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Early diagnosis and accurate prognosis play a pivotal role in the clinical
management of cancer and in preventing cancer-related mortalities. The
burgeoning population of Asia in general and South Asian countries like India
in particular pose significant challenges to the healthcare system. Regrettably,
the demand for healthcare services in India far exceeds the available
resources, resulting in overcrowded hospitals, prolonged wait times, and
inadequate facilities. The scarcity of trained manpower in rural settings, lack of
awareness and low penetrance of screening programs further compounded
the problem. Artificial Intelligence (AI), driven by advancements in machine
learning, deep learning, and natural language processing, can profoundly
transform the underlying shortcomings in the healthcare industry, more for
populous nations like India. With about 1.4 million cancer cases reported
annually and 0.9 million deaths, India has a significant cancer burden that
surpassed several nations. Further, India’s diverse and large ethnic population
is a data goldmine for healthcare research. Under these circumstances, AI-
assisted technology, coupled with digital health solutions, could support
effective oncology care and reduce the economic burden of GDP loss in
terms of years of potential productive life lost (YPPLL) due to India’s
stupendous cancer burden. This review explores different aspects of cancer
management, such as prevention, diagnosis, precision treatment, prognosis,
and drug discovery, where AI has demonstrated promising clinical results. By
harnessing the capabilities of AI in oncology research, healthcare professionals
can enhance their ability to diagnose cancers at earlier stages, leading to
more effective treatments and improved patient outcomes. With continued
research and development, AI and digital health can play a transformative role
in mitigating the challenges posed by the growing population and advancing
the fight against cancer in India. Moreover, AI-driven technologies can assist in
tailoring personalized treatment plans, optimizing therapeutic strategies, and
supporting oncologists in making well-informed decisions. However, it is
essential to ensure responsible implementation and address potential ethical
and privacy concerns associated with using AI in healthcare.
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1 Introduction

1.1 Cancer care in India: challenges and
solutions

According to The World Bank report, 2024, India has become

the most populous country surpassing China in 2022, with over

1.417 billion inhabitants, the majority of whom were under 25

(1). The size and growing pace of the Indian population present

various concerns. It puts an enormous strain on healthcare,

education, infrastructure, environment, and employment

opportunities. Providing proper healthcare services to such a

large population is a significant challenge.

Cancer is a foremost cause of death worldwide due to its high

mortality rate. According to the International Agency for Research

on Cancer (IARC), in the year 2022, mortality and incidence count

were 9.7 million and 19.9 million, respectively. Number of new

cancer cases are speculated to rise to 35 million in 2050 (2). The

Indian population alone accounts for incidence and mortality

rates of 1.4 million and 0.9 million, respectively, in 2022

(Figure 1a,b). Most of the deaths reported in India were from

breast cancer and cervix uterine cancer in females. Whereas,

cancers of the lip/oral cavity, lung, oesophagus and stomach

topped the list in Indian males (Figure 1c). Oncology care is,

therefore one of the fastest growing therapeutic fields. Early

diagnosis and prognosis of a cancer type have become a necessity

in oncology research, as it can facilitate the subsequent clinical

management and prevention of death in cancer patients.

Cancer Burden: With more than one million cancers diagnosed

every year in India, early identification and management are critical

for developing a robust oncology care system in the country. This

urgency is amplified by the vast population and the resultant

burden on the healthcare infrastructure. However, population

demand for healthcare services outstrips available resources in

India, resulting in congested healthcare facilities, excessive

waiting times, and often substandard services.

Rural-Urban Disparities: Rural communities frequently have

insufficient healthcare facilities and poor infrastructure resulting

in healthcare inequities across urban and rural populations. In

the absence of proper logistics, people, particularly those in

remote areas, are often deprived of quality healthcare services.

For instance, the lack of transportation options and healthcare

centres within a reasonable distance can lead to delayed

diagnoses and treatments, significantly affecting patient outcomes.

Shortage of Healthcare Specialists: To meet the people’s

demands, an adequate number of healthcare specialists is also

necessary. Yet, nurses, doctors, pathologists, specialized
Abbreviations
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oncologists, and other medical personnel are in limited supply in

India. Considering the number of allopathic doctors, the doctor-

to-patient ratio is much lower than the World Health

Organisation’s (WHO) recommended guidelines of 1 per 1,000

population (3, 4). This scarcity can result in increasing

workloads, fatigue among healthcare personnel, and a reduction

in the quality of care, impacting the timely diagnosis and

treatment of a significant number of patients.
1.2 How artificial intelligence can assist

Artificial Intelligence (AI) can assist India and other countries

in overcoming healthcare challenges brought on by their large

population. With AI and machine learning solutions, any large-

scale cancer intervention may be successfully implemented, apart

from making it more accurate and accessible. For instance, AI-

driven diagnostic tools can analyse vast quantities of medical

images and patient data to detect cancer at earlier stages with

higher precision than traditional methods. These tools enable

healthcare providers to identify subtle patterns and anomalies

that might escape the human eye, significantly improving early

detection rates. Similarly, AI-assisted surgery, which integrates

robotics and machine learning, can enhance precision, reduce

recovery times, and improve surgical outcomes.

AI also alleviates the burden on healthcare professionals by

automating routine and repetitive tasks. Tasks such as patient

data entry, appointment scheduling, and medication management

can be streamlined through AI, allowing medical staff to focus

more on patient care and less on administrative duties.

Additionally, AI-powered monitoring tools can track patient

conditions in real-time, alerting healthcare providers to critical

changes, thereby enhancing patient safety and reducing the

workload on medical teams.

AI-powered telemedicine platforms are particularly

transformative in bridging the gap between patients and

healthcare providers, especially in remote and underserved areas.

These platforms enable patients to access medical consultations,

follow-ups, and diagnostic services without the need for long-

distance travel, ensuring that quality healthcare reaches even the

most marginalized populations.

However, realizing AI’s transformative potential in healthcare

requires addressing several challenges. Key among these are the

development of robust data infrastructure, the implementation of

stringent data privacy regulations, and the establishment of

secure, ethical data-sharing practices to protect patient

confidentiality. Additionally, significant investments in
dvantage actor-critic; AR, augmented reality; BCSC, breast cancer surveillance
m; CNNs, convolutional neural networks; DL, deep learning; DDR1, discoidin
a; HPV, human papilloma virus; IARC, International Agency for Research on
rge language models; ML, machine learning; MCTS, Monte Carlo Tree Search;
atural language processing; PCAWG, Pan-Cancer Analysis of Whole Genomes;
d controlled trials; RNNs, recurrent neural networks; SNPs, single nucleotide
las; VR, virtual reality; WHO, World Health Organisation’s; YPPLL, years of

frontiersin.org

https://doi.org/10.3389/fdgth.2025.1550407
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 1

Charts showing the estimates of new cases and deaths due to different types of cancer during the year 2022 in (a) Worldwide (Top 15 cancer sites); (b)
India (both sexes) (Top 10 cancer sites); (c) deaths in India males, females (Top 10 cancer sites) (Data Source: GLOBOCON 2022; International Agency
for Research on Cancer).
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technological infrastructure and the development of a skilled AI

workforce are critical for effective implementation.

This review offers a comprehensive examination of AI’s

applications across various aspects of cancer management,

including prevention, diagnosis, precision treatment,

prognosis, and drug discovery. It also provides a detailed

discussion on the roadmap and recommendations for

integrating AI and telemedicine into India’s oncology care

landscape, while addressing the inherent challenges of AI

adoption and highlighting recent advancements that tackle

these critical issues. To refer to the detailed workflow

methodology for article collection, please see Box 1.
1.3 What is artificial intelligence

AI is a field of research in which smarter algorithms are

applied to mimic human intelligence (5). AI seeks to make it

possible for machines to emulate and mimic human cognitive

functions such as learning, reasoning, problem-solving,

perception, and decision-making. Further, it can perform

multitasking surpassing human abilities. It is a multifaceted

field encompassing numerous specialized areas, such as (i)

Natural Language Processing (NLP), it focuses on

understanding and generating human language, covering

applications like sentiment analysis and chat-bots (6); (ii)

Computer Vision, it deals with visual data, enabling tasks such

as object detection and facial recognition (7); (iii) Robotics, it
BOX 1 Workflow methodology for article collection.

The purpose of this review was to analyse the role and

impact of artificial intelligence (AI) in the field of oncology.

A comprehensive search was conducted using the PubMed

academic database, employing search query with keywords

such as “(((Artificial Intelligence) OR (Machine Learning))

AND ((Cancer) OR (Oncology)))” in the title or abstract of

the articles published during last 10 years. Initially, 12,856

articles published had been identified. 41 more articles were

included from citation search and other sources.

