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COVID-19 remains a significant global public health challenge. While nucleic
acid tests, antigen tests, and CT imaging provide high accuracy, they face
inefficiencies and limited accessibility, making rapid and convenient testing
difficult. Recent studies have explored COVID-19 detection using acoustic
health signals, such as cough and breathing sounds. However, most existing
approaches focus solely on audio classification, often leading to suboptimal
accuracy while neglecting valuable prior information, such as clinical
symptoms. To address this limitation, we propose SympCoughNet, a deep
learning-based COVID-19 audio classification network that integrates cough
sounds with clinical symptom data. Our model employs symptom-encoded
channel weighting to enhance feature processing, making it more
attentive to symptom information. We also conducted an ablation study to
assess the impact of symptom integration by removing the symptom-
attention mechanism and instead using symptoms as classification labels
within a CNN-based architecture. We trained and evaluated SympCoughNet
on the UK COVID-19 Vocal Audio Dataset. Our model demonstrated
significant performance improvements over traditional audio-only
approaches, achieving 89.30% accuracy, 94.74% AUROC, and 91.62% PR on
the test set. The results confirm that incorporating symptom data enhances
COVID-19 detection performance. Additionally, we found that incorrect
symptom inputs could influence predictions. Our ablation study validated
that even when symptoms are treated as classification labels, the
network can still effectively leverage cough audio to infer symptom-
related information.

KEYWORDS

computational intelligence, multi-modal learning, COVID-19, audio analysis, medical
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1 Introduction

Sound has long been a vital health indicator, with clinicians using noises like

“whooping” for pertussis or heart sounds via stethoscopes to detect cardiovascular

issues. Non-semantic acoustic signals, such as coughs and breathing patterns, have been

linked to conditions like stroke, Parkinson’s, and Alzheimer’s (1, 2). These signals,

now easily collected via mobile devices, enhance healthcare screening capabilities (3).

Audio-based COVID-19 detection offers a low-cost, non-invasive alternative to PCR

and CT scans, reducing disruption to daily life while achieving promising results using
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datasets like Coswara (4), COUGHVID (5), and Covid-19 Sounds

(6). However, many datasets are crowdsourced, with self-reported

data and severe class imbalances, complicating model training.

The UK COVID-19 Vocal Audio Dataset includes respiratory

data from 72,999 participants, with 25,766 positive PCR cases,

covering coughs, sequential coughs, and breathing sounds

alongside self-reported symptoms. Efforts were made to

minimize confounding factors, enabling models to learn acoustic

features causally related to COVID-19 rather than incidental

noise or unrelated variables.

Deep learning has made remarkable strides, demonstrating

immense potential in areas such as computer vision (7, 8),

natural language processing, and disease diagnosis (9–11).

Researchers have extended these advancements to classify audio

signals from COVID-19 patients, analyzing health-related

acoustic signals like cough and breathing sounds to promote

rapid, contactless COVID-19 detection. For instance, Coppock

et al. (12) employed the SSAST model, pre-trained on large

audio datasets, as a feature extractor, achieving promising results.

Similarly, Han et al. (6) pre-processed audio into 0.96 s non-

overlapping segments, applied short-time Fourier transform

(STFT) and Mel filter banks, and generated log-Mel

spectrograms. These spectrograms were fed into the VGGish

model to extract fixed-length latent feature vectors through

average pooling. While this method innovatively fused features

from multiple acoustic modalities, such as cough, breath, and

vocal sounds (13), the improvements from integrating these

modalities were modest, and the approach did not incorporate
FIGURE 1

Conditional probabilities of experiencing specific symptoms given a positive
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symptoms as prior knowledge into the network. In contrast,

studies like Canas et al. (14) have emphasized the importance of

self-reported symptoms for COVID-19 detection. Han et al. (15)

initially explored combining symptom data with audio features

for COVID-19 detection using SVM. Our proposed

SympCoughNet leverages symptom encoding to apply channel

attention weighting to audio features, further investigating

different methods of integrating symptom data with audio. This

approach utilizes the complementarity of these data types to

enhance the accuracy of COVID-19 detection. Experimental

results demonstrate that incorporating symptom features provides

valuable context, offering a more comprehensive understanding

of patient health.

