90 93.33 94.16 89.50 93.33
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• Recall (Sensitivity) (R): Measures how well the model captures

actual positives. It is defined as in Equation 14:

R ¼ TP
TP þ FN

(14)

• F1-score: The harmonic means of precision and recall. It is

defined as in Equation 15:

F1 ¼ 2� P � R
P þ R

(15)

• ROC Curve & AUC: The Receiver Operating Characteristic

(ROC) curve plots the True Positive Rate (TPR) vs. the False

Positive Rate (FPR). The Area Under the Curve (AUC)

summarizes classification ability.

Our findings confirm that noise suppression significantly

enhances biometric authentication accuracy, thereby reducing the

negative impact of power-line interference, motion artifacts,

electrode contact noise, and baseline wandering. Table 6 presents

the accuracy results for different models and k-fold settings

before and after noise suppression. Table 6 shows that the GCN-

5 and GCN-10 models achieve perfect stability at fold 75 and

maintain relatively high performance at fold 70 across all

conditions. This can be attributed to the increased availability of

training data at higher folds, resulting in better generalization

and model optimization. The GCN-15 model is significantly

affected by noise, with accuracy decreasing from 100% to 90.66%

at Fold-75 and from 97.14% to 93.57% at Fold-70. This suggests

that deeper models, such as GCN-15, maybe more noise-sensitive

due to their greater reliance on feature consistency across

multiple layers. Our proposed model benefited from reducing

variability and noise in the ECG data, which allowed even the

most complex model (GCN-MI-15) to perform effectively.

The GCN-MI-5 denoised model appears more robust at fold

60, with a higher accuracy of 94.16% compared to GCN-MI-10

(90%) and GCN-MI-15 (93.3%). This suggests that simpler

models (like GCN-MI-5) are better suited for scenarios with

limited training data, as they are less prone to overfitting.

The results in Table 6 also indicate that increasing the number

of layers (from 5 to 15) does not necessarily guarantee better

performance; deeper models (GCN-MI-10, GCN-MI-15) require

more data to leverage their complexity, while simpler models

(GCN-MI-5) are more efficient and less computationally

expensive, making them ideal for real-time applications or

resource-constrained environments. The differences in accuracy
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across folds highlight the importance of diverse and

representative datasets. The visualization of how the

authentication accuracy values change across the different K-folds

in different layers (5, 10, 15) is shown in Figure 8. The X-axis

represents the various values of folds (60, 65, 70, 75), and the

Y-axis represents the accuracy value in each layer. Each line

corresponds to a different model (GCN-MI-5, GCN-MI-10,

GCN-MI-15), showing how each model’s accuracy fluctuates as

the number of folds changes. The chart highlights the differences

between the models. It demonstrates the variability in their

performance as K changes, clearly showing the advantages of

using the GCN-MI approach for ECG-based authentication. The

Heatmap in Figure 9 illustrates the model’s authentication

effectiveness and highlights its high classification accuracy.

The results demonstrate that the GCN-MI models are

particularly effective for ECG-based authentication, which

involves recognizing individuals based on their unique ECG

signals. The GCN-MI models can capture complex and subtle

patterns in the ECG data, which is critical authentication, for

slight variations in ECG signals can distinguish individuals.

2. Performance Comparison Across Different Models

This study illustrates the benefits of integrating intricate data

linkages into biometric authentication systems. The GCN-MI

technique, which focuses on the complex relationships present in

12-lead ECG data, represents a breakthrough in biometric

identification, offering a more accurate and inherently safer

solution. This opens up new possibilities for creating advanced

biometric systems that can be applied in various real-world

scenarios, improving security and reliability across numerous

industries and applications. Table 7 comprehensively evaluates

model performance through additional evaluation metrics.

Furthermore, as cybersecurity threats evolve.

ECG-based biometrics may offer a robust defense against

emerging attack vectors, such as AI-driven attempts to mimic

other biometric patterns.

The findings in this study underscore the feasibility of GCN-

MI models for real-world, security-focused applications, where

accuracy and adaptability are paramount. The confusion matrix

in Figure 10 highlights the GCN-MI-5’s ability to balance

authentication false positives and negatives on 60 folds, which is

crucial for biometric systems. This approach’s implications are

far-reaching.

