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According to the World Health Organization, cardiovascular diseases (CVDs)

account for an estimated 17.9 million deaths annually. CVDs refer to disorders

of the heart and blood vessels such as arrhythmia, atrial fibrillation, congestive

heart failure, and normal sinus rhythm. Early prediction of these diseases can

significantly reduce the number of annual deaths. This study proposes a novel,

efficient, and low-cost transformer-based algorithm for CVD classification.

Initially, 56 features were extracted from electrocardiography recordings using

1,200 cardiac ailment records, with each of the four diseases represented by

300 records. Then, random forest was used to select the 13 most prominent

features. Finally, a novel transformer-based algorithm has been developed to

classify four classes of cardiovascular diseases. The proposed study achieved a

maximum accuracy, precision, recall, and F1 score of 0.9979, 0.9959, 0.9958,

and 0.9959, respectively. The proposed algorithm outperformed all the

existing state-of-the-art algorithms for CVD classification.
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1 Introduction

Cardiovascular diseases (CVDs) are responsible for almost 18 million deaths annually

(1). These CVDs mainly consists of arrhythmia (ARR), atrial fibrillation (AFF), congestive

heart failure (CHF), and normal sinus rhythm (NSR). There are multiple factors that are

responsible for cardiac diseases, i.e., lifestyle, diet, smoking, poor sleep, etc. Changing these

conditions can significantly improve heart health. In addition, early prediction and

diagnosis of these heart conditions can significantly reduce the number of deaths. Heart

disease classification using electrocardiography (ECG) plays an important role in

automatic detection of aforementioned diseases.

After the recent advancements in high-powered processors and graphic processing units

(GPUs), deep learning (DL) has been increasingly used in the automatic detection of diseases

such as epilepsy (2, 3), sleep disorders (4, 5), and heart diseases (6, 7). Incorporating

cardiophysiological prior knowledge into the deep neural network architecture improves

the performance of automatic detection of CVDs (8, 9). Common considerations include

the analysis of PQRST wave patterns, cardiophysiologically meaningful feature extraction,

and the temporal dynamics of ECG signals. According to cardiological studies, different

segments of the ECG waveform provide critical insights into various heart conditions.

Several deep learning methods (10, 11), leveraging this prior knowledge, have achieved

superior heart disease detection performance. ECG electrodes are placed on the chest,
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forming a structured representation of cardiac activity. Consequently,

many studies treat ECG signals using techniques such as

convolutional neural networks (CNNs) (12) that respect the

sequential nature of the data or even graph-based methods for

more complex interdependencies (13). Despite these advancements,

there remains additional prior knowledge to be explored. As one of

the critical physiological processes, heart function involves intricate

processes such as electrical conduction, myocardial contraction, and

autonomic regulation. Different heart regions exhibit unique

activation patterns under various physiological states, for example,

the coordinated activity of the atria and ventricles during a cardiac

cycle (14) and the interaction between the sinoatrial node and

atrioventricular node in maintaining heart rhythm (15).

A predefined or single learnable matrix is unable to capture the

intricate connections between different heart parameters that

underlie complex cardiovascular conditions. Additionally, it is

well-known that heart signal states associated with heart health can

fluctuate continuously over short periods but may not remain

consistent over extended periods. There have been very limited

studies incorporating this temporal context into understanding the

effect of this in CVDs. To address this issue, this study developed a

novel transformer-based algorithm for CVD classification. Initially,

56 features were extracted from 1,200 ECG samples. To reduce

the computational cost and only add the relevant information, the

13 most prominent features were selected using the random forest

algorithm. Finally, these 13 features were tokenized and inserted

into the proposed transformer model for training. The proposed

algorithm outperformed all the existing algorithms for CVD

classification with approximately 100% classification accuracy for

the four classes.

The main contributions of the proposed study are as follows:

• To reduce the computational cost and increase efficiency, 13

most prominent features were selected from the dataset using

the random forest (RF) algorithm.

• A novel transformer-based algorithm was developed for the

classification of four classes of CVD.

• Extensive experiments and a comparison has been presented

with existing state-of-the-art studies for validation.

2 Literature review

This section will briefly explain the literature review and is

mainly divided into two parts: CVD classification and transformers.