Figure 1 illustrates the distribution of symptoms among

COVID-19-positive and COVID-19-negative participants. The

y-axis represents the percentage of participants exhibiting each

symptom, while the x-axis lists the symptoms. Among COVID-

19-positive participants (red bars), symptoms such as “cough,”

“fatigue,” and “headache” have the highest prevalence, with

approximately 74% of cases reporting “cough.” Other commonly

reported symptoms include “fatigue” (around 65%) and

“headache” (over 59%). Additionally, symptoms like “runny or

blocked nose” and “changes in sense of smell or taste” are

relatively common among positive cases. In contrast, for

COVID-19-negative participants (blue bars), the prevalence of all

symptoms is significantly lower. The most frequently reported

symptom in this group is “cough,” but its occurrence is much

lower compared to COVID-19-positive participants. Symptoms
COVID-19 diagnosis.
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such as “abdominal pain,” “diarrhoea,” and “other” are rare in both

groups. Notably, the symptom “prefer not to say” appears only in

the negative group, and its proportion is extremely low. This chart

effectively highlights the differences in symptom distribution

between COVID-19-positive and negative cases, underscoring the

importance of symptom analysis in COVID-19 diagnosis.

However, the use of symptom-assisted audio methods might

lead to classification errors if patients misreport symptoms due

to input mistakes or limited symptom awareness. To address this

issue, we ablate the symptom attention structure and instead use

symptom information as classification labels to train a symptom

classifier, aiming to assist patients in filling in symptom

information based on cough audio analysis.

We summarized our contributions as follows.

• Our method builds upon an audio-based COVID-19 detection

model by computing symptom attention using symptom

labels. This symptom attention is then multiplied with each

layer’s features to achieve symptom-assisted audio detection.

• To address the issue of patients incorrectly or mistakenly filling

in symptom information for various reasons, we use symptom

information as classification labels during training to assist

patients in providing accurate symptom information.

• In this paper, we explore a novel approach that integrates audio

features with symptom information for segment-based COVID-

19 detection. Experimental results demonstrate that

incorporating symptom priors can significantly enhance the

model’s performance.

2 Related work

2.1 COVID-19 symptoms

We explored how audio features and common COVID-19

symptoms can be effectively integrated into network

architectures, emphasizing the critical role of these symptoms in

COVID-19 detection. According to the World Health

Organization (WHO), fever, cough, and shortness of breath are

the primary symptoms of COVID-19. These symptoms can

appear either independently or simultaneously. However, these

signs are not exclusive to COVID-19 and are also frequently

observed in other illnesses, which poses challenges in diagnosis.

Zoabi et al. (16) utilized eight features, including gender, age,

history of contact with infected individuals, and other basic clinical

characteristics, to predict COVID-19 cases. Their research

highlights the significance of leveraging diverse features for

accurate diagnosis. Similarly, Fakieh et al. (17) employed statistical

analyses, such as ANOVA and t-tests, to evaluate the relationships

between demographic factors and symptom variables. They further

incorporated machine learning models, utilizing ensemble methods

to enhance the accuracy of COVID-19 detection, demonstrating

the potential of data-driven approaches. In contrast, Wang et al.

(18) reported that some COVID-19 patients did not exhibit typical

respiratory symptoms such as cough and fever. Instead, they

presented neurological symptoms, including headaches, fatigue,
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and difficulty walking. This subgroup of patients without

respiratory symptoms introduces challenges for audio-based

COVID-19 detection, as the absence of characteristic respiratory

signs may limit the effectiveness of such methods.

These findings underscore the necessity of adopting a multimodal

diagnostic approach. Collecting data from diverse modalities, such as

audio features, clinical symptoms, and demographic factors, allows for

a comprehensive assessment of the patient’s condition. This integrated

evaluation strategy could significantly improve the accuracy and

robustness of COVID-19 detection methods, accommodating the

variability in symptom presentation and addressing the limitations

of single-modality diagnostic techniques.
2.2 COVID-19 audio

With the advancement of machine learning, researchers have

explored the use of cough as a biomarker for specific diseases

(19). Larson et al. (20) stored cough segments from raw audio as

single-column vectors, combined them into matrices, and

extracted features using PCA. These features were then used to

train a random forest classifier, achieving effective cough

classification. Liu et al. (21) incorporated Hidden Markov Models

(HMMs) to capture temporal information and employed transfer

learning for cough classification experiments. Coppock et al. (22)

utilized convolutional neural networks to detect COVID-19.