By demonstrating that incorporating complex inter-lead

relationships via MI can significantly improve the accuracy of

biometric systems; the study paves the way to deploy more

secure and reliable applications in critical sectors. For instance,
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1547208
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 8

Authentication accuracy for ECG-based 12-lead GCN-MI model.

FIGURE 9

Accuracy heatmap for the proposed GCN-MI model.
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in the financial industry, where secure user identification is

paramount, ECG-based biometric authentication could provide

additional protection against identity theft and fraud.

Similarly, ECG-based identification could be used in healthcare

to securely verify patients, ensuring that medical records and

treatment plans accurately match the right individual. ECG-based

biometrics may offer a safer alternative to conventional
Frontiers in Digital Health 15
authentication techniques in personal security, making it more

challenging for unauthorized users to access secure systems or

devices. For instance, in personal technology, ECG authentication

could be applied to unlock smartphones, laptops, or IoT devices,

providing a unique security layer inherent to the individual.

This method could also be integrated into wearable devices,

allowing seamless yet secure access to restricted areas or sensitive
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TABLE 7 Evaluation of the proposed model’s performance using accuracy, precision, recall, F1-score, AUC-ROC, and EER.

Model Folds Accuracy Precision Recall F1-Score AUC-ROC EER
GCN-MI-5 Fold 60 94.16% 94.74% 94.74% 94.74% 0.95 0.05

Fold 65 98.46% 97.37% 97.37% 97.37% 0.95 0.05

Fold 70 97.14% 97.37% 97.30% 97.37% 0.95 0.05

Fold 75 100% 100% 100% 100% 1 0.01

GCN-MI-10 Fold 60 90.00% 91.89% 89.47% 90.67% 0.95 0.05

Fold 65 96.92% 97.37% 97.37% 94.74% 0.95 0.05

Fold 70 98.57% 98.67% 97.37% 98.04% 0.95 0.05

Fold 75 100% 100% 100% 100% 1 0.01

GCN-MI-15 Fold 60 93.33% 94.59% 92.11% 93.33% 0.95 0.05

Fold 65 98.46% 97.37% 97.37% 97.37% 0.95 0.05

Fold 70 97.14% 97.37% 97.37% 97.37% 0.95 0.05

Fold 75 100% 100% 100% 100% 1 0.01

FIGURE 10

Confusion matrix for the GCN-MI-5 (fold 65) model.

TABLE 8 Compute confidence intervals for the proposed model.

Model Accuracy 95% CI F1-Score 95% CI
GCN-MI-5 95.2349, 99.2850 95.3975, 99.3425

GCN-MI-10 92.1425, 99.2850 92.5125, 99.5100

GCN-MI-15 94.2825, 99.2850 94.3399, 99.3425

Al Alfi et al. 10.3389/fdgth.2025.1547208
information. Furthermore, as cybersecurity threats evolve, ECG-based

biometrics may offer a robust defense against emerging attack vectors,

such as AI-driven attempts to mimic other biometric patterns.

Overall, adopting ECG-based biometric systems, such as GCN-

MI, is a digital approach to transforming identity verification across

various high-stakes domains. It offers a security solution that is

both highly personalized and resilient, meeting the rising

demand for reliable authentication in an increasingly digital,

interconnected world.

Statistical Significance Analysis: While all GCN-MI models

achieved high accuracy, it is crucial to determine whether the

performance differences between them are statistically significant.

To this end, Table 8 presents the 95% confidence intervals

(CIs) for each model’s accuracy and F1 score, indicating the

range within which the accurate performance metrics are

expected to lie with 95% confidence. Furthermore, we conducted
Frontiers in Digital Health 16
paired t-tests across different k-fold settings (60, 65, 70, and 75)

to assess whether the observed variations in accuracy are

statistically significant; the results are shown in Table 9.

• Null Hypothesis (H₀): There is no significant difference in

accuracy between different GCN-MI models.