Articles with non-relevant study designs (Interviews,

Autobiography, Editorials, Commentaries, Video-Audio

Media) were excluded (n = 5,955). The collection was

further refined based on four exclusion criteria, removing

articles in the following categories: (i) non-English language

(100 articles), (ii) Restricted access (2,404 articles), (iii)

non-relevant articles (3,457 articles) and (iv) Redundant

Findings/Applications/Methodology (741 articles). After

applying these filters, 240 relevant articles remained, which

were then analysed to understand the impact and role of

AI in oncology (Figure 3).
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combines hardware and software to create autonomous

machines. Robotics has the potential to revolutionize

industries like healthcare, transportation, and manufacturing

(8); (iv) Social intelligence, is the ability of artificial systems to

understand, interact with, and respond to humans in a socially

and emotionally intelligent manner such as emotional

recognition and feedback & learning (9). Machine learning

(ML) is a sub-discipline of AI, that employs sophisticated

algorithms on large-scale heterogeneous datasets to uncover

valuable patterns that would otherwise be difficult or

impossible to identify even for highly trained individuals (10).

It is built upon three fundamental approaches or paradigms.

Supervised Learning, the most common of these paradigms,

involves training algorithms on labelled data to predict

outcomes or make classifications on new, unseen data

[popular models: Support Vector Machine (SVM), Random

Forest and Regression]. On the other hand, unsupervised

Learning operates without labelled data, instead uncovering

hidden patterns and structures within datasets, frequently

employed in clustering and dimensionality reduction tasks

(popular models: K-means, t-SNE and PCA). Reinforcement

Learning, the third paradigm, focuses on sequential decision-

making, where an agent learns to interact with an

environment to maximize cumulative rewards through trial

and error [popular models: Q-learning, Monte Carlo Tree

Search (MCTS) and Asynchronous Advantage Actor-Critic

(A3C)] (11). Deep Learning (DL) is a subset of ML that uses

neural network-based models to simulate the human brain’s

capacity for processing enormous amounts of complex data,

including, but not limited to, image recognition, language

processing, and drug discovery, all of which serve as a

decision support system for researchers (Figure 2). Deep

learning comprises a wide array of approaches and

architectures that have propelled machine learning to new

heights. Among these, Multilayer Perceptrons (MLPs) serve as

the foundational building blocks, suitable for diverse tasks like

regression and classification. Convolutional Neural Networks

(CNNs) excel in processing grid-like data such as images,

while Recurrent Neural Networks (RNNs) are designed for

sequential data like time series and text. Transformers, with

their self-attention mechanisms, have revolutionized natural

language understanding. Autoencoders, another vital

component, are employed for unsupervised learning and

feature extraction, finding applications in dimensionality

reduction and image denoising (12). Multimodal Large

Language Models (MLLMs) and Large Language Models

(LLMs) are part of both the Deep Learning and Natural

Language Processing (NLP) domains. Large Language Models

(LLMs) are designed to understand, generate, and analyse

human language, significantly enhancing natural language

processing tasks. MLLMs extend beyond LLMs by integrating

multiple types of data, such as text, images, and audio,

allowing them to handle multimodal information (13). These

diverse deep-learning approaches are tailored to various data

types and problem domains, marking them as the forefront of

modern AI research and applications (Table 1). Since the
frontiersin.org
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FIGURE 2

Artificial intelligence and its sub-disciplines. Although weak AI (ANI), and strong AI (AGI) are broadly defined based on their rigorous nature, there are
other subfields of AI based on their applications. This includes- machine learning, which can be used to make predictions, classify data, and make
decisions; deep learning, capable of learning complex patterns in data; Natural Language Processing for addressing the meaningful content of
text-by-text miming and for translating languages) and computer vision (for images and video information) and Robotics for performing
complex tasks.
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human mind is only able to analyse a finite amount of data in a

short duration of time, the exponential rise of AI over the last

decade implies that it can serve as a sophisticated platform

supporting human experts or clinicians to make the best

possible decisions.
2 Artificial intelligence in oncology
care

The AI approaches are already used widely in science and

society for everything from clinical trials to robotics to self-driving

cars. The power of machine learning has been demonstrated in

healthcare by work on the human genome project, initiatives in

cancer omics [such as The Cancer Genome Atlas (37), the

International Cancer Genome Consortium, and the Clinical

Proteomic Tumour Analysis Consortium], as well as numerous

international machine learning competitions like the DREAM

challenges (38, 39). When it comes to cancer detection, diagnosis,

and treatment, the ability to gather and analyse sizable datasets

on medical treatments and outcomes holds great promise for

transforming medicine into a data-driven, outcome-oriented field.

Early usages of machine learning in diagnosis and treatment have

shown promise in detecting breast cancer from x-rays (40, 41),

discovering new antibiotics (42), predicting gestational diabetes

onset from electronic health records (43), and identifying clusters
Frontiers in Digital Health 05
of patients who share a molecular signature of treatment response

(44). AI-based algorithms hold great promise to pave the way to

identify genetic mutations and aberrant protein interactions that

can lead to disease diagnosis at a very early stage. AI-powered

telemedicine and remote diagnosis can also aid in treatment

planning and resource optimization for patients based on age,

medical history, and genetic makeup. This personalized approach

to disease treatment has the potential to improve patient

outcomes. Government institutions as well as numerous other

healthcare groups, find enormous potential in AI for enhancing

cancer care.

In the context of oncology, with the advancement of

technology more and more clinical data is being generated every

day, and AI has become essential for the automated analysis of

massive patient data, such as biomedical images, genetic profiles,

health reports, molecular tests, etc. to detect abnormalities/

patterns and forecast the possibility of cancer or response to

treatment. AI can improve the efficiency and accuracy of

personalized risk assessment, early diagnosis, staging,

therapeutics, clinical decision-making, prognosis, and survival

predictions (Figure 5). In India, institutions like the All-India

Institute of Medical Sciences (AIIMS) and various state-run

healthcare facilities are exploring AI’s potential to enhance

cancer care. We provide here an overview of some major areas of

oncology and research where AI can have substantial

influence (Table 2).
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TABLE 1 Comparison of various AI models/algorithms with their applications in healthcare.

Algorithm/Model Description Applications in healthcare

Supervised learning
Decision trees (CART, C4.5) Decision trees are models that use a tree-like graph of decisions and their

possible consequences. Each node represents a decision point, and the
branches represent the outcomes. They are intuitive and easy to interpret.

Diagnostic decision support, predicting disease
progression (14).

Random forests (RandomForestClassifier) Random forests are ensembles of decision trees that aggregate the results of
multiple trees to improve accuracy and control overfitting. They are robust
against noise and have high predictive performance.

Patient risk assessment, predicting treatment
outcomes (15).

Support vector machines (SVM) SVMs are supervised learning models that find the hyperplane that best
separates data into classes. They are particularly effective for high-
dimensional data.

Disease classification, identifying biomarkers (16,
17).

Unsupervised learning
K-means algorithm K-means clustering is an algorithm that partitions data into k clusters,

where each data point belongs to the cluster with the nearest mean. It is
simple and efficient.

Patient segmentation, clustering symptoms for
diagnosis (18).

DBSCAN algorithm DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is
an algorithm that forms clusters based on density. It can find clusters of
arbitrary shape.

Anomaly detection, identifying outliers in
medical data (19, 20).

Principal component analysis (PCA)
algorithm

PCA is a dimensionality reduction technique that transforms data into
principal components, capturing the most variance with the fewest
components.

Data visualization, noise reduction in medical
data (21).

Reinforcement learning
Q-Learning Q-Learning is a reinforcement learning algorithm that learns the value of

actions in states to achieve the highest cumulative reward.
Personalized treatment planning, optimizing
clinical workflows (22).

Deep Q-network (DQN) DQN combines Q-Learning with deep neural networks to handle high-
dimensional data. It is effective in applications where complex decision-
making is needed.

Robotic surgery, real-time treatment adaptation
(23).

Proximal policy optimization (PPO) PPO is a policy gradient method for reinforcement learning that balances
exploration and exploitation. It provides stable training.

Adaptive therapies, dynamic treatment strategies
(24).

Neural networks
Convolutional neural network (CNN)
(LeNet, AlexNet, VGG, Inception)

CNNs are specialized neural networks for processing grid-like data such as
images. They consist of convolutional layers that extract features from
images and are highly effective in medical image analysis.

Detecting tumors in radiology images (25).

Recurrent neural network (RNN) (LSTM,
GRU)

RNNs are neural networks designed for sequential data. They use loops to
maintain context over sequences and are used in healthcare for analysing
patient records and predicting health outcomes over time.

Time-series health predictions (26).

Multilayer perceptron (MLP) (feedforward
neural network, MLP classifier)

MLPs are classic neural networks with multiple layers of neurons. They are
versatile and used in various healthcare applications.

Predicting disease outbreak, drug response
prediction (27).

Autoencoder (variational, sparse
autoencoder)

Autoencoders are neural networks that learn to encode data efficiently,
reducing its dimensions and reconstructing it from the encoding.

They are used for detecting anomalies in patient
data and compressing large datasets (28).