2.1 Transformer neural network

A transformer is a type of deep learning model proposed by

Vaswani et al. (16). A transformer offers a significant improvement

over CNNs and other existing architectures due to its ability to

model long-range dependencies and capture global context through

self-attention mechanisms. The self-attention mechanism enables

the model to weigh the importance of different input elements

dynamically, allowing it to capture more complex and global

relationships in the data. Initially, transformer models were used to

translate speech and text nearly in real-time. This innovation led to

the evolution of large language models such as GPT2 (17) and

GPT3 (18). There were two main innovations that the transformer

model brought to the market: positional encoding and self-

attention. In 2018, bidirectional encoder representations from

transformers (BERT) (19) was developed. This revolutionized the

large language models, and in 2019, BERT was nearly used for all

Google English language searches. In recent years, researchers have

proposed different transformer-based algorithms for earthquake

detection (20), stock prediction (21), and voltage stability

assessment (22). In 2023, these models were explored in biomedical

signal classification, including in electroencephalography (EEG)

(23) and ECG (24). The property of position encoding and

deep self-attention can significantly improve the performance of

real-time bio-signal classification, prediction, and diagnosis.

In 2023, Hu et al. proposed a hybrid transformer model

(HTM) for epilepsy prediction. The model processes EEG data

at multiple levels and uses channel attention to enhance

accuracy (25). Their study achieved an optimal sensitivity of

91.7% with a false positive rate of 0.00/h. Automatic sleep apnea

(SA) detection using DL and single-lead ECG has been

extensively studied. Hu et al. (26) proposed an HTM by

exploring the impact of different deep learning model structures

and label mapping lengths (LMLs) on personalized transfer

learning (TL). The study compared a pure CNN-based model

(PCM) with the HTM and evaluated different TL strategies. The

results showed that the proposed model achieved an average

accuracy of 85.37% and an AUC of 0.9147. The study suggested

that increasing LML positively impacts model performance and

that using only positive samples is beneficial within the same

database, while negative samples are more effective in cross-

database TL. However, the study focused only on single-lead

ECG data, which may limit its applicability to multimodal

approaches. To further improve the personalization of single-lead

ECG-based obstructive sleep apnea (OSA) detection, (27)

introduced a semi-supervised algorithm for automated fine-

tuning. The approach used a CNN-based autoencoder (AE) with

an anomaly detection mechanism to assign pseudo-labels

to unknown samples, thereby reducing reliance on clinical

annotations. The proposed study demonstrated that pseudo-

labeling and semi-supervised fine-tuning enhance OSA detection

performance while reducing the dependency on annotated

clinical data. However, despite these improvements, the approach

remains constrained by the limitations of single-lead ECG

data and the effectiveness of pseudo-label assignment in highly

heterogeneous datasets. Building on the need for enhanced

OSA detection, Hu et al. (28) proposed a modality fusion

representation enhancement (MFRE) framework to improve

diagnostic performance by integrating multiple modalities. Unlike

previous single-modal models, this framework used a parallel

information bottleneck modality fusion network (IPCT-Net) to

extract local–global multi-view representations and eliminate

redundant information in fused data. By incorporating

multimodal data fusion, this approach addressed the limitations

of previous single-modality methods, providing a more robust

and clinically relevant AI-assisted OSA screening system.
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2.2 Cardiovascular disease classification

Considering that there is no definite diagnosis of heart failure,

medical diagnostic methods such as assessing the history of the

patient, ECG, and echocardiography are crucial for heart disease

detection. Of the abovementioned methods, ECG is considered the

only non-invasive and cheapest way to assess the health of the heart.

Researchers have proposed numerous classification algorithms for

detecting cardiac ailments using ECG signals. These include neural

networks (NNs) (29), support vector machines (SVMs) (30), decision

trees (DTs) (31), and K-nearest neighbors (KNNs) (32). Among

these, neural networks, SVMs, and KNNs are particularly prevalent.

Khalaf et al. (30) utilized principal component analysis (PCA)

combined with an SVM to classify different types of arrhythmias

based on raw spectral correlation data, achieving an accuracy of

98.60%. Thomas et al. (31) applied dual tree complex wavelet

transform (DTCWT) for feature extraction and used a multi-layer

back propagation neural network to classify cardiac arrhythmias,

resulting in a sensitivity of 94.64%, which outperformed the discrete

wavelet transform by 3.41%. Escalona-Morán et al. (33) categorized

Massachusetts Institute of Technology-Beth Israel Hospital (MIT-

BIH) cardiac arrhythmia data into five beat types, achieving a mean

accuracy of 98.43%. Christov et al. (34) classified atrial fibrillation

signals from a challenge database, obtaining an F1 score of 85% for

atrial fibrillation beats.