Similarly, researchers have leveraged cough audio for the

detection of pertussis (23) and tuberculosis (24, 25).

Studies have shown that COVID-19 infection may be associated

with pathological changes in the vocal system, a hypothesis based on

the fact that voice changes are often linked to vocal system

pathologies (26). Asiaee et al. (27) compared sustained vowel /a:/

recordings from Persian speakers who were COVID-19 positive

and negative, extracting eight acoustic parameters: F0 and its

variation (F0SD), jitter, shimmer, harmonics-to-noise ratio (HNR),

the amplitude difference between the first two harmonics (H1-H2),

maximum phonation time (MPT), and cepstral peak prominence

(CPP). The results showed significant differences in all acoustic

parameters except F0 between COVID-19 patients and healthy

controls. Moreover, Bartl-Pokorny et al. (26) suggested that

COVID-19 infection might be characterized not by a single feature

but by a combination of candidate features associated with specific

phonation tasks. Madhurananda Pahar et al. (28) evaluated the

classification performance of COVID-19 cough data using seven

machine learning classifiers, with ResNet50 demonstrating the best

performance. Coppock et al. (12) employed Transformer, ResNet,

and SVM for COVID-19 identification. Saranga and Kingkor

Mahanta et al. (29) applied data augmentation techniques, such as

time stretching, pitch scaling, and volume adjustment, to extract

MFCC features, which were then fed into a convolutional neural

network, achieving promising classification results.

Cough biomarkers have been extensively explored for

detecting various diseases, including pertussis and tuberculosis.

Recent studies have demonstrated their potential for

identifying COVID-19 signals using advanced methods such as

deep learning, data augmentation, and acoustic feature
frontiersin.org
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analysis. These approaches, including ResNet, Transformers, and

MFCC-based techniques, effectively capture disease-specific

patterns in cough and voice data, offering robust tools for

COVID-19 detection (30–32).
3 Method

The overall Workflow of our symptom-assisted audio detection

method is shown in Figure 2. The process begins with data

preprocessing of the input raw audio files. Initially, Voice

Activity Detection (VAD) and data augmentation techniques are

applied to the audio to remove noise segments from the raw

recordings. Random noise addition and volume amplification are

introduced to enhance the model’s robustness to noise. Similar to

previous methods for COVID-19 audio detection, the audio is

transformed into log-Mel spectrograms, which are then input

into a convolutional neural network for classification.

To handle the varying lengths of audio signals, we standardize the

duration of cough signals by looping them to 3.84 s. This duration

adequately covers almost all cough lengths and aligns with the

average cough duration observed in the dataset. The audio is then

framed and windowed with a frame length of 25ms and a frame

shift of 10ms. The resulting audio segments are filtered using a

Hanning window, as shown in Equation 1, to minimize spectral
FIGURE 2

The workflow of SympCoughNet.
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leakage. Next, a Short-Time Fourier Transform (STFT) is applied to

obtain the spectrogram. The magnitude spectrum is then filtered

using 64 Mel filter banks, and the logarithm is taken to produce

log-Mel spectrograms with dimensions of 384 � 64.

w(n) ¼ 0:5 1� cos 2pn
N�1

� �� �
, 0 � n � N � 1,

0, otherwise:

�
(1)

We utilized 14 symptoms in our analysis: “cough any,” “new

continuous cough,” “runny or blocked nose,” “shortness of

breath,” “sore throat,” “abdominal pain,” “diarrhoea,” “fatigue,”

“fever high temperature,” “headache,” “change to sense of smell or

taste,” “loss of taste,” “prefer not to say,” and “other.” These

symptoms were encoded as a 14-dimensional one-hot vector,

where the presence of a specific symptom was encoded as 1, and

its absence was encoded as 0. Based on observations, disease

symptoms are closely related to the accuracy of COVID-19

detection. Notably, some patients exhibited no significant

symptoms. For these asymptomatic cases, audio features may serve

as critical information for effective differentiation.
3.1 SympCoughNet

To enable rapid and accurate detection of COVID-19 by

incorporating symptom priors, we designed a symptom-assisted
frontiersin.org
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audio-based neural network, as illustrated in Figure 3. The

proposed model architecture consists of three primary modules:

Audio Feature Extraction, Symptom Attention, and Classifier. In

the Audio Feature Extraction module, we utilize a classic

Convolutional Neural Network (CNN) to extract meaningful

representations from the input audio data. To improve the

efficiency and speed of training, residual connections are

integrated into the CNN architecture, which help mitigate

gradient vanishing issues and facilitate deeper model training.