Natural language processing (NLP)
Bidirectional encoder representations from
transformers (BERT)

BERT is a transformer-based model that pre-trains on large text corpora to
understand context.

It enhances clinical documentation and extracts
insights from electronic health records (EHRs)
(29).

Large language models (LLMs)
Generative pre-trained transformer
(GPT3,4)

GPT is a language model designed for text generation and understanding. Text-based clinical decision support, medical
literature review (30, 31).

Text-to-text transfer transformer (T5) T5 converts all NLP problems into a text-to-text format. Summarizing medical documents, translating
medical texts (32).

Multimodal large language models (MLLMs)
Contrastive language-image pre-training
(CLIP)

CLIP integrates text and image data, allowing for advanced multimodal
analysis.

Analysing medical images with textual reports,
multimodal diagnostics (33).

Multi-modal vision and language model
(VisualBERT)

VisualBERT combines visual and textual information, enabling tasks like
visual question answering and generating image-based medical reports. It
captures relationships between images and text effectively.

Visual question answering, generating image-
based medical reports (34).

Unified transformer (UniT) UniT processes multiple data modalities, making it versatile for complex
healthcare tasks that require integrating diverse data types.

Multimodal data interpretation, combining
patient imaging and clinical notes (35).

Robotics
Robotics (Da Vinci surgical system, intuitive
surgical)

The use of programmable machines to perform tasks autonomously or
semi-autonomously.

Surgical assistance, patient rehabilitation,
telemedicine, diagnostics, and stroke
rehabilitation (36).

Goel et al. 10.3389/fdgth.2025.1550407
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TABLE 2 Applications of AI in oncology care.

Applications of AI Description Benefits
1. Predictive analytics Accurate prediction of cancer occurrence in high-risk individuals and timely

identification of asymptomatic cancer patients utilizing AI-based algorithms
trained on diverse datasets, including:
i). Medical imaging (Breast Mammograms, Chest x-Rays),
ii). Large-scale genomic datasets (Cancer-related mutations/variants,

metabolic biomarkers, signatures of DNA methylation, expression
profiles of cancer-related genes or non-coding RNAs),

iii). Comprehensive electronic health records data (Patients’ medical history,
family history, demographics, test reports)

Enables early intervention, potentially reducing cancer incidence.
Improves patient outcomes and survival rates through timely
treatment.

2. Cancer diagnosis and
staging

Accurate diagnosis of cancer and classification into Grade/Stage & Primary
Site/Histological Type utilizing AI-driven platforms that can integrate
multimodal datasets such as:
i). Radiological Images (CT, x-rays, MRI, PET scans, and ultrasound),
ii). Videos (such as colonoscopy for malignant polyps),
iii). Fundus images for the identification of retinoblastomas,
iv). Digitized H&E-stained slides from core needle biopsies,
v). Dermoscopy images for Skin Cancer,
vi). Large-scale genomic data (mutational signatures, gene expression, DNA

methylation, miRNA profiles), vii) Peripheral blood biomarkers (protein
biomarkers, circulating cell-free tumour DNA) from liquid biopsies

Enhances early detection, leading to better treatment outcomes.
Reduces diagnostic errors and enhances accuracy.

3. Treatment and
response assessment

Personalized Treatment: Clinical Decision Support System (CDSS) for data-
driven personalized cancer therapy recommendations, integrating automated
radiation therapy plans based on radiological data, genomic information, and
medical records. AI-Assisted Surgery: Enhanced preoperative surgical
planning, intraoperative navigation with real-time feedback using AR/VR
technologies, and postoperative monitoring using data feeds from monitoring
devices. AI-programmed robotic surgery for increased accuracy and
minimizing human error. Prognosis/Survival Prediction: Enhancing precision
in forecasts for chemoresistance, cancer recurrence, and survival outcomes
using multimodal AI algorithms that can integrates multi-omics data and
other complex multi-dimensional datasets.

Optimizes treatment plans for individual patients. Enhances
treatment efficacy and minimizes adverse effects. Improves overall
patient care and satisfaction.

4. Telemedicine/Remote
monitoring

Apps/Websites: AI-powered chatbots and virtual assistants for preliminary
assessments, symptom tracking, diagnosis, connecting with a specialised
doctor (telemedicine), tele-education, basic medical advice, medication
reminders, community support. Wearable Devices: AI-powered real-time
remote monitoring of behavioural patterns (Sleeping habits, physical activity,
heart rate, stress levels) and Cell phone images for remote patient monitoring,
cancer risk prediction, ultra-personalized diagnosis and treatment
recommendations.

Improved access to healthcare services, especially in remote or
underserved areas. Reduces the need for in-person visits and
hospital readmissions.

5. Novel discovery Drug Targets/Biomarkers: AI-driven prediction of therapeutic targets in
oncology utilizing population-specific publicly available mutation/loss-of-
function screen profiles, gene expression datasets, and clinical data. Drug
Designing: AI-powered tools like AlphaFold, DeepNeuralNetQSAR,
DeepChem, DeepTox, and gene2drug for the prediction and identification of
drug molecules with enhanced biochemical properties for improved sensitivity
and specificity, alongside a reduced risk of adverse effects. Additionally,
optimisation of existing drugs with enhanced biochemical properties for better
performance. Clinical Trial: Enhanced patient eligibility decisions, automated
patient recruitment processes, optimized trial design, and real-time
monitoring of patient adherence to protocols for significantly improved overall
efficiency and effectiveness of cancer clinical trials.

Speeds up the drug discovery process, leading to innovative
treatments. Reduces research and development costs and time
with improved success rates.

Goel et al. 10.3389/fdgth.2025.1550407
2.1 AI for cancer risk predictive analytics and
early intervention

The first step in managing cancer is to prevent it, and the key to

that is to identify those who are most at risk of contracting the

disease. A quick and early mass screening is required for a

population to address its health priorities. As a result, automated

AI-based methodologies are now required over manual ones like

breast examinations, Pap Smears, HPV tests or visual inspections.

Incorporation of AI-based programs in routine healthcare can
Frontiers in Digital Health 07
transform cancer care in India by identifying high-risk

asymptomatic individuals so that timely preventative policies like

vaccinations and lifestyle modifications can be devised

and recommended.

Researchers globally, including those in India, have successfully

developed AI-based programs to analyse diverse forms of

biomedical imaging data for the early prediction of cancer. An

AI-based algorithm was implemented (53), in a study published

in the Journal of the National Cancer Institute to forecast the

risk of breast cancer based on mammograms and clinical data.
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BOX 2 AI-workflow for image-based classification of breast
mammograms.

The basic workflow begins with data collection from

breast cancer biobanks, ensuring a diverse and

comprehensive dataset, such as The Cancer Imaging

Archive (TCIA) (45). Next, data preprocessing steps,

including normalization using tools like ImageJ (46) and

augmentation methods such as rotation, scaling, and

flipping via libraries like TensorFlow and Keras, are

performed to enhance the quality and variability of the

data (47, 48). The dataset is then split into training (80%)

and test datasets (20%) using methods such as stratified

sampling to enable robust model validation (49). During

model selection, various architectures are considered, with

a focus on convolutional neural networks (CNNs) like

VGG16x (50) or ResNet (51) due to their proficiency in

image analysis. Model training involves feature extraction

through convolutions and pooling layers, using frameworks

like PyTorch (52) or TensorFlow (47), followed by

classification. The model outputs a probability score

indicating the likelihood of malignancy, which is used to

categorize the mammogram as benign, malignant, or

requiring further review. The trained model is evaluated

against the test set using metrics such as accuracy,

sensitivity, specificity, and AUC-ROC curves (49). If the

performance is suboptimal, hyperparameter optimization

techniques, such as grid search or random search via tools

like Scikit-Learn, are applied. Conversely, a well-performing

model undergoes clinical validation with real-world datasets

to ensure its reliability. Finally, a monitoring and feedback

loop is established to continuously assess and refine the

model, incorporating new data and improving accuracy

over time through continuous integration/continuous

deployment (Figure 4).
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According to Rodriguez-Ruiz et al., the algorithm had a 70.4%