Acharya et al. (12) proposed a CNN for arrhythmia diagnosis,

which automatically classified five different heartbeat types. The

algorithm employed data augmentation to balance the dataset,

achieving an accuracy of 94% on the balanced data and 89.07% on

the imbalanced data. To enhance accuracy further, Long Short-Term

Memory (LSTM) networks, a popular and effective model for

sequence learning, have been utilized. Darmawahyuni et al. (35) used

LSTM and gated recurrent unit (GRU) classifiers to distinguish

myocardial infarction (MI) from normal signals in the PhysioNet

PTB Diagnostic ECG Database, achieving an accuracy of 97.56% and

a Matthews correlation coefficient (MCC) of 95.32% with the LSTM

architecture, which outperformed GRU. Oh et al. (36) proposed a

hybrid model combining an CNN and LSTM to diagnose five classes

from an MIT-BIH dataset. Their model included convolutional,

pooling, LSTM, and fully connected layers. The LSTM layers handle

the extraction of temporal information from the feature maps created

by the convolutional layers. Thismodel achieved an accuracy of 98.10%.

3 Materials and methods

This section briefly explains the dataset, preprocessing, feature

extraction and selection, and the proposed transformer model

for CVD classification. The block diagram of the proposed

transformer-based classifier is given in Figure 1.

3.1 Dataset and preprocessing

This study used 1,200 ECG recordings from the MIT-BIH

PhysioNet database (37) containing 300 samples for each heart

disease, i.e., ARR, AFF, CHF, and NSR. All the recordings were

extracted using a sampling rate of 250 samples per second. Raw 3 s

ECG recordings after applying the Butterworth filter can be seen in

Figure 2. During recording and transmission, these ECG recordings

were contaminated with noise and artifacts. To remove noise and

artifacts, a Butterworth band-pass filter was applied, ensuring the

retention of critical ECG components. The Butterworth filter was

chosen due to its maximally flat frequency response in the

passband, minimizing distortion. A fourth-order Butterworth band-

pass filter with cutoff frequencies of 0.5 and 150 Hz was used to

eliminate baseline noise and high-frequency noise.

3.2 Feature extraction and selection

The proposed study used maximal overlap discrete wavelet packet

transform (MODWPT) to extract characteristics waves, heart rate

variability (HRV), and 54 other features. These features are provided

in Table 1. Mathematically, wavelet decomposition using MODWPT

is given as in Walden and Cristan (38) (Equations 1, 2):

eXP
j,n,t ¼

XL�1

l¼0

egn,leXP
j�1,[n=2]2 ,(t�2 j�1 l)N (1)

egn,l ¼
eal , if n4 ¼ 0 or 3;

ebl , if n4 ¼ 1 or 2:

�
(2)

where eXP
j,n,t are the MODWPT coefficients at time t, which are

typically associated with frequencies within the interval n
2 jþ1 ,

nþ1
2 jþ1

� �
.

The operator [ � ] denotes the integer part (or floor) operator. Four-
level symlet transform has been used to detect the characteristic

curves. Based on the four-level structure, the signal yields 16

coefficients, with the initial four utilized for signal reconstruction via

inverse MODWPT. The peak value of this reconstructed signal

corresponds to the R wave. The subsequent characteristic waves are

extracted using a suitable moving window technique.

• 1 feature as Heart beat per minute. In total, we have 54 features;

• 11 morphological features;

• 29 fiducial features;

• 4 statistical features;

• 9 HRV features.

Utilizing all 54 features for training and testing will significantly

increase the computational cost. There are a number of machine

learning methods that can be used to compute the feature

importance score. However, we have used RF, a method commonly

used for multi-class problems and dealing with dense problems

(39). RF is an effective technique that requires minimal parameter

tuning. RF consists of multiple binary DTs built on randomly

chosen subsets. One crucial characteristic of RF is the use of Out-

of-Bag (OOB) error estimation. OOB samples are not used in

training the current tree, which allows for internal estimation of

generalization error, thereby improving classification performance.

This feature is also essential for quantifying feature importance.

RF was chosen for feature selection due to its robustness to

noise and outliers, as it can handle noisy or non-linearly
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FIGURE 1

Block diagram of the proposed CVD classifier.

FIGURE 2

Raw 3 s ECG samples for CVDs.
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separable data efficiently, unlike linear techniques such as PCA

(40). RF assigns importance scores to features, ranking them

based on their contribution to classification accuracy.