Interpretation of Results: The results of the paired t-tests are

in Table 9. indicate that all p-values are greater than 0.05,

suggesting that the observed differences in accuracy between the
frontiersin.org
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TABLE 10 List of recent studies on ECG-based human identification using
DL techniques.

Reference Method Number of
datasets

Accuracy
(%)

Donida Labati et al.
(48)

Deep CNN 52 100

Kim et al. (46) Ensemble of deep
CNN

18 98.90

Abdeldayem and
Bourlai (45)

Deep CNN 488 94.90

Bento et al. (49) CNN DenseNet Not Specified 96.88

Ihsanto et al. (50) RDSCNN 48 97.92

90 98.89

AlDuwaile and Islam
(51)

ResNet Attention
Network

Not Specified 98.85

Not Specified 99.27

AlDuwaile and Islam
(52)

2D-CNN 90 97.28

El Boujnouni et al.
(47)

2D-CNN 18 100

Cheng et al. (53) ID U-NET 5 95

Prakash et al. (14) CNN-LSTM 90 91

Begum et al. (54) U-NET with DSC 10 94

TABLE 9 Statistical comparison of model performance (paired t-test
results).

Comparison t-statistic p-value
(α = 0.05)

Significance

GCN-MI-5 vs. GCN-
MI-10

0.89 0.438 H0

GCN-MI-5 vs. GCN-
MI-15

1.00 0.391 H0

GCN-MI-10 vs. GCN-
MI-15

−0.84 0.463 H0

Al Alfi et al. 10.3389/fdgth.2025.1547208
models are not statistically significant. While there are numerical

variations in accuracy across different k-fold values, these

differences do not provide sufficient statistical evidence to

conclude that one model consistently outperforms the others.

This suggests that the observed performance fluctuations may be

attributed to sample variability rather than an inherent

superiority of any specific model, emphasizing the need for

further validation on more extensive and diverse datasets to

confirm these findings.

Our Study GCN-MI 75 (12 leads and

2,570 samples)
100
5 Discussion

ECG authentication approaches and related techniques in

biometric-based identity systems have rapidly emerged as a

critical focus within security studies, driven by the need for

highly secure and individualized authentication methods. Unlike

traditional biometric approaches, ECG authentication leverages

unique heart patterns resilient against physical duplications,

offering promising applications for health information systems

(HIS), secure banking, and personal device access. To enhance

the reliability and accuracy of these systems, numerous studies

have explored foundational and innovative solutions to address

persistent challenges in ECG authentication.

In this section, we compared the performance of the proposed

GCN-MI model against several of these state-of-the-art studies to

show the significant advantages of the GCN-MI model against

other models in terms of:

A. Accuracy and Dataset Utilization:
Frontie
1 Superior Accuracy
The GCN-MI model achieved 100% accuracy, outperforming

all other methods in Table 10. Notably, methods such as the

Deep CNN (45) gained 94.90%, while the Ensemble of Deep

CNNs (46) reached 98.90%. Although some methods, such as

2D-CNN (47) and Deep CNN (48), also reported 100% accuracy,

these were evaluated on smaller datasets, limiting their

generalizability. Moreover, there are fundamental differences in

methodology, computational efficiency, and attack resistance.

Whereas El Boujnouni et al. and Donida Labati et al. employ a

CNN-based architecture to extract features directly from ECG

signals in a grid format, our approach introduces a novel

graphical representation based on Graph Convolutional Networks

(GCN) and Mutual Information (MI), allowing for a more

precise modeling of interdependencies between the 12 ECG
rs in Digital Health 17
leads. This strategy optimizes feature selection and reduces

computational overhead compared to deep CNN architectures,

which require large amounts of data and high processing

capacity, as illustrated in Figure 11. Our model provides

significantly higher security. Since an attack would require

replicating coherent electrical activity across 12 leads

simultaneously, it is far more resistant to spoofing attempts

(fabricating fake ECG signals) and impersonation attacks

(fraudulently assuming another individual’s identity) than a

system based on a single ECG signal.