accuracy rate in predicting women at a high risk for developing

breast cancer within 5 years. In a recently published study, it was

concluded that integrating 5 different AI-based deep learning

algorithms outperformed cancer risk as predicted by the Breast

Cancer Surveillance Consortium (BCSC). This was further

enhanced by combining AI and BCSC models (54). Specifically

in Breast Cancer screening, tools like ScreenPoint Medical’s

Transpara, CureMetrix’s cmAssist, Qlarity Imaging’s QuantX AI

algorithms and BUCAD claim to support the identification of

cancer-specific indicators through mammography, MRI or

ultrasound images for improved accuracy and efficiency of early

detection (55–58). Various other studies have also assessed the

capability of mammography-trained AI systems to show

significant gains in risk prediction compared to clinical risk

models alone (59, 60). For a detailed overview of the AI-

workflow for image-based classification of breast mammograms,

please refer to Box 2. A deep learning-based CNN model could

enhance screening by forecasting the likelihood of lung cancer

among asymptomatic smokers using chest x-rays and limited

EHR data (61). An individual’s predisposition to developing

certain cancers can also be predicted using AI by analysing

large-scale genomic datasets (62). Google created a deep

learning-based AI algorithm called DeepVariant to discover

genomic variants from sequencing data. It has been used in

cancer genomics to accurately identify cancer-related mutations

and forecast the likelihood of developing the disease. Breast and

lung cancer are just two cancer types where the algorithm has

demonstrated promising results (63). In one of their research,

Listgarten et al. created an SVM machine learning model to

utilize single nucleotide polymorphisms (SNPs) profiles of

steroid metabolizing enzymes (CYP450s) to precisely predict

the development of “spontaneous” breast cancer. AI-generated

Polygenic Risk Scores (PRS) to evaluate a person’s chance of

acquiring certain cancer has been developed using genetic data

from numerous variants. PRS has been successfully employed in

the assessment of multiple cancers and is shown to support

individualized risk assessment by categorizing people into

several risk groups (64–66). Other than genomic variants,

metabolic biomarkers, signatures of DNA methylation and

expression profiles of cancer-related genes or non-coding RNAs

can predict an individual’s predisposition to certain cancers or

their response to a treatment regime. Employing machine

learning strategies to forecast the likelihood of acquiring cancer

based on the above metrics is increasingly becoming common

in oncology care (67–72). AI can also find patterns and

relationships associated with cancer risk using comprehensive

electronic health records data. Patients’ medical history, family

history, medication history, demographics, age, gender, clinical

notes, test reports, symptoms, and treatment outcomes can all

be fed into an AI model to predict the likelihood of developing

cancer. Automated models to predict breast and lung cancer (42,

73–75), using a combination of the above-mentioned clinical

records are already being developed and successfully implemented.
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Given India’s resource limitations and cultural challenges,

efforts are underway to create affordable and accessible cancer

screening solutions (76). The Indian MegCan Care project, a

collaborative AI-driven initiative by the Meghalaya

government, Apollo Telemedicine Networking Foundation, and

the World Economic Forum, seeks to provide free cancer

screening to one million individuals. It focuses on early

detection of oral, breast, cervical, lung, and esophageal cancers,

aiming to enhance timely diagnosis and patient outcomes

through widespread screening programs (77). Innovations like

Thermalytix, a radiation-free AI tool using thermal imaging,

demonstrate significant promise for population-level breast

cancer screening in resource-constrained settings, boasting a

positive predictive value of 81% (78).
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FIGURE 3

Workflowmethodology for article collection. This workflow provides a detailed overview of the process used for the article collection in our review on
the role and impact of AI in oncology. The workflow highlights the key stages, from identification and screening to eligibility assessment and final
inclusion of relevant studies.
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FIGURE 4

AI workflow for image-based classification of breast mammograms (240). This schematic illustrates the step-by-step workflow of an AI system using a
Convolutional Neural Network (CNN) algorithm. Key stages include data collection, preprocessing, training/testing split, model selection, feature
extraction, classification, evaluation, hyperparameter optimization, clinical validation, and continuous monitoring for improved accuracy.
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FIGURE 5

Key domains within oncology and research where artificial intelligence (AI) can significantly impact patient care and scientific advancement. While
each of these domains may appear disjoint, they are in fact seamlessly integrated with AI playing a significant role in this process. AI-based tools
can screen data from an enormous volume of subjects to find patterns and connections between them. This information can not only assist in
personalized cancer care but can also recommend the most appropriate therapy as well as digital communications for networking a large number
of centres.
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2.2 AI for early cancer diagnosis and staging

Cancer is a heterogeneous disease harbouring a spectrum of

genomic and epigenomic alterations with large variations in

tumour fitness, mutational burden and responsiveness to

conventional chemotherapy, and biological behaviours (both

within and between cancer types). Numerous cancer forms may

also exhibit comparable clinical signs or share similar symptoms

along with the biomarkers employed to identify and categorize

cancers, thus causing uncertainty in the diagnosis and staging of

cancer. Further, due to insufficient knowledge or lack of
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information, diagnosing rare cancers makes interpretation even

more difficult. Additionally, because of differences in how

pathologists or radiologists interpret genetic tests, histopathology

slides, and imaging results, inter-observer variability affects the

consistency and accuracy of cancer diagnosis and staging. The

incorporation of AI can enhance the speed, accuracy, and

consistency of result interpretation from radiological images,

digitized pathology slides, and colonoscopy procedure footage, as

well as pictures of skin lesions, to determine the presence of

cancer, the subtype categorization, the grade, and the purity of the

tumour. AI can assist in mass screening of symptomatic patients
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for early cancer detection, galvanizing towards personalized

treatment regimens by overcoming the shortage of healthcare

professionals and improving accessibility to timely diagnosis.

A study demonstrated by McKinney and others (41) proved the

utility of AI in the successful screening of breast cancer using

mammograms. A group at Google designed a CNN-based

screening model for identifying and classifying abnormal nodules

from CT scans for lung cancer diagnosis with more accuracy and

efficiency (79). Similarly, x-rays, MRI scans, PET scans, and

ultrasound images have also been utilized to improve diagnosis,

characterization as well as prediction of metastasis in several

cancer types using machine learning approaches (80–83). AI

algorithms have also been designed to accurately detect and

categorize malignant polyps from clinical colonoscopies in real-

time with high sensitivity and specificity (84, 85), and skin

cancer from dermoscopy images with a level of competency

comparable to dermatologists (86). Additionally, an AI algorithm

based on deep learning models like CNNs and RNNs can

identify the presence of cancer, grade, and assess tumour purity

estimates from digitized H&E-stained slides of prostate tissue

from core needle biopsies (87); classify cancer type and access

invasiveness based on breast biopsy images (88–91); identify

retinoblastomas from fundus images with high specificity (92).

Artificial intelligence (AI) algorithms can also learn to recognize

molecular markers suggestive of cancer by comparing genomic

patterns between diseased and non-cancerous tissues. These

models can subsequently use the genetic profiles of new samples

to categorize them, aiding in the correct detection of cancer

(93–95). AI algorithms have been used to analyse large-scale

genomic data, including mutational signatures (96), gene

expression (97–99) DNA methylation (100, 101), and miRNA

profiles (102). In 2006, NIH/NCI launched a landmark cancer

genomics program “The Cancer Genome Atlas (TCGA) Research

Network” with the goal of gathering, profiling, and analysing a

sizable number of human clinical tumours representing various

tumour types and their subtypes to identify molecular

aberrations at the DNA, RNA, protein, and epigenetic levels.

Integrative analysis of this data using machine learning has made

it possible to identify molecular patterns, common pathways,

master regulatory hubs that are activated or deactivated across

many tissue types, and molecular phenotypes and biomarkers

particular to different cancer stages (103–107). Using hundreds

of somatic mutation data, the Pan-Cancer Analysis of Whole

Genomes (PCAWG) Consortium utilized a DL model to forecast

the origins of 24 cancer types both individually and collectively

(108, 109). Automated screening and staging models based on

NLP (AI-based) have also been developed to analyse

unstructured data from clinical reports for the identification of

cancer-specific abnormalities (110–112). Analysis of liquid

biopsies for the identification of peripheral blood biomarkers of

diagnostic relevance has recently gained interest (113–117).

Integrating artificial intelligence with Raman spectroscopy, a

group designed a highly accurate DL model to analyse liquid

biopsies for lung cancer diagnosis (118). The CancerSEEK model

is another ground breaking example of the utilization of AI in

the early diagnosis of multiple cancers based on the presence of
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specific genetic mutations in circulating cell-free tumour DNA

and the levels of protein biomarkers using immunoassays from

liquid biopsies. It demonstrated high predictive value for the

number of common cancer types; especially for ovarian and liver

cancer (119).

From India, iOncology.ai is a cutting-edge AI-driven

platform, developed by the All-India Institute of Medical

Sciences (AIIMS), New Delhi, in collaboration with the Centre

for Development of Advanced Computing (CDAC), Pune,

under the auspices of the Ministry of Electronics & Information

Technology. Launched in 2024, the platform leverages deep

learning algorithms to analyse radiological and histopathological

images with high precision, facilitating early detection and

personalized treatment of breast and ovarian cancers. The AI

model is trained on an extensive dataset comprising

approximately 500,000 images from 1,500 patient cases and is

currently undergoing validation in district hospitals across India

(120). In another significant initiative, the Apollo Cancer/

Radiology Centre, in partnership with Google Health, is

developing an AI-driven system for the early diagnosis of

cancer using imaging data. This collaboration aims to harness

AI technology to improve the accuracy and efficiency of cancer

detection, addressing the shortage of radiologists and offering

specialized screenings to enhance healthcare outcomes (121).
2.3 AI in cancer treatment and response
assessment

Following a cancer diagnosis, the treatment outcome varies

depending on the individual’s genetic make-up and aggressiveness of

the tumour. However, the dose and the choice of intervention

(neoadjuvant, surgery, chemotherapy, radiotherapy, immunotherapy,

etc.) are still empirical without a solid scientific basis. AI can assist

clinicians in designing personalized and appropriate treatment plans,

monitoring response to the treatment, and in predicting recurrence

risk and patient survival, thus lowering healthcare costs, and

workload and improving the efficiency of cancer management.