For encoding symptom information, we employ a Multi-Layer

Perceptron (MLP) to process the symptom data into a latent

representation. This representation is then used in the Symptom

Attention Module, where it is multiplied with the channel

features extracted by the CNN. This mechanism dynamically

adjusts the importance of different channels based on symptom

information, enabling the network to focus on the audio features

most relevant to the provided symptoms. By coupling symptom

priors with audio features, the network effectively enhances its

ability to identify patterns associated with COVID-19. The

Classifier module consists of fully connected layers, which

aggregate the enhanced features and predict the final

classification results. This straightforward yet effective design

ensures that the extracted features and attention-weighted

information are fully utilized to achieve accurate predictions.

Overall, the SympCoughNet leverages both audio and symptom

information, providing a robust framework for COVID-19

detection that combines symptom priors with audio

signal characteristics.

To integrate symptom prior information with audio data, we

designed a Symptom-Fused Attention Block (SFA Block) that

combines the two during the feature extraction process. Suppose

Mi
in and Siin denote the input audio and symptom information for

the i-th SFA Block, respectively. Audio features fc ¼ Conv(Mi
in) are

extracted using two convolutional layers and then reduced to half
FIGURE 3

Network structure details of the proposed SympCoughNet. The symbol “�” r
addition. “4�” indicates that the operation needs to be repeated four times
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their original size through average pooling. Meanwhile, symptom

information is encoded using a fully connected layer, producing

fs ¼ Fc(Siin). The activation function for both the convolutional

and fully connected layers is ReLU. The encoded features fs are

used to compute the channel attention as fca ¼ Sigmoid(fs). To

avoid information loss, a skip connection is employed. Finally, the

output audio and symptom information, Mi
out and Siout, for the

i-th SFA Block is formulated as follows.

Mi
out ¼ Mi

in þ fca�fc (2)

Siout ¼ Relu(Fc(Siin)) (3)

In our Classifier module, we first apply both max pooling and

average pooling to the feature maps. The resulting values are then

summed together and passed through a fully connected layer,

which produces the final prediction results.
3.2 Parameter selection

In this section, we provide a detailed explanation of the

parameter settings used in our model. Similar to the settings in

(6, 12), the input log-Mel spectrograms are shaped as

1� 384� 64. We repeat the SFA Block four times, with the

number of channels progressively set to [64, 128, 256, 512]. Each

convolution operation utilizes a kernel size of 3� 3, a padding

size of 1, and a stride of 1. Correspondingly, the symptom

information is encoded into vectors of [64, 128, 256, 512]

channels, which are then multiplied element-wise with the results

of the convolutional layers. The specific parameter details are

summarized in Table 1.
epresents element-wise multiplication, and “+” represents element-wise
.
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TABLE 1 Network parameter details for symptom-fused attention block
(SFA block).

Component Kernel size
SFA Block 1 3� 3� 1� 64

SFA Block 2 3� 3� 64� 128

SFA Block 3 3� 3� 128� 256

SFA Block 4 3� 3� 256� 512

Lin et al. 10.3389/fdgth.2025.1551298
4 Experiments

In this section, we perform a comprehensive evaluation of the

performance of our proposed method. First, we provide a detailed

explanation of the data preprocessing pipeline.Next, we elaborate

on the implementation details of network training, such as the

model architecture configuration, hyperparameter selection,

training strategies, and optimization methods. Finally, we present

the experimental results, including an analysis of performance

metrics and ablation studies to verify the contribution of each

component to the overall performance.
4.1 Data processing

In tasks such as speech recognition and audio classification,

the performance of Mel spectrograms has been widely validated

as efficient and reliable. Log-Mel spectrograms convert audio

time series into a two-dimensional time-frequency

representation, significantly reducing the feature dimensions,

simplifying computation, and retaining the essential audio

information. First, the raw audio file undergoes data

preprocessing. Voice Activity Detection (VAD) and data

augmentation techniques are applied to process the audio,

removing noisy segments from the raw audio. Random noise

addition and volume augmentation are used to enhance the

model’s robustness to noise. The processed audio is then

transformed using Short-Time Fourier Transform (STFT) and

Mel filter banks to obtain the log-Mel spectrogram.