2 Comprehensive Dataset Utilization

The GCN-MI model was trained and validated on 75 datasets

comprising 12 leads and 2,570 samples, providing a robust

evaluation framework. This contrasts with many other studies

that relied on smaller datasets. Cheng et al. (53) utilized only five

datasets, while El Boujnouni et al. (47) used 18. The larger

dataset used in this study demonstrates the scalability and

reliability of the GCN-MI model in handling diverse data.

B. Innovations Comparative
1 Feature Selection Optimization: The GCN MI

framework’s use of MI indices ensures a more effective

feature representation, unlike methods such as CNN-

LSTM (14), which primarily focuses on temporal

patterns without explicitly modeling inter-

lead dependencies.

2 Graph-Based Framework Advantages: Unlike

conventional deep learning methods, such as CNNs and

U-Nets, the GCN-MI model integrates a graph-based

learning framework, leveraging mutual information

indices to model both linear and nonlinear

dependencies between ECG leads. This innovative
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FIGURE 11

Comparison of performance of different DL methods used for human identification.

Al Alfi et al. 10.3389/fdgth.2025.1547208
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approach enhances the model’s ability to capture complex

relationships, enabling superior performance even with

limited training data.

3 Scalability and Efficiency: While methods like ResNet

Attention Network (51) achieve high accuracy (99.27%),

their performance is not tested on large-scale datasets

or with graph-based dependencies.

4 Generalization: Table 6. demonstrates accuracy

differences of the GCN-MI model across k-fold value

splits. Results suggest that model complexity and data

availability significantly impacts performance. The

results show that higher k-fold values, such as Fold-75

and Fold-70, with GCN-MI-10 achieve higher accuracy,

leading to improved generalization —a challenge often

encountered by traditional CNN-based methods. This

trend suggests that deeper GCN architectures can learn

more robust graph representations when more training

data is available, leading to improved

classification performance.
On the other hand, at lower k-fold values (Fold-60, Fold-65),

simpler models such as GCN-MI-5 showed comparable or slightly

better accuracy than deeper architectures. This indicates that

increasing model complexity in scenarios with limited training data

may lead to overfitting, reducing generalization performance. These

results highlight the importance of selecting an appropriate model

based on dataset size and application-specific constraints.

C. Computational Efficiency: While the proposed GCN-MI

approach demonstrates superior accuracy in ECG-based

biometric identification, a detailed computational comparison

with existing methods remains limited. GCN-MI’s
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computational efficiency stems from its ability to capture

both linear and nonlinear dependencies between ECG leads

using Mutual Information (MI), thereby optimizing feature

selection and reducing redundancy.

The results in Table 1 demonstrate that unlike conventional

methods such as Pearson correlation or Euclidean distance,

which primarily detect linear relationships, our approach

employs Mutual Information (MI), capable of capturing

nonlinear dependencies between ECG leads. This results in a

more robust and discriminative feature space, thereby improving

classification accuracy and generalization.

Another significant factor contributing to the superior

performance of our model is the use of 12-lead ECG signals, as

opposed to single-lead ECG data, which was predominantly used

in previous studies. By incorporating multiple leads, our

approach maximizes the physiological information available,

thereby reducing the risk of misclassification due to variations in

a single lead and enhancing the model’s ability to distinguish

between subjects with more excellent reliability. This also has

significant security implications, as single-lead ECG-based

authentication systems are more susceptible to spoofing attacks,

where an attacker can attempt to replicate the biometric signal

using AI-generated or synthetic ECG waveforms. The multi-lead

representation used in our approach makes such attacks

significantly more difficult, as it requires generating a coherent

and synchronized 12-lead ECG pattern, which is substantially

more complex than forging a single-lead signal. Additionally,

Table 1 shows that while previous studies have reported high

accuracy values, they were often based on datasets such as

PhysioNet, ECG-ID, or PTBDB, which contain a more limited
frontiersin.org
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diversity of subjects or lower inter-lead variability compared to