2.3.1 Personalized treatment
AI can successfully evaluate complicated datasets to predict

cancer prognosis, thereby assisting physicians in making better-

informed treatment decisions and enhancing patient care. By

analysing a patient’s genetic information, omics data, medical

history, and treatment response data, AI algorithms can uncover

novel biomarkers linked to drug response and can predict which

treatments will be most effective for an individual patient. This

approach of precision medicine can improve the efficacy of

cancer treatments while reducing the risk of adverse drug-

associated side effects. Oncologists can choose the most efficient

and individualized treatment options for their patients by

utilizing the power of AI to calibrate drugs and increase their

pharmacological action efficacy (122–126). IBM Watson for

Oncology is a well-known instance of an AI-based treatment

recommendation system created by IBM in partnership with

Memorial Sloan Kettering Cancer Centre to help oncologists
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make data-driven treatment decisions for cancer care. This

platform examines a patient’s medical records, including clinical

notes, pathology results, and molecular profiling data, and

compares this information with a sizable collection of medical

literature, trial data from clinical studies, and professional

therapy recommendations. Watson for Oncology develops

tailored, real-time treatment recommendations based on this

research and predicts disease prognosis, highlighting prospective

therapeutic choices (127–129). Another deep learning-based

Clinical Decision Support System (CDSS) was created by Printz

et al. in 2017, and it is capable of extracting and analysing a

significant quantity of clinical data from medical records and

generating cancer therapy alternatives highlighting the value of

AI technology in aiding physicians in enhancing cancer patient

treatment regimens (130). A precision oncology knowledge

repository called OncoKB is another example of an AI-based

platform that uses clinical data and genomic information,

providing details on the therapeutic ramifications of certain

mutations. Identifying targeted treatments, forecasting cancer

risk, and gauging therapy efficacy are all made easier with the

help of OncoKB (131). Based on genetic variants and clinical

parameters, AI models can forecast a particular individual’s

susceptibility to chemotherapy-related toxicity, helping

oncologists make informed decisions about dosages and

combined treatment plans to improve efficacy and tolerance

(132). Dorman et al. developed a machine-learning algorithm to

forecast how well breast cancer will respond to chemotherapy. It

was able to distinguish between the effects of two chemotherapy

medications, taxol or gemcitabine, by investigating the

association between chemotherapy treatments and patients’

genetic profiles (133). Also, an AI-based platform was developed

that could accurately evaluate the effectiveness of immunotherapy

in PD-1-sensitive patient with advanced solid tumours (134,

135). Utilizing the HLA mass-spectroscopy database, an AI

model could help identify cancer neoantigens more accurately

and boost the effectiveness of cancer immunotherapy (136).

Machine learning algorithms have also been utilized to associate

radiomic biomarkers (quantifiable features like texture patterns,

structural changes, or intensity variations) within the biomedical

images (CTs/MRIs) of tumour regions with treatment response

and survival, thus, helping oncologists in anticipating favourable

responses to therapies (137–140). AI algorithms can aid in

radiation therapy planning by segmenting tumours and organs at

risk from medical imaging scans. AI-based contouring algorithms

have been created to automate the delineation of organs and

tumour volumes in CT and MRI images, potentially assisting

radiologists in mapping out treatment targets or autonomously

planning radiation schedules (141, 142). Utilising deep-learning

technology, the software can now generate automated radiation

therapy plans within a matter of a few hours without human

intervention (129).

2.3.2 AI-assisted surgery
Using imaging data, AI can help with preoperative planning by

giving surgeons accurate 3D representations of the patient’s

anatomy. This enables surgeons to see the tumour and
Frontiers in Digital Health 13
surrounding tissues more, allowing for more accurate surgical

planning. 3D images based on CT scans and MRIs have been

utilized to predict the pathological grade of hepatocellular and

brain carcinoma for better preoperative planning and reduced

complications (143–147). AI can also help with intraoperative

navigation by giving the surgeon feedback in real-time while the

surgery is being done by overlaying 3D pictures on the surgical

field using augmented reality (AR) or virtual reality (VR)

technologies. As an illustration, a 2020 study that was published

in Nature Medicine employed augmented reality to direct the

excision of brain tumours based on real-time stimulated Raman

histology images, increasing surgical accuracy (148). One of the

newest advancements in minimally invasive surgery is robotic

surgery. Artificial intelligence (AI) algorithms can be

programmed into robotic surgery systems to identify and avoid

harm to healthy tissues during surgery, lowering the chance of

inaccuracies and collateral damages (149–151). Researchers from

the Children’s National Health System in Washington, D.C.,

developed the SMART system, which is intended to

autonomously carry out soft tissue procedures, including cancer

surgeries. It uses AI algorithms and image processing to direct

the robotic arm in real-time while the procedure is being

performed, increasing accuracy and minimizing human error

(152). AI can also help with postoperative monitoring by

evaluating multiple data feeds from sensors and other monitoring

equipment such as blood pressure monitors or ECGs to identify

early indicators of complications, enabling quick intervention

and treatment (153).

2.3.3 Prognosis/survival
Cancer prognosis entails predicting disease recurrence, residual

cancer burden, metastasis, patient’s overall survival, and

progression-free survival with the goal of improving patient care.

Utilizing integrated multi-omics data (154–156) and other

complex multi-dimensional datasets (157, 158), ML techniques

have been proven to increase the precision of forecasts for cancer

recurrence, and survival outcomes and aid doctors in the precise

estimation of prognosis and treatment plan customization both

pre and (159–162) post-intervention (163–165) scenarios, taking

into account elements including tumour size, lymph node

involvement, and hormone receptor status. A group in China has

developed an algorithm that could analyse patient

chemoresistance and prognosis and accurately predict the

recurrence risk of breast cancer patients from EHR data (166).

These approaches can assist doctors in developing customized

treatment plans and follow-up care (167).
2.4 AI in telemedicine/remote monitoring

Post-COVID-19 pandemic, the healthcare sector has

significantly changed and has sped up the global deployment of

telemedicine tools and telehealth services. Telemedicine has the

potential to bring about transformative changes in cancer care in

India. The practice of providing cancer care remotely through

video, telephone, and other electronic communication methods is
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known as Teleoncology or telemedicine in oncology. Teleoncology

applications include improved access to specialized care, cancer

clinical trials, cancer telegenetics, telepathology, preoperative

counselling, remote chemotherapy supervision, symptom

management, follow-ups, survivorship care, and palliative care

for people who might live in distant or underserved locations

or have limited access to medical facilities support (168).

2.4.1 Apps/websites
AI-powered chatbots and virtual assistants can conduct

preliminary assessments, diagnose symptoms, and offer basic

medical advice. They can aid in classifying patients according to

the seriousness of their conditions, allowing medical personnel to

set priorities and distribute resources appropriately, thus

facilitating effective healthcare delivery. One AI-based hospital

pharmacy service was successfully tested in China during the

COVID-19 pandemic in 2020 (169, 170). Hopido is an Indian

Startup that has developed Cancer Dost, an AI-enabled chatbot

to assist patients in connecting with specialized doctors and

provides guidance for cancer treatment (171). As a tool for

home-based treatment, mobile applications improve symptom

management, lifestyle adjustment, and medication adherence.

The oncologist can benefit from telemedicine’s interactive tele-

educational resources. AI-based algorithms for skin cancer

diagnosis have recently been included in a number of mHealth

apps, making this method available to the general public,

allowing laypeople to use an AI-based mHealth app to assess

their condition and determine if a doctor visit is necessary (172).

An AI-powered app called Cancer Aid was created to help

cancer patients along their journey. It gives access to a

community of other cancer patients for support and direction, as

well as individualized treatment information, symptom tracking,

medication reminders, and access to symptom tracking (173).

Using AI technology, CancerBASE offers individualized nutrition

advice to cancer patients based on their individual medical and

genetic profiles. To promote treatment outcomes and general

well-being, it attempts to optimize nutrition (174).

2.4.2 Wearables/devices
With commercialization and the growing use of wearable

technology, mobile health apps, and social media posts, AI can

also make use of information on a variety of lifestyle and

behavioural patterns, including risky behaviour, physical activity,

sound sleep, alcohol consumption, smoking, and stress levels.