Additionally, RF requires minimal parameter tuning compared to

methods such as least absolute shrinkage and selection operator

(LASSO), and it can handle high-dimensional data effectively by

modeling complex interactions between features through an

ensemble of decision trees, outperforming individual selection

methods such as mutual information or univariate filtering.

RF initially estimates the OOB error of each feature err(N j). It then

replaces the feature value with one of its values in the OOB set and re-

estimates theOOB error err(N
j

oob
). The importance score for a feature

is defined as the average absolute difference in OOB errors across all

trees. Figure 4 shows the feature importance score for each class

(Equation 3).

VI(N j) ¼ 1

nbtrees

Xnbtrees

t¼1

jerr(N j)(t) � err(N
j

oob
)(t)j (3)

Here, nbtrees represents the number of trees in the RF ensemble.

err(N j)(t) denotes the OOB error of feature N j in the tth tree, and

err(N
j

oob
)(t) denotes the corresponding error after swapping the

feature value.

3.3 Proposed methodology

This study proposed a novel transformer-based algorithm for

the classification of four classes of CVD. A transformer with

token mixers is proposed to capture information from temporal

textual information using selected ECG features underlying CVD.

This study proposed a token mixer for CVD classification. Since

the selected feature dataset consists of numerical feature values

and textual labels, we first performed PCA to visualize the data

in 2D space and select features with importance greater than

0.02, thereby reducing dimensionality. We then converted each

row of features into a textual string format (e.g., “QRtoQSdur:

0.001, RStoQSdur: 0.001. . .”). The label encoder was used to

convert the cardiac condition categories (such as “ARR”) into

numerical values for machine learning. These text strings were

tokenized using BERT’s tokenizer, which converts them into

numerical token IDs that BERT can process. Finally, the

tokenized data were converted into PyTorch tensors, and

DataLoaders were created for both training and validation.

3.3.1 Transformer layer formulation

Given the feature set FT ¼ {f i} [ R
len�df , a transformer block

for ECG classification can be expressed as follows (Equations 4, 5):

Yn ¼ TokenMixerclass/reg(Norm(Yn�1))þ Yn�1, (4)

Ynþ1 ¼ MLP(Norm(Yn))þ Yn, (5)

where n ¼ [1, 2, . . . ] denotes the number of layers in the

transformer blocks, Y0 ¼ FT , and the MLP consists of two linear

layers with rectified linear unit (ReLU) activation. Each linear

layer is followed by a dropout layer.

3.3.2 Token mixers for classification tasks

For the classification task, the Multi-Head Self-Attention

(MHSA) mechanism is used in the TokenMixer. This mechanism

emphasizes parts of the feature set FT that are highly correlated

with the cardiovascular state. The tokens in FT are linearly

projected into multiple groups of key (K i), query (Qi), and value

(V i) vectors using learnable parameters (Equation 6):

{Qi, K i, V i} ¼ LPi(FT) ¼ FTW
i
kvq, (6)

The scaled dot-product is employed as the attention mechanism to

capture long-term dependencies (Equation 7):

Attention(Q, K , V) ¼ Softmax
QKT

ffiffiffi
d

p
� �

V , (7)

where d is a scaling factor. The outputs from different heads are

stacked together (Equation 8):

MHSA(FT)¼ {Attention(LP0(FT )), . . . , Attention(LP
nhead�1

(FT ))},

(8)

Considering the temporal nature of ECG signals, a short-time

aggregation (STA) layer follows the MHSA to learn long-

term contextual information. The STA layer applies a 2D

convolution operation (Equation 9):

STA(Gatt)¼Reshape(Conv2D(drop(Gatt),Kconv))Wsta, (9)

where Conv2D(�) represents a 2D convolution operation, drop(Gatt)

denotes dropout, and Kconv is the convolution kernel. The reshaped

output is then projected using Wsta (Equation 10):

TokenMixerclass(FT )¼ STA(MHSA(FT)): (10)

A sample input data format for the transformer model is illustrated

in Figure 3. Table 2 shows the details of the hyperparameters used in

the proposed study. The AdamW optimizer was chosen for its

effectiveness in fine-tuning pre-trained models, handling large

parameter spaces, and ensuring stable convergence.

TABLE 1 Features from each ECG recording.