INCART. Since no prior studies have utilized INCART for ECG-

based authentication, a direct comparison with past models on

the same dataset was not feasible. To ensure a meaningful

comparison, we evaluated our results against previous studies

that employed ECG authentication methods with a reduced

number of leads, enabling us to assess the impact of using a

multi-lead approach on both accuracy and security. As shown in

Table 1, our model achieves 100% accuracy, surpassing previous

works that ranged between 80% and 99.85%, while also

demonstrating higher resilience against forgery attempts. The

improvements introduced by our approach—namely, multi-lead

ECG representation, GNN-based learning, and MI-driven feature

extraction—offer a clear advantage over conventional single-lead

methods. Furthermore, the graph-based structure of GCN-MI

reduces the number of layers required for learning compared to

CNN-based models, thereby improving scalability while

maintaining high accuracy. These findings highlight the novelty

and effectiveness of the GCN-MI model, reinforcing its practical

applicability in secure biometric authentication while addressing

the inherent vulnerabilities present in traditional ECG-based

approaches. However, while GCN-MI is computationally more

efficient than deep CNN architectures, it remains more complex

than simple distance-based similarity measures. Table 11.

presents a comparative analysis of feature extraction methods,

accuracy, and estimated computational cost across different ECG-

based authentication techniques.

The main differences in computational efficiency between the

GCN-MI model and earlier methods can be summarized as follows:

• Consumed Training Time: Compared to CNNs and RNNs,

GCNs capture relationships between ECG leads with fewer

layers, reducing overall training time but increasing per-

iteration complexity.

• Hardware Utilization: Unlike CNNs, which benefit from GPU

parallelization, GCNs require specialized graph-

processing optimizations.

• Scalability: While CNNs struggle with capturing dependencies

across long ECG sequences, GCNs provide better scalability

by structuring data into a node-based format, improving

adaptation to multi-lead ECG authentication.

• Robustness: MI techniques enhance the ability to learn

invariant representations, making the approach less susceptible
TABLE 11 Computational comparison of ECG-based
identification methods.

Method Parameter Accuracy
(%)

Computational
cost

Euclidean
Distance (11)

Euclidean
Distance

80.00% Low

Pearson
Correlation (15)

Pearson
Correlation

98.30% Moderate

Cosine Similarity
(13)

Cosine
Similarity

98.71% Moderate

CNN-ResNet (51) CNN with
Attention

99.27% High

Proposed GCN-
MI Approach

GCN-MI 100.00% Moderate-High
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to noise and physiological variations, which are common

limitations in traditional models.

• Memory and Computational Load: CNNs and RNNs require

extensive GPU memory due to high-dimensional convolutions

and recurrent processing. However, GCNs optimize

computation by leveraging sparse adjacency matrices, making

them more efficient for graph-based ECG analysis.

Future work should provide a more extensive computational

performance analysis, including processing time, memory

consumption, and scalability under real-world constraints.

D. Usability and Practical Considerations: The GCN-MI model’s

ability to achieve perfect accuracy on a large and diverse dataset

positions it as a reliable solution for secure biometric

authentication. Its graph-based learning and mutual

information integration innovations provide a robust

foundation for real-world applications, particularly in sectors

where reliability and scalability are critical. However, its

usability presents notable challenges in Table 12. compared to

other biometric authentication methods in the literature. The

reliance on a 12-lead ECG measurement system, though

highly secure and resilient against spoofing, introduces

practical limitations regarding user convenience and real-world

applicability. Unlike fingerprint or facial recognition systems,

which are widely adopted due to their ease of use and

minimal setup requirements, multi-lead ECG authentication

demands precise electrode placement and a controlled

environment, making it less accessible for daily authentication

scenarios such as smartphone unlocking or workstation logins.

Compared to single-lead ECG authentication systems,

commonly integrated into wearable devices such as

smartwatches, a 12-lead system requires multiple electrode

placements on the body, limiting its feasibility for continuous

or on-the-go authentication. Although single-lead approaches

sacrifice some accuracy in exchange for increased convenience,

they offer a more practical solution for real-time and mobile

applications. Nevertheless, the GCN-MI approach compensates

for this limitation by significantly enhancing security and

robustness, particularly in high-risk applications where forgery

resistance and precision are paramount, such as healthcare

authentication and secure access control in critical

infrastructure and financial transactions.