Integrating these data into AI algorithms can revolutionize

cancer care by improving cancer risk prediction and patient

monitoring (175–177). Healthcare professionals may monitor the

health of cancer patients without having to make regular in-

person visits thanks to AI-powered remote monitoring

technologies. For instance, wearable technology powered by AI

algorithms can continuously track vital signs, spot anomalies,

and notify medical staff when intervention is required. Innovative

wearable technology makes it possible to track and analyse each

patient’s data differently based on their physical and genetic risk

factors, resulting in a highly ultra-personalized diagnosis and

course of treatment and better patient outcomes. This enables
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faster treatment and reduces the burden on medical facilities.

This facilitates prompt treatment and lightens the load on

medical institutions (178, 179). Internationally, more than 70

AI-based devices have already been approved by the FDA with at

least 50% of them being related to cancer radiology, clinical

oncology, and pathology (180). One well-known example is the

handheld device iBreastExam (iBE) (UE Life Sciences,

Philadelphia, PA), which was created to do breast examinations

for suspected anomalies or lumps in the breast tissue in a

painless, non-invasive manner (181, 182). In a study done on

women from the Nigerian population, this portable equipment

revealed superior sensitivity (63%) for the identification of breast

abnormalities as compared to clinical breast examination (CBE)

(183). This radiation-free device can be particularly beneficial for

early breast cancer detection campaigns in underserved

communities or in regions with limited access to state-of-the-art

healthcare facilities with only a little training. With increasing

subscribers nationwide, surveillance using mobile phones

integrated with machine learning programs has the potential to

extend the reach of clinicians and vital diagnostic care to remote

areas in India. A further possibility to enhance cancer screening

may be the use of mobile devices to examine skin lesions. Cell

phone-based triage or monitoring are prospective future methods

for more efficiently deciding which patients to refer to clinicians

or for expanding care in resource-limited areas, even though

making this technology clinically feasible is still a work in progress.
2.5 AI in novel discoveries

India has one of the most genetically diverse populations in the

world, providing researchers with a unique chance to look into the

molecular roots of diseases and create specialized treatment

strategies. Additionally, the high prevalence of cancer enables

researchers to investigate many subtypes, uncover the natural

history and molecular basis of these diseases, and find possible

targets for cutting-edge treatments. The growing availability of

huge cancer datasets (public or private) and affordable access to

various NGS and imaging technologies have sparked an

explosion in interest in using AI to speed up discovering novel

drugs/targets, which is frequently time and financially expensive.

AI methods have been used in several areas of cancer research,

including digging into molecular basis, creating anti-cancer

drugs, and carrying out randomized controlled trials

(RCTs) (Figure 6).

2.5.1 Drug targets/biomarkers
For example, a support vector machine model was used in a

study to derive features that might predict possible therapeutic

targets in liver cancer using clinical data, gene expression

patterns, and protein-protein interaction networks (184). Another

group developed a deep learning-based categorization strategy to

identify proteins linked to the pathogenesis of breast cancer and

report promising candidates for biomarkers or drug targets (185).

By utilizing both gene-specific and cell-line-specific data, the

ECLIPSE machine-learning technique could predict cancer-
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1550407
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 6

Figure showing broad applications of AI in the areas of novel drug discovery from target identification, drug designing, pharmacokinetics to
clinical trials.

Goel et al. 10.3389/fdgth.2025.1550407
specific therapeutic targets based on the publicly available loss-of-

function screen datasets from the DepMap consortium (186, 187).

Mkrtchyan et al. used the artificial intelligence-powered target

discovery platform PandaOmics to investigate alterations in

gene expression in rare DNA repair-deficient disorders and

found new cancer targets (188). Utilizing the TCGA data, the

ML approach established the role of F-box/WD repeat-

containing protein 7 (Fbw7) in cancer cell oxidative

metabolism (189).
2.5.2 Drug designing
AI has also been used to design drugs with desired

physiochemical properties and target specificities. Using an AI-

powered protein structure database called AlphaFold researchers

from the University of Toronto and In-silico Medicine developed

a drug that could treat hepatocellular carcinoma (HCC), or liver

cancer (190). Instead of the typical length of about a year, a

research group developed a DL model and identified potent

inhibitors of the discoidin domain receptor 1 (DDR1), a kinase

target implicated in several malignancies (191). Another study

used the ML approach to improve the sensitivity and specificity

of dual inhibitor cyclin-dependent kinases four and human

epidermal growth factor receptor 2 (192). AI approaches are also

deployed to predict adverse effects linked to drug toxicity and to

design molecules with better biochemical properties in terms of
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solubility, synthesizability and drug-likeness (193–195). Various

AI-based computer tools have been developed that can help

identify cancer-related drugs like DeepNeuralNetQSAR,

DeepChem, DeepTox, gene2drug, STITCH, etc. (196). The

identification of repurposing candidates from medications that

can reverse the expression profiles of cancer-specific gene

signatures has also been done using transcriptional data sets

from LINCS (Library of Integrated Network-Based Cellular

Signatures) libraries and other sources (197).
2.5.3 Clinical trial
Adoption of novel cancer therapies depends on the success of

clinical trials, and finding the right subjects to enrol or recruit is

seen to be the most challenging aspect of it. This requires

labour-intensive work to match potential subjects with eligibility

requirements satisfying inclusion and exclusion criteria. AI can

improve cancer clinical trials by locating suitable participants for

clinical trials and in the design of trials that are more effective

and efficient (198). For instance, to automate the patient

recruitment process, the combination of multi-layer perceptron

modelling and natural language processing was used to extract

pertinent data from patient records to help compile evidence for

better patient eligibility decisions (199, 200). Analysis of the

clinical trial data can assist in speeding up the discovery of new

drugs and help patients receive new cancer treatments more
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rapidly by identifying patients who are most likely to benefit from

new therapies.
2.6 Advancements in AI

Artificial Intelligence (AI) is a rapidly advancing field, with

new models being developed and tested daily to improve their

effectiveness and accuracy. Innovations like DeepSeek-R1,

OpenAI’s GPT-4 and Google’s Bard exemplify this progress,

demonstrating remarkable advancements in understanding and

generating human-like language. Among the most notable

developments in AI are Multimodal Large Language Models

(MLLMs) and Large Language Models (LLMs), which

represent the cutting edge of artificial intelligence. These

models combine deep learning and natural language

processing (NLP) to transform healthcare. By utilizing

sophisticated neural network architectures, LLMs and MLLMs

can comprehend, generate, and analyse human language while

processing diverse data types, such as medical images, audio

recordings, and textual information. This capability allows for

a comprehensive understanding of complex medical scenarios,

enabling applications like disease diagnosis, medical report

generation, treatment planning, and mental health support.

Such advancements highlight the potential of AI to

revolutionize healthcare delivery and improve patient

outcomes (13). For instance, LLMs such as ChatDoctor and

MLLMs such as Med-PaLM M specifically designed to tackle

clinical challenges. These models are capable of processing

both textual and visual medical data, significantly enhancing

decision support systems in healthcare (201, 202). These

advanced models excel in a variety of healthcare applications,

such as virtual health assistance, automating administrative

tasks, and supporting clinical decision-making. They enable a

wide range of functionalities, including remote patient

counselling, medical question-answering, dialogue

summarization, electronic health record (EHR) generation,

and clinical health reasoning. By streamlining healthcare

operations and facilitating timely interventions, they play a

crucial role in enhancing patient outcomes and creating more

efficient healthcare systems (13). Despite their transformative

potential, deploying Large Language Models (LLMs) and

Multimodal Large Language Models (MLLMs) in clinical

settings presents several challenges. Developing these models

typically requires extensive annotated medical datasets, which

are not only costly to acquire but also demand expert-level

annotation and raise significant data privacy concerns.

Furthermore, the high computational resources needed for

training and deploying these models can limit accessibility,

particularly for smaller healthcare institutions. Additionally,

these models are prone to hallucinations—generating

fabricated or inaccurate outputs—and often lack real-time

updates, which can compromise their reliability and safety in

fast-paced, dynamic clinical environments (203). Addressing

these challenges is essential to unlocking the full potential of

LLMs and MLLMs in transforming healthcare. Ongoing
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research is focused on mitigating many of these obstacles. For

instance, efforts are being made to create high-quality

synthetic datasets, often generated using AI-assisted methods.

These synthetic datasets reduce reliance on expensive, expert-

annotated medical data, making the development of these

models more scalable and cost-effective (201). Additionally,

fine-tuning techniques such as reinforcement learning from

human feedback (RLHF) and AI feedback (RLAIF) are being

employed to align model outputs with clinical expectations

and reduce hallucinations (204). Innovations in model

optimization, such as parameter-efficient tuning and smaller,

specialized models are reducing computational costs,

benefiting smaller institutions (205). The future of LLMs and

MLLMs lies in real-time learning, enhanced data privacy

(using federated learning and encryption), and better

integration of diverse data types for more comprehensive

insights. Further reducing computational overhead through

model compression and energy-efficient training will broaden

access, making these technologies feasible for smaller

healthcare providers. Crucially, collaboration among AI

developers, medical professionals, and policymakers is vital

to ensure the development of ethical, user-centred, and

clinically effective AI solutions that drive personalized and

efficient healthcare (13).
3 India’s roadmap to digital health

Digital health harnesses advanced technologies such as

telemedicine, mobile health applications (mHealth apps),

electronic health records, and wearable devices to enhance

healthcare accessibility, quality, and efficiency. These innovations

facilitate remote patient monitoring, virtual consultations, and

real-time data sharing, which are essential for overcoming

geographical barriers and providing timely medical interventions.