We divided the UK COVID-19 Vocal Audio Dataset into

training, validation, and testing sets with a ratio of 0.7:0.15:0.15.

To prevent potential imbalance between positive and negative

samples during the split, we ensured that the proportion of

positive to negative samples in each subset closely matched the

original dataset’s ratio of 65:35. Data augmentation was applied

only to the training set, while the validation and testing sets

remained unchanged. The data augmentation process was

performed randomly during training, with varying levels of

augmentation in each epoch to minimize overfitting.

The UK COVID-19 Vocal Audio Dataset stores audio files in

WAV format, which we processed using the librosa library.

Librosa automatically normalizes the audio by adjusting the

amplitude to the range [�1, 1]. We resampled all raw audio to

48 kHz. To remove the silence and noise segments frequently

present in raw audio, we utilized webrtcvad. To maximize data

utilization and mitigate overfitting, we applied data augmentation

techniques. Volume adjustments were set within a range
Frontiers in Digital Health 06
of �0.05 dB to 0.05 dB, and Gaussian noise with a mean of 0

and variance of 0.05 was added.

Finally, the processed audio was transformed using the Short-

Time Fourier Transform (STFT) and passed through a Mel filter

bank to obtain the log-Mel spectrograms. The data preprocessing

workflow is illustrated in Figure 2.
4.2 Experimental setup

To validate the effectiveness of our method, we compare it with

several widely used models in the audio domain, including PANN

(33), CAM++ (34), EcapaTdnn (35), TDNN (36), Res2Net (37),

ResNetSE (38), ERes2Net (39), and HTSAT (40). To ensure a

fair comparison, all experiments, except for HTSAT, are

conducted with the same data preprocessing techniques.HTSAT

is used within a transfer learning framework, with its pre-trained

model trained on the ESC-50 dataset. We meticulously followed

the original data processing procedures to ensure consistency,

resulting in the final experimental outcomes.

During training, we set the batch size to 8 and the initial

learning rate to 0.0001. The learning rate is halved every 5

epochs, and a total of 50 epochs are trained. We use the Adam

optimizer to optimize the network, with a weight decay of

1� 10�6 and a dropout probability of 0.1. The model with the

highest accuracy on the validation set after 50 epochs is selected

as the final model. Most of the experiments were conducted on

an NVIDIA RTX 4090.
4.3 Metric

In our experiments, we employed three evaluation metrics,

Accuracy, AUROC (Area Under the Receiver Operating

Characteristic Curve), and AP (Average Precision)—to

comprehensively evaluate the performance of the classification

model. Specifically, TP (True Positive) represents cases where

both the actual labels and predicted results are positive, FP (False

Positive) indicates cases where the actual labels are negative but

the predictions are positive, TN (True Negative) represents cases

where both the actual labels and predictions are negative, and

FN (False Negative) refers to cases where the actual labels are

positive but the predictions are negative.

Acc ¼ TPþ TN
TPþ FPþ TNþ FN

(4)

Accuracy measures the proportion of correctly predicted samples

out of the total samples, as defined in Equation 4.

AUROC quantifies the classification performance of the model

as the area under the ROC curve, which plots the True Positive

Rate (TPR) against the False Positive Rate (FPR) across different

threshold values.

AP evaluates the model’s overall performance in terms of

precision (Precision) and recall (Recall) by calculating the area
frontiersin.org
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under the Precision-Recall (PR) curve, capturing its behavior at all

threshold levels.
4.4 Experimental results

As shown in Table 2, the maximum values for ACCURACY,

AUROC, and PR metrics are 100%, while the minimum values

are 0%. For all three metrics, higher values indicate better

performance. Our method achieved an ACCURACY of 89.30%,

an AUROC of 94.74%, and a PR of 91.62%. Compared to the
TABLE 2 Performance of different methods in diagnosing COVID-19.