Our model has been designed to optimize computational

efficiency, ensuring that the GCN framework can process multi-

lead ECG data efficiently without incurring excessive resource
TABLE 12 Usability comparison of ECG-based biometric methods.

Method Number of
leads required

Usability Security
level

Fingerprint
Recognition

– High Moderate

Facial Recognition – High Moderate

Single-Lead ECG
(Wearable Devices)

1 Very High High

(Proposed GCN-MI) 12 Low-
Moderate

Very High
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consumption. While some applications, such as mobile banking,

primarily rely on single-lead ECG devices (e.g., smartwatches or

portable ECG monitors), our approach is particularly suited for

high-security applications such as border control, forensic

authentication and critical access control, where security is

prioritized over convenience.

In healthcare settings, ECG-based biometric authentication can

be used to secure patient identity verification, ensuring that

electronic health records (EHRs) are accessed only by authorized

individuals. This is particularly useful in hospital environments,

where traditional passwords or biometric systems may not be

feasible due to hygiene concerns. The results suggest that GCN-

MI-10 and GCN-MI-15, which perform best with larger datasets,

may be effective in hospital databases where a large number of

patient ECG signals are available.

From a cybersecurity perspective, ECG-based authentication can

enhance multi-factor authentication (MFA) frameworks, providing

an additional layer of security against AI-driven attacks. As

deepfake biometric spoofing techniques continue to advance, ECG

biometrics could serve as a physiological authentication method

that is harder to replicate compared to visual biometrics.

Although the proposed GCN-MI models demonstrate high

classification accuracy, further improvements could enhance their

robustness and adaptability across various biometric

authentication scenarios.

One potential improvement is data augmentation. ECG signals

can vary significantly due to environmental factors, electrode

placement, and individual physiological differences. To improve

model generalization, techniques such as random noise injection,

time warping, and varying sampling rates can be used to

simulate real-world variations in ECG signals, thereby reducing

overfitting and enhancing model robustness.

Another optimization strategy is to explore additional

physiological signals that complement ECG authentication. While

the ECG alone provides a robust biometric signature, integrating

photoplethysmography (PPG) or electromyography (EMG)

signals could further enhance authentication reliability. Multi-

modal biometric authentication could increase security while

maintaining usability.

Additionally, improving the scalability of our model to enable

real-time authentication for secure facility access or high-security

transactions could be a valuable enhancement. Exploring edge

computing approaches to process ECG signals locally, without

relying on cloud-based processing, could reduce latency and

enhance privacy in real-world deployments.

E. Robustness of the Model to Cardiac Pathologies: An essential

consideration for ECG-based biometric authentication is the

potential impact of cardiac pathologies, whether chronic (e.g.,

arrhythmias, ischemic heart disease) or transient (e.g., stress-

induced variations, medication effects, electrolyte

imbalances). Since our method relies on 12-lead ECG signals,

significant changes in the heart’s electrical activity—whether

temporary or permanent—could alter the biometric signature

and impact authentication accuracy. However, the multi-lead

structure of our GCN-MI model inherently enhances its
Frontiers in Digital Health 20
resilience compared to single-lead approaches, as it captures

spatial correlations between leads. While minor variations in

individual leads may not significantly impact performance,

widespread pathological alterations affecting the entire

cardiac cycle could present challenges, potentially requiring

periodic recalibration of the system. At this stage, the model

has been trained and validated using datasets composed of

healthy subjects, and its robustness in the presence of cardiac

diseases remains an open question that will be explored in

future work.

To thoroughly assess the impact of cardiac conditions, future

research will focus on validating the system using datasets that

include individuals with diverse cardiac pathologies, ensuring

a more comprehensive evaluation. However, this investigation

relies on the availability of large-scale, high-quality 12-lead

ECG databases that contain both healthy subjects and

individuals diagnosed with various cardiovascular conditions.

Strategies like adaptive learning techniques to adjust to

gradual physiological changes, re-enrollment mechanisms for

updating ECG templates, and anomaly detection models to

differentiate between natural variability and authentication

errors will be explored. While our results demonstrate that the

proposed method is already highly effective in controlled

conditions, extending validation to datasets with pathological

cases will further reinforce its robustness and applicability in a

broader range of real-world scenarios.