In regions with significant rural populations, access to specialized

care is often hindered by inadequate infrastructure and a

shortage of well-trained physicians. A digital health-based

initiative can address this issue by integrating urban super-

speciality centres with AI-based technology and training

healthcare providers in resource-limited rural centres. This

strategy establishes urban hubs for specialized care while

empowering rural practitioners with advanced digital health

systems. Telemedicine platforms can connect rural patients with

urban specialists, ensuring expert care is available without

necessitating travel. Mobile health apps support continuous

health tracking and personalized health management, enabling

patients to take proactive steps in their care. Central to this

initiative is the utilization of wearables and point-of-care (POC)

devices for remote collection of essential patient data. This data

is securely transmitted to cloud-based digital health platforms

(mHealth apps) with ultra-high-speed computing capabilities,

enabling rapid AI-driven evaluation and analysis by experts at

tertiary care urban centres. A dedicated action plan committee,

operational around the clock, can monitor this data, conduct

critical analyses, and relay prompt diagnoses and actionable
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FIGURE 7

This figure illustrates how technology and training can enable collaboration between urban super speciality centres and rural healthcare professionals.
Patient data (clinical reports, imaging, vitals signatures) collected by wearable and other point-of-care (POC) devices can be securely transmitted
through cloud-based digital health platforms (mHealth Apps) for AI-driven analysis by urban specialists. A specialized committee can ensure
continuous monitoring and timely diagnosis, empowering rural healthcare practitioners with actionable insights for prompt interventions.

Goel et al. 10.3389/fdgth.2025.1550407
insights back to primary healthcare providers in rural centres

(Figure 7). This streamlined process facilitates swift and effective

personalized interventions, optimizing patient outcomes even in

remote areas with limited access to specialized care. For

actionable insights on enhancing AI adoption in rural-urban

healthcare integration, please refer to Box 3.
BOX 3 Actionable insights for enhanced AI adoption in rural-urban healthca

These recommendations aim to bridge the gap between rura

medical care through AI technologies.

1. Teaching and Training Programs:
∙ Integrate AI in medical and technical education.
∙ Offer workshops and certification programs for healthcare providers.
∙ Encourage internships and practical training in AI-driven settings.

2. Electronic Health Records (EHR) and Health Portals:
∙ Mandate the use of EHRs for accurate patient data.
∙ Develop secure patient portals for easy access and management of

health records.
3. Telemedicine and Remote Monitoring:

∙ Implement telemedicine for remote consultations with urban specialists.
∙ Use wearable devices for real-time health monitoring.
∙ Train healthcare providers and patients on digital health platforms

(mHealth Apps).
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4 Challenges of adopting AI in
healthcare

While AI has the potential to revolutionize cancer research in

India, it is not without its challenges and limitations. The adoption

of AI in this field is hindered by issues such as regulations (206),
re integration.

l and urban healthcare, ensuring equitable access to advanced

4. Policy Development and Implementation:
∙ Establish protocols for AI adoption covering data security and ethics.
∙ Provide financial incentives and support for AI integration in

rural healthcare.
5. Mobile Health Units and Outreach Programs:

∙ Deploy mobile health units with AI tools for regular check-ups in
rural areas.

∙ Educate rural populations about the benefits of AI and telemedicine.
6. Continuous Monitoring and Evaluation:

∙ Establish metrics to evaluate AI interventions.
∙ Create feedback systems for continuous improvement.
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reliability of knowledge (207), difficulties in execution (208), its

ability to adapt to diverse ecosystems (209), lack of transparency

interpretability and data security.
4.1 Ethical/regulatory challenges

The rapid evolution of artificial intelligence (AI) technologies

often outpaces the development of comprehensive regulatory

frameworks, resulting in uncertainties surrounding approval

processes, compliance standards, and ethical considerations,

particularly in healthcare. The absence of clear regulations often

leads to hesitation among healthcare providers and developers in

fully embracing these innovations due to concerns about legal

liabilities and ethical repercussions.

Globally, organizations such as the World Health Organization

(WHO) have launched initiatives like the Global Strategy on Digital

Health 2020–2025, which outlines recommendations for

establishing AI governance frameworks to promote ethical AI

adoption in healthcare (210). In India, however, the regulatory

environment for AI in healthcare remains fragmented, hindering

the integration of AI-powered tools in critical areas such as

cancer diagnosis and treatment. To address these challenges,

government initiatives like the National Digital Health Blueprint

(NDHB) propose a comprehensive regulatory framework to

ensure the ethical use of AI, focusing on data privacy,

interoperability, and algorithmic accountability (211).

Additionally, the Indian Council of Medical Research (ICMR)

has issued ethical guidelines for AI applications in biomedical

research and healthcare, emphasizing data security and patient

privacy to bridge existing regulatory gaps (212).

Despite these efforts, significant work is still needed to establish

robust policies governing AI deployment in healthcare while

safeguarding patient rights and ethical practices. International

collaborations, such as the AI for Health program by the

International Telecommunication Union (ITU) and WHO, aim

to support member countries in developing consistent global

standards and regulatory frameworks for AI in healthcare (213,

214). These initiatives seek to harmonize international standards,

enabling countries like India to adopt global best practices and

strengthen their regulatory frameworks.
4.2 Data quality

One of the primary challenges in developing effective AI models

for cancer care is the lack of standardized, diverse, and inclusive

datasets related to cancer health. Training algorithms on

inadequate, small, or outdated datasets can introduce biases and

reduce the accuracy of outcomes in critical procedures such as

cancer detection and therapy. In India, patient records often lack

comprehensive details on genetic backgrounds, lifestyle factors, or

previous treatments. This scarcity and inconsistency of data hinder

the training of AI algorithms, leading to biased and potentially

erroneous results. For example, algorithms trained on limited

datasets—such as breast cancer biopsy images from a single
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hospital—may fail to generalize effectively to larger, more diverse

populations. Additionally, outdated datasets that do not reflect

recent advancements in oncology can compromise the reliability of

AI systems. Globally, initiatives like The Cancer Genome Atlas

(TCGA), the International Cancer Genome Consortium (ICGC),

the Global Alliance for Genomics and Health (GA4GH), and large-

scale repositories such as the UK Biobank are addressing these

gaps by creating comprehensive and diverse healthcare datasets.

These efforts aim to foster interoperability and inclusivity in AI

model development, ensuring that algorithms are trained on

representative data (37, 215, 216).

India has also recognized the importance of addressing data

diversity and inclusivity in healthcare AI. Initiatives like the

Indian Cancer Genome Atlas, aim to compile comprehensive

cancer-related multi-omics datasets across diverse populations

(217). The integration of genomic data into such datasets is

being facilitated by organizations like the Council of Scientific

and Industrial Research (CSIR) and the Regional Centre for

Biotechnology (RCB) through projects such as IndiGenomes and

GenomeIndia (218, 219). These efforts, combined with

collaborations between global tech companies and healthcare

institutions, are critical in reducing biases and ensuring that AI

models are inclusive, reliable, and representative of diverse

populations. Such initiatives are essential for addressing the

healthcare needs of India’s heterogeneous population effectively.
4.3 Replicability

The replicability of AI findings across healthcare systems is a

significant concern. Models trained in one environment often fail

to perform consistently in others due to variations in data,

infrastructure, and clinical practices. Clinical practice at academic

medical centres and community hospitals still differs significantly

today, but these differences are decreasing in high-income

countries, like the United States, due to the integration of

oncology practices by integrated health networks and new

businesses that streamline oncology workflows and integrate

genomic data, and translate these data into actionable reports

(220, 221). In developing nations like India, the pace at which

these changes occur depends on several aspects, such as

disparities between urban hospitals and rural medical centres.

Achieving operational consistency across different geographical

locations requires not only protocol standardization but also

workforce training in AI tools.

In India, the Ayushman Bharat Digital Mission (ABDM),

launched in 2021, aims to create a unified digital health

ecosystem (222). By integrating healthcare facilities and

standardizing data collection practices, ABDM seeks to reduce

discrepancies and improve the replicability of AI systems across

the country. Additionally, collaborations between the National

Cancer Grid (NCG) and international partners are helping

establish uniform oncology practices and enhance the sensitivity

and robustness of AI tools in diverse settings (223).

Globally, organizations like the European Commission are

driving the development of standardized healthcare protocols
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through initiatives such as the European Health Data Space, which

aims to harmonize healthcare data across EU member states (224).