Method ACC AUROC PR
PANN 75.34% 80.92% 72.97%

CAM++ 74.80% 79.82% 68.03%

EcapaTdnn 75.40% 81.25% 73.23%

ERes2Net 73.63% 79.29% 70.60%

Res2Net 72.83% 77.90% 68.40%

ResNetSe 74.15% 79.85% 70.94%

TDNN 74.89% 80.34% 71.63%

HTSAT 76.34% 82.82% 75.34%

Ours 89.30% 94.74% 91.62%

The best results are emphasized in bold.

FIGURE 4

Confusion matrix.
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next-best method, HTSAT, our approach improved ACCURACY

by 12.96%, AUROC by 11.92%, and PR by 16.28%. These results

demonstrate that our method significantly enhances COVID-19

detection performance by incorporating prior clinical symptom

information alongside audio data. This further validates the

effectiveness of leveraging clinical symptom priors in the

diagnosis of COVID-19.

A confusion matrix is a tool used to evaluate the performance

of a classification model. It presents the relationship between the

actual classes and the predicted classes in a tabular format,

providing insights into the model’s performance for each

category, including both correct and incorrect predictions. As

shown in Figure 4, a significant number of samples are

concentrated along the diagonal of the matrix, indicating that the

majority of predictions are accurate.
4.5 Ablation experiment

In this section, the primary objectives of the ablation

experiments are as follows: (1) To determine whether the

improvement in detection performance originates from the

symptom information or the attention mechanism. (2) To

evaluate whether the network can predict symptom information
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1551298
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Lin et al. 10.3389/fdgth.2025.1551298
to mitigate the impact of incorrect symptom inputs from patients.

(3) To assess the effect of ablating different symptoms on the

symptom attention mechanism. (4) To explore whether

leveraging symptom pretraining, instead of symptom attention,

can enhance the performance of COVID-19 detection.
4.5.1 The effectiveness of clinical symptom prior
information

We designed two versions of ablation experiments to evaluate

the impact of symptom attention on the model’s performance: one

removes the entire symptom attention module, resulting in a

model with pure audio input, referred to as SympCoughNet-

ablated; the other uses randomly generated symptom information

as input, referred to as SympCoughNet-random. As shown in

Table 3, the SympCoughNet-ablated model, which relies solely on

audio input, demonstrates competitive performance compared to

the methods in Table 2, ranking second only to SympCoughNet in

terms of AUROC. However, the SympCoughNet-random model,

which introduces random symptom information, performs poorly

despite having slightly more parameters than SympCoughNet-

ablated. This result suggests that false or random symptom

information acts as noise, negatively impacting the model’s ability

to detect COVID-19. It highlights the critical importance of

accurate and clinically meaningful symptom information in

enhancing detection performance. We also present the t-SNE

visualizations of SympCoughNet-ablated and SympCoughNet, as

shown in Figure 5. The incorporation of symptom-based attention

significantly enhances the quality of the embedding representation

and mitigates domain shift. We trained a 3-layer MLP with layer
TABLE 3 The performance of the ablated symptom attention model and
the random input symptom information model.

Method ACC AUROC PR
SympCoughNet-random 69.91% 73.94% 64.11%

SympCoughNet-ablated 75.24% 81.27% 73.12%

SympCoughNet 89.30% 94.74% 91.62%

FIGURE 5

t-SNE visualizations of embeddings generated by (a) SympCoughNet and (b
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dimensions of [64, 32, 2] using symptoms to predict whether a

patient is positive, achieving an accuracy of 81.75%.

4.5.2 The network can learn symptom biomarkers
Based on the findings, erroneous symptom information can

potentially mislead the network and negatively affect its

predictions. To address this issue, we leverage SympCoughNet-

ablated, which relies solely on audio input, to directly predict

symptom information in scenarios where patients may input

incorrect or incomplete symptom prior knowledge. We denote

this model as SympCoughNet-ablated-symp. As shown in

Figure 6, the horizontal axis represents the prediction accuracy,

while the vertical axis corresponds to the predicted symptom

labels. The average prediction accuracy for all symptoms is

84.85%. Common COVID-19 indicators, such as “shortness of

breath” and “fever high temperature,” are predicted with

relatively high accuracy, achieving 81% and 90%, respectively.