Given these advancements, our research proposes an

innovative deep learning-based ECG authentication system that

integrates 12-lead ECG readings with advanced graph

convolutional network architectures to enhance robustness and

scalability. We aim to improve authentication accuracy and

generalizability in real-world applications by leveraging state-of-

the-art deep learning methodologies and multi-lead ECG signals.

Our study concludes that in clinical or biometric

authentication systems where data availability is constrained,

GCN-MI-5 could be the preferred choice due to its robustness

with smaller datasets. For high-security systems with abundant

data, GCN-MI-10 or GCN-MI-15 could offer improved

accuracy and reliability by capturing more complex patterns in

ECG signals. Lightweight models, such as GCN-MI-5, are

more suitable for deployment on wearable devices or mobile

systems with limited computational resources. On the other

hand, GCN-MI-10 and GCN-MI-15 can be utilized in server-

based systems for applications that require higher

computational capabilities.

The proposed optimizations, including data augmentation,

multimodal biometric fusion, and edge computing integration,

represent promising directions for future research. Future studies

could investigate how to optimize the balance between

computational efficiency and biometric robustness, ensuring that

12-lead ECG authentication remains secure while being adaptable

to various real-world constraints. Additionally, further research is

needed to evaluate the performance of GCN-MI models under

adversarial conditions, ensuring their robustness against potential

spoofing attacks.
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6 Conclusions

This study introduces a novel Graph Convolutional Network

(GCN) framework, combined with Mutual Information (MI), to

enhance ECG-based biometric authentication. The proposed

GCN-MI approach leverages 12-lead ECG signals, providing a

richer and more robust representation of biometric data than

traditional single-lead methods.

Using a graph-based modeling approach, our method effectively

captures the spatial and statistical dependencies between ECG leads,

thereby enhancing classification accuracy and system robustness.

The integration of MI into the GCN architecture enables a more

informative and adaptive feature extraction process, surpassing

conventional methods that rely on predefined distance metrics.

Our experimental results demonstrate that the GCN-MI model

achieves 100% accuracy on the INCART dataset, outperforming

previous deep learning-based ECG authentication methods.

Unlike other models that process ECG signals as independent

time series, our approach models them as graph-structured data,

enabling the system to learn intricate inter-lead relationships.

The use of a multi-lead approach also enhances security by

making the system more resistant to spoofing attacks, as

replicating a full 12-lead ECG pattern is significantly more

challenging than replicating a single-lead signal.

In summary, the main contributions of this research include

the following:

• Innovation in the Design Approach: We introduce a novel

GCN-MI framework that models ECG signals as graph-

structured data and exploits mutual information to capture

both linear and nonlinear interdependencies among 12-lead

ECG signals. This enhances the system’s ability to extract

distinctive biometric patterns.

• Performance Improvements and Theoretical Advancements:

Our approach achieves state-of-the-art performance in ECG-

based authentication, demonstrating superior accuracy compared

to traditional methods. The use of MI indices enhances feature

representation by quantifying complex dependencies, thereby

offering a more effective biometric authentication model.

• Computational Efficiency and Scalability: The proposed MI-

based edge construction mechanism in the GCN framework

reduces computational complexity while maintaining high

performance. Our method is designed to scale efficiently for

real-world applications, making it feasible for large-scale

biometric authentication systems.

• Enhanced Security and Practical Applicability: Unlike single-

lead ECG authentication models, our multi-lead approach

offers greater resistance to impersonation attacks. This has

significant implications for secure authentication in banking,

healthcare, and personal security applications, where identity

verification must be both accurate and resilient.

By demonstrating the advantages of the GCN-MI approach, this

study lays the foundation for future research in graph-based

biometric authentication, offering a more reliable and secure

alternative to traditional ECG-based methods. These findings
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pave the way for the development of advanced biometric security

systems, addressing key challenges in authentication,

generalization, and robustness against adversarial attacks.
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