Similarly, the MIT Critical Data Consortium is addressing

replicability challenges by developing open-source healthcare

datasets and fostering collaborations between academic and

healthcare institutions (225). These efforts are crucial for

ensuring the consistent performance of AI models across various

healthcare settings and geographies.
4.4 Infrastructure

The integration of artificial intelligence (AI) into healthcare

systems requires substantial investments in infrastructure,

workforce training, and public awareness. In India, significant

barriers such as limited computational resources and data storage

solutions, and the availability of medical equipment and

healthcare personnel make the widespread implementation of AI-

driven solutions challenging. Initiatives such as the Digital India

program and the establishment of Supercomputing Mission

Centres aim to address these infrastructural gaps. Furthermore,

the Indian Government’s recent approval of the IndiaAI Mission,

with a budgetary allocation exceeding Rs. 10,000 Crore,

represents a significant step towards establishing a robust AI

ecosystem in the country (226, 227). Additionally, developing

cost-effective alternatives to imaging devices like mammograms,

particularly for resource-limited settings, shows great promise in

enhancing healthcare accessibility and efficiency. Ministry of

Health and Family Welfare, India, has been implementing an

action plan for Cancer screening program in rural areas under

the Ayushman Bharat scheme. This initiative focuses on

strengthening infrastructure, human resource development,

health promotion, early diagnosis, management and referral of

three common cancers i.e., oral, breast, and cervical (228).

In the private sector, Apollo Hospitals has established India’s

first AI-driven Precision Oncology Centre in Bengaluru. This

centre integrates AI tools to provide personalized cancer care,

improve diagnostic accuracy, and optimize treatment planning

(121). Such initiatives highlight the growing adoption of AI-

enabled healthcare solutions in India and signify a significant

advancement in the country’s healthcare landscape.
4.5 Transparency and interpretability

Additionally, there may be resistance from healthcare

professionals due to a lack of familiarity with AI tools or fear of

being replaced, leading to challenges in the adoption and

utilization of AI in healthcare. A major concern is the lack of

transparency and interpretability in AI systems, often referred to

as the “black box” problem, where algorithms reach conclusions

without providing clear reasoning. This opacity exacerbates trust

issues among clinicians and patients, particularly in critical areas

like oncology, where clear justifications for medical decisions are

essential. Without understanding how an AI system arrives at a

specific conclusion, it becomes difficult to trust and act upon its
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recommendations. This lack of transparency raises ethical

concerns and can hinder the clinical adoption of AI technologies.

Furthermore, inherent biases in AI models toward specific

demographic groups raise additional ethical and practical

concerns, especially in a multicultural country like India.

To address these challenges, the Ministry of Electronics and

Information Technology (MeitY) has launched initiatives such as

the Responsible AI for Social Empowerment (RAISE) summit

and the National AI Portal, which aim to promote AI awareness

and ethical practices (229). Programs like the AI in Healthcare

Certification Program by the All-India Institute of Medical

Sciences (AIIMS) and collaborations between the Indian Institute

of Technology (IIT) and global AI leaders like Microsoft are

pivotal in training healthcare professionals to use AI tools

effectively. Research institutions are also focusing on developing

explainable AI (XAI) models to ensure that clinicians and

patients can understand and trust AI-generated recommendations.

On an international scale, the Global Digital Health

Partnership (GDHP), a collaborative effort involving multiple

countries, including India, focuses on sharing best practices and

resources for AI integration in healthcare (230). These efforts are

crucial for building trust, addressing ethical concerns, and

ensuring the responsible deployment of AI in healthcare systems.
4.6 Misdiagnosis and misuse

The accuracy and consistency of AI systems are heavily

dependent on the quality of their training and validation

datasets. Due to the inherently predictive and probabilistic nature

of AI, these systems can sometimes make incorrect decisions,

potentially leading to misdiagnosis, inappropriate treatment

plans, or failure to identify critical health conditions, which

cannegatively impacting patient outcomes. Incorporating larger

and more diverse datasets in training can helpmitigate biases and

improve accuracy. Moreover, continuous advancements in AI

technology are essential for reducing errors and enhancing

predictive performance. While methods exist to detect bias

during model training, their effectiveness still requires

considerable improvement. Also, continuous validation and

rigorous testing of AI systems in real-world scenarios are crucial

to identify and rectify errors before deployment, ensuring

improved accuracy and reliability.

Deep Learning (DL) methods, such as Convolutional Neural

Networks (CNNs), have shown promise inmedical applications,

with validation rates ofapproximately 90% for cancer prediction

using medical imagery. However, these techniques are often

complex and and computationally intensive. For instance, the

Convolutional Neural Network (CNN) classifier, used in about

41% of experiments, has demonstrated good performance but

demands significant computational resources (25, 231). Despite

their potential, the practical application of these models in

clinical settings remains inadequately validated. Predictions made

by AI models often require verification in a clinical context to

support medical experts in making diagnostic decisions.

Currently, there are no comprehensive regulations or guidelines
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FIGURE 8

Pictorial representation of challenges encountered by populous countries and how advancements driven by artificial intelligence and digital health can
enhance the management of cancer care.
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to establish legal responsibility when AI systems cause harm or

malfunction (232, 233). This underscores the urgent need for

well-defined legal frameworks to ensure accountability and

enhance patient safety. In the United States, the Food and Drug

Administration (FDA) oversees the approval of AI-based medical

devices to ensure their safety and efficacy (234–236). Similar

regulatory frameworks are needed globally to address the ethical

and legal challenges associated with AI in healthcare.
4.7 Data security

Addressing the ethical misuse of AI technologies, such as the

creation of deepfake medical images or the manipulation of

patient data, requires a comprehensive and multi-layered

approach to data security and privacy. Strengthening the

robustness of AI models through techniques like adversarial

training can make them more resilient against manipulation and

malicious attacks. Advanced data security measures, such as end-

to-end encryption, multi-factor authentication, and secure access

controls, are essential to protect sensitive patient information

from unauthorized access, tampering, or breaches. Additionally,

implementing regular audits, real-time system monitoring, and
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anomaly detection mechanisms can help identify and mitigate

potential ethical abuses swiftly and effectively.

In India, the proposed Digital Personal Data Protection Bill

(2023) introduces stringent regulations aimed at ensuring the secure

handling of patient data and preventing misuse (237). Additionally,

initiatives led by the National Health Authority, such as the

Ayushman Bharat Digital Mission (ABDM), focus on establishing

robust accountability frameworks for AI-driven healthcare solutions

(222, 238). These efforts emphasize transparency, ethical usage, and

patient-centric safeguards. Together with global best practices, these

measures provide a strong foundation for ensuring that AI

technologies are deployed responsibly, fostering trust while

minimizing the risks of ethical misuse.
5 Conclusion

Cancer incidence in India for the year 2022 was estimated at

14,61,427 cases with a rough rate of 100.4/100,000 (239) with about 1

in 9 people expected to develop cancer at some point in their

lifetime. This poses an enormous burden for the country. Almost all

public healthcare facilities and infrastructure are overwhelmed by this

disproportionate number of cases and inadequate resources.
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Healthcare facilities and healthcare providers (physicians paramedics

and nurses) are sparse, particularly in rural and remote areas

resulting in healthcare inequities and treatment disparities. Artificial

Intelligence can revolutionize cancer care in developing populous

nations by filling access gaps, improving healthcare delivery and

boosting patient outcomes to better manage the difficulties and

engage its large population (Figure 8). AI can leverage an

overwhelmed healthcare and still can screen a broader population

and intervene early by utilising predictive analytics technology. This

review elaborates on the various domains of cancer management

including cancer screening, diagnosis, precision treatment, prevention

and surveillance using smarter algorithms and predictive tools.

In the future clinical setting, integrating computational input

and assistance will become a tangible reality, leading to a

significant technological revolution in real-time prediction and

diagnosis of human health-related issues. Telemedicine will

improve convenience, personalization, and access to specialized

care, ultimately leading to better outcomes and a more patient-

centred approach to cancer care. Android-based mobile apps and

smarter wearables can perform uninterrupted health monitoring

and flag any abnormalities at a very early stage. Artificial neural

networks and deep learning will serve as optimal decision-

making intelligence and evolve continuously, aiding physicians in

rapid diagnosis decision-making and exploring treatment regimens.

However, it’s essential to understand that AI in clinics only

seeks to replace radiologists and other medical professionals

partially. Instead, it will function as a novel and potential tool to

achieve highly specific treatment performance and identify

accurate diagnoses at the highest possible level while maintaining

human involvement in final decision-making. As AI technology

becomes more prevalent in healthcare, it is crucial to focus on

fairness, inclusivity, data security, and adequate training of

healthcare personnel. We are at the stage of known knowns

(empowering AI in healthcare) but must be cautious of known

unknowns (to what extent AI can be a reliable tool in disease

diagnosis within its predictive limits) before we step into

unknown unknowns (the risk and the ethical turmoil using

highly innovative and smarter algorithms may bring in the

future). It is best in the interest of humanity to explore the safer

and judicious usage of AI for the betterment of society.
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