This demonstrates the model’s strong ability to infer critical

symptoms directly from audio features. In contrast, symptoms

like “fatigue” and “cough any” exhibit lower prediction

accuracies, at 69% and 63%, respectively. Notably, “diarrhoea”

and “abdominal pain” achieve the highest prediction accuracies,

reaching 96% and 95%, respectively. These findings highlight the

potential of audio-based symptom prediction as an effective

supplementary approach to validate or correct patients’ provided

symptom information.

The relatively lower prediction accuracy for “cough any” can be

attributed to several factors. In multi-label classification tasks, there

is often a trade-off between the prediction accuracies of different

labels. During training, we used the average accuracy across all

labels as the criterion for selecting the best model, which may

have inadvertently prioritized overall performance over

optimizing individual labels like “cough any.” Additionally,

inferring cough symptoms directly from audio presents inherent

challenges. The model may exhibit a bias towards assuming that

most patients exhibit cough symptoms, potentially due to the

limitations of cough audio features or biases in the training data.
) SympCoughNet-ablated.
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FIGURE 6

Symptom prediction accuracy.
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These factors highlight the challenges in achieving high accuracy

for “cough any” and underscore the need for improved handling

of label-specific trade-offs and more nuanced approaches to

symptom-specific predictions. Nonetheless, these findings

emphasize the potential of audio-based symptom prediction as

an effective supplementary approach to validate or correct

patients’ provided symptom information.
4.5.3 Impact of different symptoms on COVID-19
detection performance

To verify which specific symptom is the most critical for

detecting COVID-19, we conducted ablation experiments on

each of the 14 symptoms and evaluated the model’s

performance, as shown in Figure 7. While the overall

performance does not appear to change significantly when a

single symptom is removed, it is noteworthy that the decline in

model performance seems to align with the model’s ability to

predict the corresponding symptom. As presented in Table 4,

ablating Fatigue and Headache results in the most significant

impact on Accuracy and PR, particularly for Fatigue, where the

ACC drops to 87.96%, the lowest value observed. At the same

time, the SympCoughNet-ablated model performs poorly in

predicting both Fatigue and Headache symptoms. Conversely,

ablating Prefer Not to Say leads to the highest AUROC (94.36%),
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which aligns with the strong prediction performance of the

SympCoughNet-ablated model for this symptom. This supports

our hypothesis that CNNs can extract a limited amount of

symptom information from audio. Building on this foundation,

we apply symptom attention to amplify the weight of symptom-

related features. Poor predictive performance for Fatigue and

Headache suggests that the model struggles to extract

information about these symptoms, leading to a more

pronounced decline in performance when they are removed.

Interestingly, the ablation of New Continuous Cough and Runny

or Blocked Nose has the least impact on Accuracy.

Simultaneously, the SympCoughNet-ablated model shows strong

prediction performance for New Continuous Cough but weaker

performance for Runny or Blocked Nose. This discrepancy might

be due to trade-offs made during the model training process.
4.6 Symptom pretraining does not improve
COVID-19 detection performance

In our approach to combining symptoms and audio, we also

considered using the network SympCoughNet-ablated-symp,

trained in Section 4.5.2, as a pre-trained model and fine-tuning it

with only audio input. The idea was to investigate whether
frontiersin.org
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FIGURE 7

The performance of the model in predicting COVID-19 after ablating individual symptoms. The ablated symptoms, from left to right, are: “cough any,”
“new continuous cough,” “runny or blocked nose,” “shortness of breath,” “sore throat,” “abdominal pain,” “diarrhoea,” “fatigue,” “fever high
temperature,” “headache,” “change to sense of smell or taste,” “loss of taste,” “other,” and “prefer not to say.”

TABLE 4 The table presents accuracy (ACC), area under the receiver
operating characteristic curve (AUROC), and precision-recall (PR) for
models trained without specific symptoms.

Ablated symptoms ACC AUROC PR
Cough any 88.79% 93.65% 90.11%

New continuous cough 89.09% 94.36% 90.90%

Runny or blocked nose 89.09% 94.01% 90.41%

Shortness of breath 88.36% 94.23% 90.99%

Sore throat 88.70% 94.45% 91.24%

Abdominal pain 88.69% 94.40% 91.19%

Diarrhoea 88.26% 93.87% 90.64%

Fatigue 87.96% 93.70% 90.15%

Fever high temperature 88.15% 93.89% 90.52%

Headache 87.97% 93.90% 90.66%

Change to sense of smell or taste 88.67% 94.25% 91.13%

Loss of taste 88.23% 93.93% 90.70%

Other 88.37% 94.21% 90.95%

Prefer not to say 88.69% 94.33% 91.17%

TABLE 5 Symptom pre-training extracts limited symptom information (CL
Pre-training refers to contrastive learning pre-training).