Feature type Features

Morphological features P duration, QRS duration, T duration, one cycle

duration of ECG signal, QRS area, QRS perimeter, and

Angles:/PQR,/QRS,/RST,/PonPQ, and /STToff

Fiducial features Distance features (permutation of distances between

each characteristic wave), slope features (PQ, QR, RS,

and ST slopes), and interval features (PQ, PT, QR, QT,

RS, and ST segments)

Statistical features RR mean, PP mean, ratio of QR to QS interval, and

ratio of RS to QS interval

Heart rate variability

(HRV) features

IBIM, SDRR, IBISD, NN50, pNN50, SDSD, RMSSD,

RRTot, and NNTot
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3.4 Evaluation metrics

The evaluation metrics for CVD classification are mainly divided

into four main types: accuracy (Acc), precision (Pre), recall (Rec), and

F1-Score. Mathematically, these metrics are given as (Equation 11)

Acc ¼ 1

N

XN

i¼1

I(ŷi ¼ yi) (11)

where

• N is the total number of samples.

• I(�) is an indicator function that equals 1 if the condition is true

and 0 otherwise.

• ŷi is the predicted class.

• yi is the true class.

Precision, recall and F1 score has been calculated for each class.

Mathematically, these are given as (Equations 12–14)

Prec ¼
TPc

TPc þ FPc
(12)

where

• TPc is the number of true positives for class c.

• FPc is the number of false positives for class c.

Recc ¼
TPc

TPc þ FNc
(13)

where

• FNc is the number of false negatives for class c.

F1-scorec ¼ 2 � Prec � Recc
Prec þ Recc

(14)

where

• Prec is the precision for class c.

• Recc is the recall for class c.

FIGURE 3

Sample inputs to the proposed transformer model.

FIGURE 4

Feature importance score for each heart disease class.
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4 Results and discussion

All the experiments were conducted in Python using a

2.50 GHz 12th Gen Intel(R) Core(TM) i9-12900H. In the

proposed study, RF was used to calculate the feature importance.

First, RF was trained using the training data. The importance of

the feature was then calculated and stored. Finally, a reduced

number of features were selected on the basis of their importance

in each class. The proposed study used a trial-and-error

approach, testing various threshold values and selecting 0.02

because it resulted in the highest classification precision while

minimizing redundancy. This selection ensured that only the

most relevant features were retained for optimal model

performance. Figure 4 shows the feature importance scores for

each heart disease class.

The confusion matrix is shown in Figure 5. The evaluation

metrics, calculated using the confusion matrix, are also shown in

Table 3. We evaluated the proposed study using the evaluation

metrics given in Section 3.4. The proposed study achieved an

overall notable test accuracy of 99.79%.

The proposed model avoids overfitting through a 70-10-20 split

for training, validation, and testing, to ensure independent evaluation

at each stage. The accuracy remained consistent across all three sets,

confirming robust generalization without performance degradation.

Additionally, to address concerns of overfitting, regularization

techniques such as dropout layers and weight decay were applied,

ensuring that the model did not rely too heavily on specific patterns.

To demonstrate the necessity of each component in our proposed

architecture, we conducted an ablation study by systematically

removing or replacing different components. We tested several

variations, including a baseline model without feature selection,

which used all 56 extracted features without RF-based selection,

resulting in an accuracy drop of 2.3%. Additionally, replacing the

transformer with a CNN reduced accuracy by 6.28%, highlighting

the effectiveness of the transformer model for ECG classification.

Furthermore, to validate the claimed improvements, we performed

statistical significance tests, comparing our model’s accuracy with

existing models such as a multi-layer perceptron (MLP) and a

CNN using the paired t-test and the Wilcoxon signed-rank test.

The paired t-test resulted in a p-value of 0.0125 for the CNN and

0.0138 for the MLP, indicating that our model’s improvements

were statistically significant. The Wilcoxon signed-rank test yielded

a p-value of 0.0625 for both the CNN and MLP, further

confirming the robustness of our method. These results suggest

that the improvements observed in our proposed transformer-

TABLE 2 Training hyperparameters.

Optimizer Learning rate Epochs Batch size Sequence length Evaluation metric

AdamW 0.00005 5 2 128 tokens Training loss

FIGURE 5

Confusion matrix of the proposed CVD classifier.
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based approach are not due to random chance but rather to the

architectural choices made in this study.

The area under the receiver operating curve (ROC) provides an

aggregate measure of performance across all thresholds. Figure 6

shows the ROC curves for each CVD class on the test set. It can

be seen that the area under the ROC is 100%.

In addition to the proposed CVD classification performance,

Table 4 provides a comparison with existing algorithms. From

the table, it can be seen that the proposed algorithm

outperformed all existing algorithms for CVD classification. The

results of all evaluation metrics are better compared to the

previously proposed algorithms.

To assess the feasibility of deploying the proposedmodel in clinical

settings, we analyzed its computational complexity and real-time

performance. The average inference time per ECG sample for the

transformer model was 0.022776 s for a batch size of 1, increasing to

0.425322 s for a batch size of 64. This indicates that the model is

suitable for real-time applications, especially with smaller batch sizes.

The memory footprint of the transformer model, which can be

considered a limitation, is approximately 2.656 GB. However, the

transformer-based model is optimized for parallel processing on

GPUs, allowing efficient handling of large-scale ECG datasets.

The proposed algorithm worked very well for cardiovascular

disease detection and classification; however, there are some

limitations that need to be addressed. First, the proposed study

used four cardiovascular diseases; however, there was no normal

class, therefore we could not compare the results of a normal

class against each class of cardiovascular disease. The exclusion

of a normal class limits the model’s ability to distinguish between

healthy individuals and those with cardiovascular diseases,

potentially leading to false positives if applied to a dataset

containing healthy patients. The proposed dataset used in this

study is an dataset available online, and it does not contain a

normal class, which is the reason for its exclusion from the

TABLE 3 Performance metrics for different cardiovascular conditions.

Performance metrics Atrial fibrillation Arrhythmia Congestive heart failure Normal sinus rhythm

Acc 0.9958 1.0 0.9958 1.0

Sen 1.0 1.0 0.9833 1.0

Spe 0.9944 1.0 1.0 1.0

Pre 0.9836 1.0 1.0 1.0

F1 score 0.992 1.0 0.9916 1.0

FIGURE 6

ROC for the proposed CVD classifier.
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proposed model. It is recommended to add a normal class along

with the diseases to have a broader and real-world example.

Second, the proposed study used hand-crafted features extracted

from ECG signals. These hand-crafted features, along with

feature selection, require computational time and prior subject

knowledge. The proposed model can be extended by integrating

a 1D CNN to automatically extract features from raw data. This

would allow the proposed architecture to function as a hybrid

model, combining automatic feature extraction with advanced

classification capabilities, making it adaptable to a broader range

of real-world applications.

5 Conclusion

The results of the proposed transformer model demonstrate

that a transformer-based algorithm can effectively classify four

classes of CVD. Initially, 54 morphological, fiducial, statistical,

and HRV features were extracted from 3 s ECG data. A random

forest algorithm was then used for prominent feature selection.

After feature selection, these features were transformed into text

and provided as input to the proposed transformer model. The

model achieved an impressive accuracy of 99.79%. Due to the

absence of a post-processing step, this model is well-suited for

real-world applications.
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TABLE 4 Comparison of different methods and their performance metrics.

References Method Performance Class Dataset

Çínar and Tuncer (41) Hybrid model A = 96.77% ARR MIT-BIH (PhysioNet)

Pre-trained CNN A = 96.77% CHF

AlexNet—SVM (DWT

spectrograms)

A = 100% NSR

A = 96.77% Overall

Li et al. (42) CNN–SVM (Hybrid model) A = 96.06% AFF, normal (overall) West China Hospital, Sichuan

University

Qayyum et al. (43) 2D STFT MIT-BIH (PhysioNet)

Pre-trained CNN

(Hybrid model) AFF, normal, noisy, other rhythms

AlexNet—SVM A = 93.5%

AlexNet—ensemble A = 91.5% (overall—multi-class)

VGGNet—SVM A = 97.8%

VGGNet—ensemble A = 96%

Alekya et al. (44) 2D CWT scalograms ARR, AFF, CHF, and NSR (overall—multi-

class)

MIT-BIH (PhysioNet)

Pre-trained CNN

(Hybrid model)

1 VGG16Net A = 95.3%

2 VGG16Net—SVM A = 95.83%

3 VGG16Net—KNN A = 96.67%

4 VGGNet—random forest A = 96.94%

Current study Transformer-based algorithm MIT-BIH (PhysioNet)

AFF A = 99.58%

ARR A = 100%

CHF A = 99.58%

NSR A = 100%

Overall A=99.79%

STFT, short-time Fourier transform, DWT, discrete wavelet transform; AFF, atrial fibrillation.
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