Pre-training method ACC AUROC PR
Symptom pre-training 75.16% 80.62% 72.85%

CL pre-training 75.37% 81.05% 73.08%

No pre-training 7524% 81.27% 73.12%

Lin et al. 10.3389/fdgth.2025.1551298
SympCoughNet-ablated-symp, which contains more symptom

information after symptom pre-training, could enhance its ability

to detect COVID-19. As shown in Table 5, we found that using

symptoms as a pre-training approach did not provide any

advantages. We also performed comparisons using contrastive

learning (SupCon Loss) as a pre-training method. We found that

neither Symptom Pre-training nor Contrastive Learning Pre-

training significantly improved the performance of COVID-19

detection. This suggests that extracting symptom information

through pre-training is quite challenging, and there may be

forgetting of symptom information during the fine-tuning phase.

However, by adopting a symptom attention mechanism to
Frontiers in Digital Health 10
integrate symptom and audio information, we achieved a

significant performance improvement. Although collecting

symptom information requires additional effort, its contribution

to improving detection performance is clearly evident.
5 Discussion

Recent studies have shown that audio-based classifiers for

COVID-19 detection are highly influenced by confounding

factors such as age, gender, and self-reported symptoms (12).

These factors significantly impact model performance, and

controlling for them often leads to reduced accuracy. Moreover, a

smaller dataset size due to such controls may result in model

underfitting. Since COVID-19 symptoms themselves serve as key

discriminative features for distinguishing positive from negative

cases, controlling for these factors during training may cause the

model to inadvertently learn other confounding variables.

Therefore, we controlled for factors like gender and self-reported

symptoms during testing, with the results presented in Table 6.

Note that we did not report results for the symptom category

“prefer not to say” due to its insufficient representation in the
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TABLE 6 Model performance under controlled testing conditions.

Controlled confounders ACC AUROC PR

Gender
Male 88.78% 94.21% 90.07%

Female 88.93% 95.19% 92.59%

Age
18–44 86.79% 93.68% 93.95%

45–64 88.82% 94.71% 90.65%

65+ 92.34% 93.81% 79.25%

Symptoms
Cough any 84.14% 85.26% 94.24%

New continuous cough 90.44% 78.56% 96.63%

Runny or blocked nose 83.88% 84.30% 93.89%

Shortness of breath 86.89% 87.54% 95.37%

Sore throat 82.95% 80.90% 93.54%

Abdominal pain 89.46% 92.03% 97.44%

Diarrhoea 90.84% 88.42% 95.81%

Fatigue 86.58% 85.57% 95.35%

Fever high temperature 95.64% 72.20% 97.80%

Headache 87.44% 83.84% 95.70%

Change to sense of smell or taste 92.94% 78.06% 96.52%

Loss of taste 95.19% 63.71% 96.42%

Other 87.05% 80.85% 94.89%

Lin et al. 10.3389/fdgth.2025.1551298
dataset. Although we did not include age-related information

during the training process, the experiments across different age

groups and gender groups are still observable.
6 Conclusion

In conclusion, SympCoughNet integrates symptom prior

knowledge with audio features, providing a novel approach to

enhance COVID-19 detection through cough audio analysis. By

leveraging a symptom-encoded attention mechanism, the model

effectively captures critical biological signals while mitigating the

impact of irrelevant noise. This innovation addresses the low

accuracy of traditional audio-based methods in detecting COVID-

19 and the limitations of traditional symptom-based methods due

to individual variability in symptomatic responses, thereby

significantly improving detection performance, including accuracy,

AUROC, and PR metrics. Our findings demonstrate the potential

of combining symptom knowledge with audio-based detection,

offering a cost-effective, rapid, and scalable solution for pandemic

control, especially in resource-limited settings. Future work will

explore the generalizability of SympCoughNet across other

respiratory diseases and the integration of additional multimodal

data to further improve robustness and applicability.
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